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Abstract. Let Ω be a planar domain containing 0. Let hΩ(r) be the harmonic

measure at 0 in Ω of the part of the boundary of Ω within distance r of 0.
The resulting function hΩ is called the harmonic measure distribution function

of Ω. In this paper we address the inverse problem by establishing several sets
of sufficient conditions on a function f for f to arise as a harmonic measure

distribution function. In particular, earlier work of Snipes and Ward shows

that for each function f that increases from zero to one, there is a sequence
of multiply connected domains Xn such that hXn converges to f pointwise

almost everywhere. We show that if f satisfies our sufficient conditions, then

f = hΩ, where Ω is a subsequential limit of bounded simply connected domains
that approximate the domains Xn. Further, the limit domain is unique in a

class of suitably symmetric domains. Thus f = hΩ for a unique symmetric

bounded simply connected domain Ω.

1. Introduction

Let Ω be a domain in the complex plane containing 0. We define the harmonic
measure distribution function hΩ(r) by the formula

hΩ(r) := ω(0, ∂Ω ∩B(0, r),Ω)

where ω(0, E,Ω) denotes the harmonic measure of the set E from the basepoint 0
in Ω. For r > 0, the number hΩ(r) gives the probability that a Brownian particle
released at 0 first exits Ω within a distance r of 0. Two questions regarding such
functions have been investigated in a number of papers [WW96, WW01, BS03,
SW05, SW08]. First, what functions can be constructed as hΩ for some Ω? Second,
what can be determined about Ω from hΩ?

These questions originally arose from Brannan and Hayman’s 1989 paper [BH89],
which described the current state of some problems in complex analysis and listed
some new ones. Specifically, these questions arose from Problem 6.116, proposed
by Stephenson. Problem 6.116 poses the questions listed above for the related
function wΩ(r), defined to be the harmonic measure of Ω∩∂B(0, r) in the connected
component of Ω ∩B(0, r) containing 0.

The following informally stated theorem (restated as Theorem 6.6 below) sum-
marizes some of the main results in this paper. This existence result gives sufficient
conditions on a function f for f to arise as the harmonic measure distribution
function of a bounded simply connected domain.
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Theorem 1.1. Let f be a nondecreasing, right-continuous function that is zero on
(0, µ) and 1 on [M,∞), for some numbers M > µ > 0. Suppose that the slopes of
the secant lines to the graph of f(r) for µ ≤ r ≤ M are bounded from below by a
positive number.

If f(r) is discontinuous at r = µ, and if M −µ is small enough, then there exists
a domain Ω that is bounded and simply connected, and is symmetric in the sense
of Definition 2.3, such that f = hΩ. Furthermore, up to sets of harmonic capacity
zero, this domain Ω is unique among bounded symmetric domains.

The precise condition on M − µ is given in the statement of Theorem 5.1. The
requirement that f increase from 0 to 1 is necessary for f to arise as the harmonic
measure distribution function of any bounded domain. A set of less restrictive but
more technical sufficient conditions is given in Theorem 4.2.

Our proof of Theorem 1.1 relies on an earlier existence result. In [SW05, Theo-
rem 2], Snipes and Ward proved that if f is a right-continuous step function with
finitely many jumps, and increases from 0 to 1, then f arises as the harmonic mea-
sure distribution function of some multiply connected domain. They were able to
describe this multiply connected domain fairly precisely. Much of the work in the
current paper is done to pass from these multiply connected domains to simply
connected domains.

We review some results concerning harmonic measure distribution functions of
simply connected domains. In [SW08] and [BS03], it was shown that sequences of
simply connected domains that converge in certain senses have convergent harmonic
measure distribution functions. We will use these results; see Theorem 3.3.

In [WW96], [WW01], and [BS03], Walden, Ward, Betsakos and Solynin investi-
gated the behavior of the harmonic measure distribution function hΩ(r) of a simply
connected domain for r near dist(0, ∂Ω). If µ = dist(0, ∂Ω) and Ω is simply con-
nected, it is easy to see that hΩ(r) = 0 for all r < µ, and hΩ(r) > 0 for all
r > µ. These papers established that for every number β with 0 < β < 1, there
is some simply connected domain Ω such that limr→µ+ hΩ(r)/(r − µ)β exists and
is positive. It was also shown that not all harmonic measure distribution func-
tions of simply connected domains have this property (or even the weaker property
c(r − µ)β ≤ hΩ(r) ≤ C(r − µ)β for some numbers C > c > 0).

These papers show that for some properties (asymptotic behavior of f at µ) there
is a domain whose harmonic measure distribution function has those properties.
They do not specify the whole function f ; that is, they do not provide sufficient
conditions for a function to arise as the harmonic measure distribution function of
some domain. In this paper, we will provide three progressively more restrictive, but
easier to check, conditions on f , such that if f meets any of those conditions then f
must be the harmonic measure distribution function of a simply connected domain.
Theorem 1.1 informally states the most transparent, and thus most restrictive, of
these sufficient conditions.

Example 1.2. The function

(1.1) f(r) =


0, 0 < r ≤ 1;
1

2
+

1

2

r − 1

0.0992
, 1 ≤ r ≤ 1.0992;

1, 1.0992 ≤ r
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Figure 1.1. A function f , defined by equation (1.1), that arises
as the h-function of some simply connected domain.

graphed in Figure 1.1 satisfies the sufficient conditions of Theorem 5.1 (see Re-
mark 5.2); thus, we know that there exists a simply connected domain Ω such that
f = hΩ. Before the current paper, it was not known whether this function, or in-
deed any function with a nonhorizontal linear segment, was the harmonic measure
distribution function of any domain.

The organization of this paper is as follows. In Section 2, we define our terms and
give some background information about harmonic measure and harmonic measure
distribution functions. In Sections 3, 4 and 5, we describe our sufficient conditions.

Specifically, in Section 3, we show that if f = limn→∞ hΩn , where {Ωn}∞n=1 is a
sequence of bounded, simply connected domains with uniformly locally connected
complements, then f = hΩ for some simply connected domain Ω.

In Section 4 we provide a candidate sequence {Ωn}∞n=1. Since monotonic func-
tions can be approximated by step functions, by [SW05] (mentioned above) any
function f that increases from zero to one is the limit of a sequence of harmonic
measure distribution functions of multiply connected domains. We provide a con-
dition that lets us approximate these domains with well-behaved simply connected
domains, yielding a sufficient condition on f that may be checked by examining
one sequence of domains rather than all sequences of simply connected domains.

In Section 5, we show that functions that increase fast enough, in some senses
that are easy to check, satisfy the sufficient condition of Section 4 and thus are har-
monic measure distribution functions of simply connected domains. In particular,
Example 1.2 and the existence part of Theorem 1.1 are proven in Section 5.

In Section 6 we consider uniqueness. From [SW05, Remark 1], a step function
arises as the harmonic measure distribution function of many different domains.
However, if the domain is assumed to be bounded and satisfy a symmetry condition,
then the domain is unique. The symmetry condition can be generalized to arbitrary
domains. We show that for bounded simply connected domains, the symmetry
condition again implies uniqueness. We also show that the domains produced in
Sections 4 and 5 satisfy this symmetry condition. Thus, if a function f satisfies the
necessary conditions of Section 4 or 5, then f is the harmonic measure distribution
function of a unique bounded simply connected symmetric domain.

Finally, in Section 7, we prove some technical lemmas, involving the harmonic
measure of circle domains and related domains, that we use in Sections 4 and 5.



4 ARIEL BARTON AND LESLEY A. WARD

It should be emphasized that this paper provides only sufficient conditions for
a function f to be realizable as the harmonic measure distribution function of a
simply connected domain Ω. These conditions are not necessary.

Let F = {hΩ : Ω is simply connected} be the set of all harmonic measure
distribution functions of simply connected domains, and let Fk be the set of all
functions f that satisfy the sufficient conditions of Section k. Then F ⊇ F3 ⊇
F4 ⊇ F5.

Some of these inclusions are proper. It is easy to exhibit harmonic measure
distribution functions that do not satisfy the conditions of Section 5. In particular,
no continuous function satisfies these conditions, and there are many well-behaved
domains with continuous h-functions. For example, any disk containing but not
centered at the origin has a continuous h-function. By considering a constant
sequence of domains, we can in fact exhibit functions f = hΩ that satisfy the
sufficient conditions of Section 3 but not Section 5. In other words, F5 ( F3. It is
not known whether such functions satisfy the conditions of Section 4.

Also, F4 ( F . The condition in Section 4 is sufficient for a function f to
arise as the harmonic measure distribution function of a bounded simply connected
symmetric domain whose complement is locally connected. By uniqueness, if f =
hΩ for some bounded simply connected symmetric domain Ω whose complement is
not locally connected, then f cannot satisfy the conditions of Section 4.

An early version of this paper [B04] appeared as the first author’s undergraduate
senior thesis, advised by the second author, while both authors were at Harvey
Mudd College. Some of our later work on this paper was done while the first
author was at the University of Chicago and at Purdue University. We thank
Henry Krieger for acting as second reader of [B04] and for useful advice regarding
functional analysis.

2. Definitions

In this section, we will provide definitions for many terms and concepts used
throughout this paper.

Let Ω be a connected domain, let z be a point in Ω, and let E be a measurable
subset of ∂Ω. Let ω(z, E,Ω) denote the usual harmonic measure of E in Ω with
basepoint z. The harmonic measure can be calculated by solving the Dirichlet
problem:

(2.1) ω(z, E,Ω) = uE(z), where

{
∆uE = 0 in Ω,

uE = 1E on ∂Ω.

From [Kak44], ω(z, E,Ω) is also the probability that a Brownian particle, released
from z, first exits Ω through E.

Notice that if Φ : Ω 7→ Φ(Ω) is a conformal mapping that extends continuously
to Ω, and if F ⊂ ∂Φ(Ω) and E = Φ−1(F ), then

ω(z, E,Ω) = ω(Φ(z), F,Φ(Ω)).

In particular, if Φ is one-to-one on Ω then ω(z, E,Ω) = ω(Φ(z),Φ(E),Φ(Ω)) for
every E ⊂ ∂Ω.

Also, if Ω ⊂ Ω̃, E ⊂ ∂Ω ∩ ∂Ω̃, and z ∈ Ω ∩ Ω̃, then

ω(z, E,Ω) ≤ ω(z, E, Ω̃).
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This property is referred to as the monotonicity in the domain property of harmonic
measure.

Finally, if Ω ⊂ Ω̃ and E ⊂ ∂Ω̃, then

ω(z, E, Ω̃) ≤ ω(z, E ∩ ∂Ω,Ω) + ω(z, ∂Ω \ ∂Ω̃,Ω).

We may define the harmonic measure distribution function, or h-function, of Ω
by

(2.2) hΩ(r) := ω(0, ∂Ω ∩B(0, r),Ω).

Recall that

wΩ(r) = ω(0,Ω ∩ ∂B(0, r),Ω∗) = 1− ω(0, ∂Ω ∩B(0, r),Ω∗)

where Ω∗ is the connected component of Ω ∩ B(0, r) that contains 0. Then by
monotonicity in the domain, hΩ(r) ≥ 1− wΩ(r).

Remark 2.1. All harmonic measure distribution functions have a number of common
properties. For any domain Ω, hΩ is right-continuous, nondecreasing, and if µ =
dist(0, ∂Ω), then hΩ(r) = 0 for all r < µ. Furthermore, if ∂Ω is bounded, then
there is some M such that hΩ(r) = 1 for all r ≥M .

These observations give a set of necessary conditions for a function f to arise as
the harmonic measure distribution function of any domain.

Here is another necessary condition stemming from the relation between hΩ and
wΩ. This necessary condition applies only to the h-functions of simply connected
domains. As noted in [WW96], it follows from Beurling’s solution to Milloux’s
problem [Ahl73] that, if µ = dist(0, ∂Ω) and Ω is simply connected, then hΩ(r) ≥
1−wΩ(r) ≥ 1−wΩµ,r (r), where Ωµ,r = B(0, r) \ [µ, r). The domain Ωµ,r is simple
enough that wΩµ,r may be computed directly via the Riemann map; we find that

hΩ(r) ≥ 1− 4

π
arctan

√
µ

r
.

For r large we have the simpler inequality hΩ(r) ≥ 1 − c/
√
r for some constant c;

this inequality is known as Beurling’s Lemma. As noted in [WW96], this inequal-
ity shows that the condition f = hΩ for some simply connected domain is more
restrictive than the condition f = hΩ for some arbitrary domain. (See Theorem 4.1
for specific counterexamples.)

We will not discuss necessary conditions further in this paper.

Definition 2.2. We say that X ⊂ C is a circle domain if there exist numbers
0 < r0 < r1 < · · · < rn such that

X = B(0, rn) \
n−1⋃
j=0

Aj ,

where Aj is a connected closed proper subset of ∂B(0, rj) that is symmetric about
the real axis and contains a positive real. We call the arcs Aj the boundary arcs
of X.

We may regard the boundary circle ∂B(0, rn) as the nth boundary arc An; then
An is a full circle and the arcs Aj , 0 ≤ j < n, are not full circles.

We say that Ω ⊂ C is a blocked circle domain if Ω is simply connected, symmetric
about the real axis, Ω ⊂ X for some circle domain X, and if ∂Ω \ ∂X consists of a
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a gate ΩX

Figure 2.1. A circle domain X and a blocked circle domain Ω.

number of gates, that is, radial segments whose endpoints are at distances rj and
rj+1 from 0. See Figure 2.1.

Circle domains have historically been of interest because any step function sat-
isfying the necessary conditions of Remark 2.1 arises as the h-function of a circle
domain. See [SW05, Theorem 2], quoted in this paper as Theorem 4.1. In the cur-
rent paper, we will use sequences of blocked circle domains to construct domains
with prescribed h-functions.

If A is a connected arc of a circle centered at the origin, for notational convenience
we refer to the angle at the origin, subtended by A, as the arclength of A.

Definition 2.3. Throughout this paper, when we say that a domain Ω is symmet-
ric, we mean that 0 ∈ Ω, that Ω is symmetric about the real axis, and that for
every r > 0, ∂B(0, r) \ Ω is either empty or a connected closed set that contains a
point on the positive real axis.

This notion of symmetry will be needed for the uniqueness results in Section 6.
We observe that a connected subset of ∂B(0, r) is necessarily path-connected.

All circle domains and blocked circle domains are symmetric in this sense.
Let Ω be symmetric, and let r, θ be real numbers with r > 0. We remark that

if reiθ ∈ Ω then −r ∈ Ω, and if reiθ /∈ Ω then r /∈ Ω. If Ω is also bounded and
connected, let µ and M be the largest and smallest numbers, respectively, such that
B(0, µ) ⊂ Ω ⊂ B(0,M); then µ /∈ Ω and (−M,µ) ⊂ Ω. If in addition Ω is simply
connected, then Ω ∩ [µ,M ] = ∅.

Definition 2.4. A path-connected closed set A is locally connected if, for every
ε > 0, there exists a δ > 0 such that any two points b, c ∈ A with |b − c| < δ can
be joined by a continuum B ⊂ A of diameter at most ε.

A sequence of closed sets {An}∞n=1 is uniformly locally connected if, for every
ε > 0, there exists a δ > 0 independent of n such that any two points b, c ∈ An
with |b− c| < δ can be joined by a continuum Bn ⊂ An of diameter at most ε.

Definition 2.5. A sequence of maps {Φn}∞n=1 on a domain Ω is equicontinuous if,
for all ε > 0, there exists a δ > 0, depending only on ε, such that if x, y ∈ Ω and
|x− y| < δ, then |Φn(x)− Φn(y)| < ε for all n.

In particular, if Ωn is part of a uniformly locally connected sequence then Ωn
is locally connected, and if Φn is part of an equicontinuous sequence then Φn is
uniformly continuous.
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3. Convergence results

The important result of this section is Theorem 3.1. This theorem states that
if f is the limit of a sequence of harmonic measure distribution functions of well-
behaved domains, then f is itself the harmonic measure distribution function of a
well-behaved domain. This result may be viewed as a sufficient condition on f that
forces f = hΩ for some simply connected domain Ω.

Theorem 3.1. Let f be a right-continuous, nondecreasing function. Suppose that
there exists a sequence of domains {Ωn}∞n=1 such that

(3.1) Ωn is simply connected,
(3.2) There exist numbers M , µ > 0 such that for all n, B(0, µ) ⊂ Ωn ⊂ B(0,M),
(3.3) {C \ Ωn}∞n=1 is uniformly locally connected, and
(3.4) hΩn → f pointwise at all points of continuity of f .

Then there exists a domain Ω that is bounded and simply connected, contains 0,
and has locally connected complement, such that f = hΩ. Furthermore, there is
a subsequence of {Ωn}∞n=1 whose normalized Riemann maps converge uniformly to
the Riemann map of Ω.

Theorem 3.1 follows immediately from the following two theorems. (Theorem 3.2
will be proven below; Theorem 3.3 was proven in [SW08, Theorem 1].) Let D denote
the unit disk B(0, 1) ⊂ C.

Theorem 3.2. Suppose that {Ωn}∞n=1 is a sequence of domains in the complex
plane such that the following conditions hold.

(3.5) Ωn is simply connected,
(3.6) There exist numbers M , µ > 0 such that for all n, B(0, µ) ⊂ Ωn ⊂ B(0,M),

and
(3.7) {C \ Ωn}∞n=1 is uniformly locally connected.

Let Φn : D 7→ Ωn be the Riemann map of Ωn, normalized so that Φn(0) = 0,
Φ′n(0) > 0. Then the maps Φn are equicontinuous, and so they have continuous
extensions to the closed unit disk D. Furthermore, the sequence {Φn}∞n=1 contains
a subsequence {Φn(k)}∞k=1 that converges uniformly on D to some uniformly contin-
uous map Φ. The limit Φ is itself the Riemann map of some domain Ω with locally
connected complement.

Theorem 3.3 (Snipes and Ward). Let Ω and Ωn, n ≥ 1, be simply connected
domains containing the point z0 = 0, with Ω 6= C and Ωn 6= C, and with harmonic
measure distribution functions h and hn, respectively. Suppose that the normalized
Riemann mappings Φ : D 7→ Ω, Φ(0) = 0, Φ′(0) > 0 and Φn : D 7→ Ωn, Φn(0) = 0,
Φ′n(0) > 0 have continuous extensions to the closed unit disk D. If Φn → Φ
pointwise on the boundary ∂D, then hn → h pointwise at all points of continuity
of h.

Because we wish to use Theorem 3.2, Theorem 3.3 is an appropriate convergence
result to use to prove Theorem 3.1. However, Theorem 3.3 is not the only known
result of its type. As noted in [BS03], if the domains Ωn are simply connected and
Ωn → Ω in the sense of Carathéodory, then hn(r)→ h(r) for almost all r.

To prove Theorem 3.2, we will need the following three theorems (taken from
[Pom92, Theorem 2.1], [Pom92, Proposition 2.3] and [Rud87, p. 245], respectively).
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Theorem 3.4. Let Φ map D conformally onto the bounded domain Ω. Then Φ has
a continuous extension to D if and only if C \ Ω is locally connected.

Theorem 3.5. Let Φn map D conformally onto Ωn with Φn(0) = 0. Suppose that

B(0, µ) ⊂ Ωn ⊂ B(0,M)

for all n. If {C \ Ωn}∞n=1 is uniformly locally connected, then {Φn}∞n=1 is equicon-
tinuous on D.

Theorem 3.6 (Arzela–Ascoli). Suppose that {Φn}∞n=1 is a sequence of pointwise
bounded, equicontinuous complex functions on D. Then there is a subsequence of
the Φn that converges uniformly on D.

Proof of Theorem 3.2. Theorems 3.5 and 3.6 imply that a subsequence of {Φn}∞n=1

converges uniformly on D to some map Φ. Because {Φn}∞n=1 is equicontinuous, Φ
must be uniformly continuous. We need only show that Φ is the Riemann map of
some domain Ω; Theorem 3.4 will then imply that C \ Ω is locally connected.

To show that Φ is a Riemann map, we must show that Φ is analytic and injective
and that Φ(D) is open and simply connected.

By [Ahl78, p. 176], if Φn → Φ uniformly in some domain and Φn is analytic,
then Φ is also analytic and Φ′n → Φ′ uniformly on compact subsets. (This fact
may be easily seen from the Cauchy integral formulas.) By [Ahl78, p. 132], a
nonconstant analytic function maps open sets onto open sets. Also, if Φ is one-to-
one, the preimage of any loop in Ω = Φ(D) must be a loop in D; since D is simply
connected, loops are contractible, and so Φ(D) must be simply connected as well.

So we need only show that Φ is one-to-one. Because Φn(D) = Ωn ⊃ B(0, µ) and
Φn → Φ uniformly, Φ cannot be a constant. Thus, for any fixed z ∈ D, the zeros of
Φ − Φ(z) must be isolated. Let γ be any Jordan curve in D with z in its interior,
and with |Φ− Φ(z)| ≥ ε > 0 on γ for some ε. Consider

1

2πi

∮
γ

Φ′(ζ)

Φ(ζ)− Φ(z)
dζ.

This quantity is equal to the number of zeros of Φ−Φ(z) in the interior of γ. But

1 =
1

2πi

∮
γ

Φ′n(ζ)

Φn(ζ)− Φn(z)
dζ

for all n, and so since Φn → Φ and Φ′n → Φ′ uniformly on γ, we must have that

1 =
1

2πi

∮
γ

Φ′(ζ)

Φ(ζ)− Φ(z)
dζ.

So Φ is one-to-one. �

4. Circle domains and a sufficient condition for f to be an
h-function

In this section, we will provide a more restrictive, but easier to check, condition
on a function f that will force it to arise as the harmonic measure distribution
function of some domain.

We begin by quoting a known existence result.
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Theorem 4.1 ([SW05, Theorem 2]). Let f(r) be a right-continuous step function,
increasing from 0 to 1, with its discontinuities at r0, r1, . . . , rn, where 0 < r0 <
r1 < · · · < rn. Then there exists a circle domain X with n arcs whose harmonic
measure distribution function hX(r) is equal to f(r). The radii of the n arcs and of
the boundary circle in X are given by r0, r1, r2, . . . , rn−1 and by rn respectively.

Monotonic functions can be approximated by step functions. Therefore, if f is
a nondecreasing function, then there is some sequence of circle domains {Xn}∞n=1

such that hXn → f . This sequence does not satisfy the conditions of Theorem 3.1.
However, we will find conditions (Theorem 4.2) on the sequence {Xn}∞n=1 such that
we may construct a sequence {Ωn}∞n=1 of blocked circle domains that does.

Informally, the conditions are that the circle domains Xn do not have too many
short arcs, and that the function f increases fast enough.

Theorem 4.2 provides a sufficient condition for Theorem 3.1 to hold, which may
be checked by examining {Xn}∞n=1 rather than all sequences of simply connected
domains {Ωn}∞n=1 that satisfy hΩn → f .

Our proof of Theorem 4.2 relies on Lemmas 7.4, 7.6 and 7.7. We defer their
precise statements and proofs to Section 7.

We begin by fixing some terminology. Suppose that we have a sequence {Xn}∞n=1

of circle domains, and a sequence {Ωn}∞n=1 of blocked circle domains such that
Ωn ⊂ Xn and ∂Ωn \ ∂Xn is a union of gates. In this section and in Section 5 we
will use the following symbols to describe such sequences of domains. (In Section 7
we will often discuss single domains rather than sequences of domains; when doing
so we will use the same notation without the n subscript.)

• Xn denotes the nth circle domain.
• Ωn denotes the nth blocked circle domain.
• An,k denotes a boundary arc of Xn; the innermost arc is An,0, the next

innermost arc is An,1, and so on.
• rn,k denotes the radius of An,k.
• ψn,k denotes half the arclength of An,k.
• φn,k denotes the angle (from the real axis) of a gate of Ωn lying between
An,k and An,k+1.

• χn,k denotes the inset angle of that gate.
• ηn,j,k measures the depth of the shortest arc between An,j and An,k.
• θn,j,k measures the depth of the deepest gate between An,j and An,k.

We emphasize that the numbering of boundary arcs and gates is to begin at zero
rather than one. See Figure 4.1 for an illustration of rn,k, ψn,k and φn,k, χn,k. We
define χn,k by the equation

(4.1) φn,k + χn,k = min(ψn,k, ψn,k+1).

We require that φn,k and χn,k both be nonnegative; this implies that φn,k ≤
min(ψn,k, ψn,k+1) and χn,k ≤ min(ψn,k, ψn,k+1).

We now clarify and make precise the definition of ηn,j,k. Let An,j and An,k be
any two boundary arcs of Xn. Consider the arcs An,l, j < l < k, lying between An,j
and An,k. In many of the theorems to come, we will need to consider the shortest
of these arcs. The important value will usually not be the arclength of the shortest
arc An,l, but its depth in the channel outlined by An,j and An,k. We define

(4.2) ηn,j,k := min(ψn,j , ψn,k)− min
j≤l≤k

(ψn,l).
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φn,k

χn,k

Ωn

ψn,k

rn,k

An,k

Xn

Figure 4.1. Parameters rn,k, ψn,k, and φn,k, χn,k, used to de-
scribe circle domains Xn and blocked circle domains Ωn. Here
n = 2 and k = 0.

This number is zero if none of the inner arcs are shorter than the outer arcs, and
otherwise is half the difference in arclength between the shorter of the outer arcs
and the shortest of the inner arcs. (We divide the arc length difference by two
because there are two ends to the channel and the shortest arc is inset in both of
them.)

Similarly,

(4.3) θn,j,k := min(ψn,j , ψn,k)− min
j≤l<k

(φn,l)

measures the depth of the deepest gate in Ωn between An,j and An,k. See Figure 4.2
for an illustration of ηn,j,k and θn,j,k.

We observe that we can bound θn,j,k by ηn,j,k and χn,m for j ≤ m < k. By
formula (4.1), if j ≤ m < k then

φn,m = min(ψn,m, ψn,m+1)− χn,m ≥ min
j≤l≤k

ψn,l − χn,m ≥ min
j≤l≤k

ψn,l − max
j≤l<k

χn,l.

By formula (4.2),

ηn,j,k = min(ψn,j , ψn,k)− min
j≤l≤k

ψn,l

= min(ψn,j , ψn,k)− min
j≤l≤k

ψn,l + max
j≤l<k

χn,l − max
j≤l<k

χn,l.

Combining these formulas we have that

ηn,j,k ≥ min(ψn,j , ψn,k)− min
j≤m≤k

φn,m − max
j≤l<k

χn,l.

By formula (4.3), the right-hand side is equal to θn,j,k −maxj≤l<k χn,l, and so

(4.4) θn,j,k ≤ ηn,j,k + max
j≤l<k

χn,l.

We now consider functions. Suppose that f is a candidate for a harmonic mea-
sure distribution function, meaning that f is a right-continuous function defined
on R+ that is 0 on (0, µ), is nondecreasing on [µ,M ], is 1 on [M,∞), and satisfies
0 < f < 1 on (µ,M), for some numbers 0 < µ < M .
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An,j

An,k

θn,j,k

Ωn

An,j

An,k

ηn,j,k

Xn

Figure 4.2. The angles θn,j,k and ηn,j,k used to describe circle
domains Xn and blocked circle domains Ωn. Here n = 4, j = 0,
and k = 3.

Define the minimal secant slope α of f by

(4.5) α := (M − µ) inf

{
f(ρ2)− f(ρ1)

ρ2 − ρ1

∣∣∣∣ µ ≤ ρ1 < ρ2 ≤M
}
.

The infimum in this definition is the infimum of the slopes of secant lines to the
graph of f between µ and M ; multiplying by (M − µ) normalizes this number so
that 0 ≤ α ≤ 1.

We fix

rn,k := µ+ (M − µ)
k

n
for 0 ≤ k ≤ n,

so that rn,0 = µ and rn,n = M . Define fn(r) by

fn(r) :=


0, 0 < r < rn,0;

f(rn,k), rn,k ≤ r < rn,k+1;

1, rn,n ≤ r <∞.
Thus, fn is a right-continuous nondecreasing step function and approximates f
from below. Let Xn be a circle domain with boundary arcs at radii rn,k and with
hXn = fn; by Theorem 4.1 such an Xn exists. Then hXn = fn → f pointwise at all
points of continuity of f . We remark that ψn,n = π, that ψn,0 = 0 if f is continuous
at µ, and that if α > 0 then ψn,k > 0 for all k > 0.

We now show that if the domains Xn do not have too many short arcs, and if
the function f increases fast enough, then f is the harmonic measure distribution
function of some bounded, simply connected domain Ω.

Theorem 4.2. Suppose that the function f is a candidate for a harmonic measure
distribution function. Let α be the minimal secant slope given by equation (4.5),
and define the circle domains Xn as above.

Let {κn}∞n=1 be any sequence of numbers, for example κn = ((M−µ)/(µn)) log n,
such that
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(a) lim
n→∞

κn = 0, and

(b) lim
n→∞

n exp

(
− πµ

2(M − µ)
nκn

)
= 0.

Suppose that

(c) the minimal secant slope α > 0, and
(d) lim

n→∞
σn/
√
n = 0, where σn is the number of boundary arcs of Xn with

arclength at most 2κn.

Then there exists a sequence {Ωn}∞n=1 of blocked circle domains, satisfying the con-
ditions (3.1)–(3.3) of Theorem 3.1, such that hΩn → f pointwise at all points of
continuity of f . So by Theorem 3.1, f is the harmonic measure distribution function
of some bounded, simply connected domain Ω.

Proof. For each domain Xn, we will construct a suitable blocked circle domain
Ωn ⊂ Xn. By construction, hXn → f pointwise at points of continuity of f .
We want to show that if limn→∞ σn/

√
n = 0 and α > 0, then we may choose

Ωn such that {Ωn}∞n=1 and f satisfy the conditions of Theorem 3.1. The only
difficult conditions are (3.3) and (3.4), that is, the requirement that {C \ Ωn}∞n=1

be uniformly locally connected and the requirement that hΩn → f . Since hXn → f ,
we may replace (3.4) by a requirement that hXn − hΩn → 0.

Recall that rn,k = µ+ k(M − µ)/n. The circle domains Xn, and thus ψn,k and
ηn,j,k, are then determined by the fact that hXn = fn. Given the inset angles χn,k
of the gates, the domains Ωn and the parameters φn,k, θn,j,k are determined.

We are free to choose χn,k provided 0 ≤ χn,k ≤ min(ψn,k, ψn,k+1). We set the
inset angles χn,k of the gates in Ωn,k to be

χn,k = min(ψn,k, ψn,k+1, κn).

The number κn thus determines the size and shape of (most of) the ends of the
channels. Since κn → 0, the channel ends must eventually become short, but since
nκn → ∞ and the width of the channels is (M − µ)/n, the channel ends must
become thin much faster than they become short.

We remark that if the inset angle χn,k 6= κn, then χn,k = min(ψn,k, ψn,k+1).
Recall that χn,k+φn,k = min(ψn,k, ψn,k+1), where φn,k is the gate angle. Therefore,
if χn,k 6= κn then φn,k = 0; there is only one gate between An,k and An,k+1, and it
lies along the positive real axis.

Furthermore, if φn,k = 0 then χn,k = min(ψn,k, ψn,k+1). Since χn,k ≤ κn this
implies that ψn,k ≤ κn or ψn,k+1 ≤ κn; thus, because there are at most σn arcs
Ak with ψn,k ≤ κn, there are at most 2σn gates that lie along the real axis, one on
each side of each short arc.

Recall that we imposed two conditions on {κn}∞n=1. The reasons are as follows. A
necessary (not sufficient!) condition for uniform local connectivity of the sequence
{Ωn}∞n=1 is that the inset angle χn,k of the gates be small whenever rn,k+1 − rn,k
is small. (See Lemma 7.7.) Since χn,k = min(ψn,k, ψn,k+1, κn), and ψn,k need not
be small, we must have that κn → 0 as n→∞.

However, hXn−hΩn is controlled by the harmonic measure of the gates (see Lem-
ma 7.6), which is small if χn,k is large compared with rn,k+1−rn,k (see Lemma 7.2);
thus, while κn → 0, κn cannot go to zero too quickly.
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We make our requirements precise. In Lemma 7.6, we will establish a bound on
|hXn − hΩn |; it is

|hXn(r)− hΩn(r)|

≤ 32

π

∑
k:φn,k>0

exp

(
− π rn,k χn,k

2(rn,k+1 − rn,k)

)
+

2

π

∑
k:φn,k=0

√
rn,k+1 − rn,k

rn,k
.

Recall that there are at most 2σn gates that lie along the real axis; thus, there
are at most 2σn numbers k that satisfy φn,k = 0. Since rn,k+1− rn,k = (M −µ)/n,

and µ ≤ rn,k, the second sum is at most 2σn
√

(M − µ)/(nµ).
There are n boundary arcs (and so at most n pairs of gates with φn,k > 0).

Recall that if φn,k > 0 then χn,k = κn. Again by our choice of rn,k, the first sum
is at most n exp(−(π µκn)/(2(M − µ)/n)).

So

|hXn(r)− hΩn(r)| ≤ 32

π
n exp

(
− πµ

2(M − µ)
nκn

)
+

4

π
σn

√
M − µ
nµ

.

By our assumptions on σn and κn, both terms go to zero, and so condition (3.4)
holds: hΩn → f at points of continuity of f .

We turn to condition (3.3). Assume that the minimal secant slope α is greater
than 0. Recall the definitions of ηn,j,k and θn,j,k (the depths of the shortest arc and
deepest gate, respectively, between An,j and An,k; see Figure 4.2).

Equation (4.4) states that θn,j,k ≤ ηn,j,k + maxj≤l<k χn,l. Since χn,l ≤ κn for
all n and l, this implies that

θn,j,k ≤ ηn,j,k + κn.

In Lemma 7.7, we will establish sufficient conditions for {C \ Ωn}∞n=1 to be
uniformly locally connected. These conditions are that, for every ε > 0, there exist
positive numbers δ1(ε), δ2(ε) such that

• If 0 ≤ k ≤ n and π − ψn,k < δ2(ε), then M − rn,k < ε, and
• If 0 ≤ j < k ≤ n and rn,k − rn,j < δ1(ε) then θn,j,k < ε.

Informally, these conditions say that if two arcs in a blocked circle domain are
sufficiently close, then the gates between them are not too deep, and that if an
arc is long enough to be almost a full circle, then it is close to the outer boundary
circle.

If 0 < j ≤ n, then ω(0, An,j , Xn) = f(rn,j)− f(rn,j−1) ≥ α/n. When α > 0, we
can use this lower bound on the harmonic measure of each arc to ensure that the
conditions of Lemma 7.7 hold.

We do so as follows. In Lemma 7.4, we will show that if α > 0, then for each
ε > 0 there exist numbers δ′1(ε), δ′2(ε) > 0 (depending on α, M , µ) such that

• If 0 ≤ k ≤ n and π − ψn,k < δ′2(ε), then M − rn,k < ε, and
• If 0 ≤ j < k ≤ n and rn,k − rn,j < δ′1(ε), then ηn,j,k < ε.

Fix ε > 0. Let δ2(ε) = δ′2(ε). Since κn → 0 as n → ∞, there is some Nκ(ε) such
that if n > Nκ(ε) then κn < ε/2. Let

δ1(ε) = min

(
δ′1(ε/2),

M − µ
Nκ(ε)

)
.
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Suppose j < k and rn,k − rn,j < δ1(ε). Then because δ1(ε) ≤ δ′1(ε/2), the depth
ηn,j,k of the shortest arc between Aj and Ak satisfies ηn,j,k < ε/2. Furthermore,
since j 6= k we have that

M − µ
n

≤ rn,k − rn,j < δ1(ε) ≤ M − µ
Nκ(ε)

,

and so Nκ(ε) < n; thus κn < ε/2. Then θn,j,k ≤ ηn,j,k + κn ≤ ε.
So if α > 0 then the conditions of Lemma 7.7 hold, as desired. �

5. An easy-to-check sufficient condition for f to be an h-function

In this section, we exhibit a family of functions that satisfy the conditions of
Theorem 4.2, and are thus the harmonic measure distribution functions of simply
connected bounded domains (Theorem 5.1). Loosely speaking, these are functions
that begin with a jump and reach 1 quickly after that.

Our proof of Theorem 5.1 relies on Lemmas 7.3 and 7.4; we defer their statements
and proofs to Section 7.

Theorem 5.1. Suppose that f is right-continuous, 0 on [0, µ), strictly increasing
on [µ,M ], and 1 on [M,∞), with 0 < µ < M and 0 < f < 1 on (µ,M). Let α be
the minimal secant slope of f given by equation (4.5), so f(ρ2) − f(ρ1) ≥ α(ρ2 −
ρ1)/(M − µ) for all ρ1, ρ2 with µ ≤ ρ1 < ρ2 ≤ M . Let β = f(µ) = limr→µ+ f(r).
Notice that 0 ≤ β ≤ 1 and 0 ≤ α ≤ 1− β.

If α > 0 and β > 0, then there is a number m0 > 0 depending only on α and
β such that, if (M − µ)/µ < m0, then f satisfies the conditions of Theorem 4.2.
Hence there exists a simply connected bounded domain Ω, arising from a sequence
of circle domains, such that f = hΩ.

Furthermore, m0 ≥ min(m1,m2,m3), where

m1 :=
1

e− 1
,(5.1)

m2 :=
π2

8 log(256/πα)
,(5.2)

2

π
m3

(
2 log

(
1 +

1

m3

)
+ π2

)
+

4

π
m3 log

(
256

πα

)
= πβ.(5.3)

We remark that for each fixed α, β ∈ (0, 1), the function

g(m) =
2

π
m

(
2 log

(
1 +

1

m

)
+ π2

)
+

4

π
m log

(
256

πα

)
is continuous and strictly increasing on (0,∞), and satisfies limm→0+ g(m) = 0,
πβ < π < g(1); thus, there is a unique (small) positive number m3 that solves
equation (5.3).

Proof. Choose some such function f . Let Xn, An,k, ψn,k be as in Section 4.
By our construction of Xn, the harmonic measure of the innermost arc An,0 of

∂Xn is given by
ω(0, An,0, Xn) = f(rn,0) = f(µ) = β

for all n. So by Lemma 7.3, if µ ≥M(1− 1/e), then

ψn,0 > min

(
π

2
, πβ − 2

π

M − µ
µ

(
2 log

(
M

M − µ

)
+ π2

))
.
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For fixed n and k, An,k is a boundary arc of Xn that lies between An,0 and
An,n = ∂B(0,M). Thus, by Lemma 7.4, we have that

ψn,0 − ψn,k ≤ ηn,0,n ≤
4

π

M − µ
µ

log

(
256

πα

)
.

Thus, if µ > M(1− 1/e) and 0 ≤ k ≤ n, then

ψn,k ≥ min

(
π

2
, πβ − 2

π

M − µ
µ

(
2 log

(
M

M − µ

)
+ π2

))
− 4

π

M − µ
µ

log

(
256

πα

)
.

If (M − µ)/µ < m1, then µ > M(1− 1/e). If (M − µ)/µ < m2, then

π

2
− 4

π

M − µ
µ

log

(
256

πα

)
> 0.

Suppose that (M − µ)/µ < m3; by monotonicity of g(m) we have that

2

π

M − µ
µ

(
2 log

(
M

M − µ

)
+ π2

)
+

4

π

M − µ
µ

log

(
256

πα

)
< πβ.

Thus, if (M−µ)/µ < min(m1,m2,m3), then there is some positive constant ψ such
that ψn,k ≥ ψ for all n and k; that is, the arclength of every boundary arc is at
least 2ψ.

Let {κn}∞n=1 be any sequence that satisfies Conditions (a) and (b) of Theo-
rem 4.2. By assumption on f , Condition (c) holds. Since limn→∞ κn = 0, if n is
large enough then no boundary arcs of Xn have arclength less than 2κn, and so
Condition (d) holds.

Thus the conditions of Theorem 4.2 hold, and so a bounded simply connected
domain Ω exists such that f = hΩ. �

Remark 5.2. If α = β = 1
2 , and the numbers ml are defined as above, then m1 ≈

0.58198, m2 ≈ 0.24220, and m3 ≈ 0.09922. Recall the function

f(r) =


0, 0 < r ≤ 1
1

2
+

1

2

r − 1

0.0992
, 1 ≤ r ≤ 1.0992

1, 1.0992 ≤ r

of equation (1.1). We remark that for this function, α = β = 1
2 . Also, µ = 1

and M = 1.0992, so (M − µ)/µ = M − 1 = 0.0992 < min(m1,m2,m3). Thus, we
see that f satisfies the conditions of Theorem 5.1, and so f = hΩ for some simply
connected domain Ω.

6. Uniqueness of the domain Ω

Let f be a function. Under certain conditions (Theorems 4.2 and 5.1), there
exists a simply connected domain Ω such that f = hΩ. We are interested in

whether this domain Ω is unique; that is, if Ω and Ω̃ are domains and hΩ = hΩ̃,

what else must be true of Ω and Ω̃ to allow us to conclude that Ω = Ω̃?
It is clear that some conditions must be imposed. If a domain Ω is rotated

around the point 0, or reflected across a line through 0, then the domain is changed
but the harmonic measure distribution function remains the same.

If a single point is deleted from a domain Ω, then the harmonic measure of
all boundary sets in ∂Ω is unchanged, and so the harmonic measure distribution
function is unchanged. More generally, if E ⊂ Ω has harmonic capacity zero and
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0 /∈ E, then Ω and Ω \ E have the same harmonic measure distribution function.
In the following discussion, we will disregard sets of harmonic capacity zero.

Much more interesting examples of non-uniqueness exist. Consider domains
whose harmonic measure distribution functions are step functions. (Such functions
were studied extensively in [SW05]. The underlying domains of course are not
simply connected.) If hX is a step function with discontinuities at r0, r1, . . . , rn,
then ∂X is a subset of ∪nk=0∂B(0, rk). The proof of [SW05, Theorem 2] implies
that there are uncountably many such domains X with hX = f . For example,
∂X∩∂B(0, rn) may be taken to be an arc with arclength of any preassigned number
ψ, 0 < ψ ≤ 2π; the sets ∂X ∩∂B(0, rk) may be taken to be connected arcs centered
at any preassigned angles, or indeed to be disconnected sets.

Thus, if hX is a step function, then hX = hX̃ for many domains X̃ 6= X.

However, if X and X̃ are circle domains in the sense of Definition 2.2, then

hX = hX̃ implies X = X̃. (See Lemma 6.2.) Furthermore, if hX is a step function,
then X is a circle domain if and only if X is bounded and symmetric in the sense
of Definition 2.3.

We conjecture that these conditions suffice to imply uniqueness.

Conjecture 6.1. Suppose that Ω and Ω̃ are two domains, both of which are bounded
and symmetric in the sense of Definition 2.3. Suppose further that hΩ = hΩ̃. Then

Ω = Ω̃ up to a set of harmonic capacity zero.

We will prove Conjecture 6.1 only in the two special cases where Ω is a circle
domain (Lemma 6.2) or where Ω is simply connected (Theorem 6.5). We will also
show (Lemma 6.4) that the simply connected domains Ω produced by Theorem 4.2
are symmetric; since they are clearly bounded, Theorem 6.5 will apply. Thus, if a
function satisfies the conditions of Theorem 4.2, then it arises as the h-function of
a unique bounded, simply connected symmetric domain. In Theorem 6.6, we will
state this conclusion more precisely.

Throughout this section, by “symmetric” we mean “symmetric in the sense of
Definition 2.3.”

Lemma 6.2. Let X and X̃ be two circle domains. Suppose that hX = hX̃ . Then

X = X̃ except possibly for finitely many points on the positive real axis.

Proof. In the proof of Theorem 4.2, it was convenient to allow finitely many bound-
ary arcs of arclength 0, that is, boundary “arcs” consisting of single points on the
positive real axis. Such points have harmonic measure zero and cannot be detected
from the harmonic measure distribution function. For the remainder of this proof,

we ignore such points; that is, we assume that the boundary arcs of X and X̃ have
positive arclength.

Since X is a circle domain, hX must be a step function. Let its discontinuities
be at r0, r1, . . . , rn. The boundary arcs of X are circular arcs with midpoints

lying on the positive real axis. Let Ak and Ãk be the boundary arcs of X and X̃,

respectively, and let ψk, ψ̃k be half their arclengths.

We need only show ψk = ψ̃k for 0 ≤ k ≤ n. Since X and X̃ are bounded, the

outermost boundary component is a full circle, and so ψn = ψ̃n = π. Suppose that

ψk > ψ̃k for at least one k. Let E be the union of all arcs Ak such that ψk > ψ̃k,

and let Ẽ be the union of the corresponding arcs of X̃. Then Ẽ is nonempty and

Ẽ ( E, and since An 6⊂ E, we have that Ẽ ( ∂X̃.
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Then ω(0, Ẽ, X̃) = ω(0, E,X) because hX = hX̃ . But ω(0, E,X) ≥ ω(0, E,X ∩
X̃) by the property of monotonicity in the domain of harmonic measure. Since

E ∩ ∂X̃ is a proper subset of both E and ∂X̃, we have that ω(0, E, X̃ \ E) >

ω(0, E ∩ ∂X̃, X̃).

But E ∩ ∂X̃ = Ẽ and X ∩ X̃ = X̃ \ E. Thus,

ω(0, Ẽ, X̃) = ω(0, E,X) ≥ ω(0, E,X ∩ X̃) > ω(0, Ẽ, X̃).

This is a contradiction; thus ψk ≤ ψ̃k for 0 ≤ k ≤ n. Similarly, ψ̃k ≤ ψk for

0 ≤ k ≤ n and so X = X̃ except possibly for finitely many points on the real
axis. �

Now, we consider simply connected domains. We begin with some general re-
marks.

Remark 6.3. Let Ω be a bounded simply connected symmetric domain. Let µ andM
be the largest and smallest numbers, respectively, such that B(0, µ) ⊂ Ω ⊂ B(0,M).
By the remarks after Definition 2.3, Ω ∩ R = (−M,µ).

Let Φ : D 7→ Ω be the Riemann map; assume that Φ is normalized such that
Φ(0) = 0 and Φ′(0) > 0. Since normalized Riemann maps are unique, and since Ω

is symmetric about the real axis, Φ(z) = Φ(z). Thus, Φ(z) is real if and only if z is
real. Since Φ(0) = 0, Φ′(0) > 0, and Φ is continuous and one-to-one, we have that
Φ((−1, 0)) = (−M, 0) and Φ((0, 1)) = (0, µ).

Lemma 6.4. Let {Ωn}∞n=1 be a sequence of bounded, simply connected domains
containing 0 that are symmetric in the sense of Definition 2.3. Let Φn : D 7→ Ωn be
the Riemann maps of the domains Ωn, normalized so that Φn(0) = 0 and Φ′n(0) > 0.
Suppose that Φn → Φ uniformly on D, where Φ is the Riemann map of some simply
connected domain Ω.

Then Ω is symmetric. In particular, if f satisfies the conditions of Theorem 4.2
then f = hΩ for some bounded, simply connected, symmetric domain Ω.

Proof. We wish to show that Ω is symmetric. By Definition 2.3, we must show
that 0 ∈ Ω, that Ω is symmetric about the real axis, and that for every r > 0,
∂B(0, r) \Ω is either empty or a closed, connected set that contains a point on the
positive real axis.

First observe that 0 = limn→∞Φn(0) = Φ(0), and so 0 ∈ Φ(D) = Ω. Next, by

Remark 6.3, Φn(z) = Φn(z) for all z ∈ D. Since Φ(z) = limn→∞Φn(z), we have

that Φ(z) = Φ(z), implying that Ω is also symmetric about the real axis.
Let Mn, M be the smallest numbers such that Ωn ⊂ B(0,Mn) and Ω ⊂ B(0,M).

Since Φn → Φ uniformly, we have that Mn → M . By Remark 6.3, for each
n ≥ 1 we have that Φn((−1, 0)) = (−Mn, 0), and so Φ((−1, 0)) = (−M, 0). Thus
(−M, 0) ⊂ Ω ⊂ B(0,M).

Choose some r with 0 < r < M ; observe that because Ω is open, we have that
∂B(0, r) \ Ω is closed. Suppose that ∂B(0, r) ∩ Ω is connected. Then ∂B(0, r) \ Ω
is also connected. By the preceding remarks, ∂B(0, r) \ Ω is symmetric about the
real axis, and so if it is nonempty then it must contain either the point r or the
point −r; but because −r ∈ (−M, 0) ⊂ Ω we have that ∂B(0, r) \ Ω contains the
point r on the positive real axis. Thus, to prove that Ω is symmetric, it suffices to
prove that ∂B(0, r) ∩ Ω is connected for all r such that 0 < r < M .
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We begin by considering connecting paths in Ωn. Choose some n > 0 and some
z, w ∈ Ωn. Since Ωn is symmetric and connected, if z, w ∈ Ωn, then z and w may
be connected by a path lying along the two arcs ∂B(0, |z|) and ∂B(0, |w|) and along
the segment [−|z|,−|w|] lying on the negative real axis.

In particular, let A(s, S) = B(0, S) \ B(0, s) denote the open annulus of inner
radius s and outer radius S. If the set Ωn ∩ A(s, S) is nonempty, then it must be
path-connected.

Next, we establish path-connectedness of the open set Ω∩A(ρ,R) for all ρ, R such
that Ω∩A(ρ,R) is nonempty. Suppose that z0, z1 ∈ Ω∩A(ρ,R). Then for k = 0, 1,
we have zk = Φ(ζk) for some ζk ∈ D. Let ε = min(R−|z0|, R−|z1|, |z0|−ρ, |z1|−ρ)/2,
and let n be large enough that |Φn(ζ)− Φ(ζ)| < ε for all ζ ∈ D. So

|Φn(ζk)| ≤ |Φ(ζk)|+ |Φn(ζk)− Φ(ζk)| < |zk|+ ε ≤ R− ε,
|Φn(ζk)| ≥ |Φ(ζk)| − |Φn(ζk)− Φ(ζk)| > |zk| − ε ≥ ρ+ ε,

and thus Φn(ζk) ∈ Ωn∩A(ρ+ε,R−ε). Therefore, Ωn∩A(ρ+ε,R−ε) is nonempty
and so must be path-connected. This means that there is some continuous function
γn : [0, 1] 7→ Ωn ∩ A(ρ + ε,R − ε) such that γn(0) = Φn(ζ0) and γn(1) = Φn(ζ1).
Consider γ(t) = Φ(Φ−1

n (γn(t))). This is a continuous path connecting z0 and z1, and
γ([0, 1]) ⊂ Ω. Furthermore, |γ(t)− γn(t)| = |Φ(Φ−1

n (γn(t)))− Φn(Φ−1
n (γn(t)))| < ε

for each t ∈ [0, 1], and so γ([0, 1]) ⊂ A(ρ,R) as well.
Thus, Ω∩A(ρ,R) is path-connected for all ρ, R such that Ω∩A(ρ,R) is nonempty.
We may now show that Ω∩ ∂B(0, r) is connected for all r such that 0 < r < M .

Note that a subset of ∂B(0, r) is connected if and only if it is path-connected.
Because −r ∈ Ω for all 0 < r < M , we have that Ω ∩ ∂B(0, r) is nonempty. Let z,
w ∈ Ω∩ ∂B(0, r). Then |z| = |w| = r. We want to show that some arc of ∂B(0, r),
with endpoints z and w, is contained in Ω.

Because Ω is open, there exists some ε > 0 such that B(z, ε) ⊂ Ω and B(w, ε) ⊂
Ω. Take z− ∈ B(z, ε) ∩ B(0, r), and take w− ∈ B(w, ε) ∩ B(0, r). Then z−,
w− ∈ Ω ∩ A(r − ε, r). Because this set is path-connected, there exists a path γ−
that connects z to z− to w− to w, and that (except for the endpoints) lies entirely
in Ω ∩A(r − ε, r).

Similarly, because Ω ∩ A(r, r + ε) is path-connected, there is a path γ+ that
connects w to z and that lies in Ω ∩ A(r, r + ε) (except for the endpoints). Then
γ+ ∪ γ− is a simple closed curve lying in Ω. Because Ω is simply connected, the
interior of γ+ ∪ γ− must lie in Ω, and so an arc of ∂B(0, r) connecting z and w
must lie in Ω. Thus, Ω ∩ ∂B(0, r) is connected; this completes the proof that Ω is
symmetric. �

We now show that among bounded simply connected symmetric domains, h-
functions uniquely determine the domain.

Theorem 6.5. Suppose that hΩ = hΩ̃, for two planar domains Ω and Ω̃ such that

(6.1) Ω and Ω̃ are bounded and contain the point 0,

(6.2) Ω and Ω̃ are symmetric in the sense of Definition 2.3, and

(6.3) Ω and Ω̃ are simply connected.

Then Ω = Ω̃.
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Proof. Let µ = sup{r : hΩ(r) = 0}, and let M = inf{r : hΩ(r) = 1}. By the proper-
ties of h-functions, µ and M are the largest and smallest numbers, respectively, such

that B(0, µ) ⊂ Ω ⊂ B(0,M); since hΩ = hΩ̃ we have that B(0, µ) ⊂ Ω̃ ⊂ B(0,M).

Let Φ : D 7→ Ω, Φ̃ : D 7→ Ω̃ be the Riemann maps; we may assume that

Φ(0) = Φ̃(0) = 0, and that Φ′(0) > 0, Φ̃′(0) > 0. Then by Remark 6.3, Φ((−1, 1)) =
(−M,µ).

Now, Φ is a bounded harmonic function defined on a C1 domain. As is well-
known (see for example [Ken94, Theorem 1.4.7]), it follows that the radial limit
limr→1− Φ(reiθ) exists for almost every θ ∈ (−π, π]. (In fact, a stronger notion of
limit, called the non-tangential limit, exists for a.e. θ.)

Suppose that for k = 0, 1, limr→1− Φ(reiθk) exists for some θ0, θ1, with 0 ≤ θ0 <
θ1 ≤ π. Consider the segments Ik = {teiθk : 0 ≤ t < 1}. Then Φ(Ik) is a path
connecting 0 to Φ(reik). Furthermore, Φ(I0) and Φ(I1) do not intersect, and they
lie entirely in the (closed) upper half-plane. Since Riemann maps are orientation-
preserving, and limr→1− Φ(reiθk) lies in ∂Ω, by the symmetry condition we must
have that

∣∣limr→1− Φ(reiθ1)
∣∣ ≥ ∣∣limr→1− Φ(reiθ0)

∣∣.
Thus, limr→1− |Φ(reiθ)| is defined for a.e. θ ∈ [0, π], and is nondecreasing.

If µ < ρ < M , then let Eρ = ∂Ω ∩ B(0, ρ), and let uρ(z) = ω(z, Eρ,Ω); recall
from equation (2.1) that uρ is harmonic in Ω. Then let vρ = uρ ◦ Φ.

Suppose that 0 ≤ θ ≤ π, and limr→1− |Φ(reiθ)| < ρ. Then limr→1− |vρ(reiφ)| =
1 for a.e. |φ| ≤ θ, and so vρ(0) ≥ θ/π. But hΩ(ρ) = uρ(0) = vρ(0); thus if
limr→1− |Φ(reiθ)| < ρ and 0 ≤ θ ≤ π, then hΩ(ρ) ≥ θ/π.

Recall from Remark 6.3 that Φ(z) = Φ(z); therefore, if −π ≤ θ ≤ π and
limr→1− |Φ(reiθ)| < ρ, then hΩ(ρ) ≥ |θ|/π.

Similarly, if limr→1− |Φ(reiθ)| > ρ, then hΩ(ρ) ≤ |θ|/π. Because Ω is simply
connected, hΩ is strictly increasing on [µ,M ]. Therefore, we may extend h−1

Ω to
a continuous function [0, 1] 7→ [µ,M ]. We then have that limr→1− |Φ(reiθ)| =
h−1

Ω (|θ|/π) for a.e. θ.

Similarly, limr→1− |Φ̃(reiθ)| = h−1

Ω̃
(|θ|/π). But since hΩ̃ = hΩ, this means that

lim
r→1−

|Φ̃(reiθ)/Φ(reiθ)| = 1

for a.e. θ.
Consider v(z) = Φ(z)/Φ̃(z). Since Φ(0) = Φ̃(0) = 0 and Φ, Φ̃ are injective on D,

v is analytic with a removable singularity at 0, and is never 0 on D.
Recall that Re log z is continuous on C\{0} and that its value does not depend on

the choice of branch cut of log. Thus, w(z) = Re log(Φ(z)/Φ̃(z)) is continuous on D.
For any given z ∈ D, we may take the branch cut of log to avoid a neighborhood

of Φ(z)/Φ̃(z). Thus w(z) is harmonic in a neighborhood of any point z ∈ D, and
so w(z) is harmonic on all of D.

Furthermore, limr→1− w(rz) = 0 for a.e. z ∈ ∂D; thus Re log v = w ≡ 0 in
D, and so log v must be an imaginary constant on D. Since limr→1− Φ(r) = µ =

limr→1− Φ̃(r), we must have that log v ≡ 0 and so Φ ≡ Φ̃. Since Ω = Φ(D) and

Ω̃ = Φ̃(D), this implies that Ω = Ω̃. �

It is possible to weaken slightly the conditions (6.1) and (6.3). Suppose that Ω
is symmetric.
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If Ω is simply connected, then Ω is bounded if and only if ∂Ω is bounded, which
in turn is true if and only if hΩ(M) = 1 for some finite number M .

Conversely, suppose that Ω is symmetric, bounded and connected. We know
that there exist numbers µ, M such that hΩ = 0 on [0, µ), 0 < hΩ < 1 on (µ,M),
and hΩ = 1 on [M,∞). Then B(0, µ) ⊂ Ω up to a set of harmonic capacity zero.
If B(0, µ) ⊂ Ω and Ω ∩ [µ,M ] is empty, then by symmetry Ω is simply connected.
Again by symmetry, Ω ∩ [µ,M ] is empty if and only if hΩ is strictly increasing on
[µ,M ].

Thus, if Ω̃ is symmetric and either simply connected or bounded and connected,
and if hΩ̃ = hΩ for some domain Ω that satisfies all three conditions of Theorem 6.5,

we have that up to a set of harmonic measure zero, Ω̃ must be bounded and simply
connected and so the theorem holds.

However, we do need to require that Ω̃ be bounded or simply connected. In
[WW01, Example 1], the authors showed that the bounded simply connected sym-
metric domain B(−(M − µ)/2, (M + µ)/2) has the same harmonic measure dis-
tribution function as the unbounded, doubly connected symmetric domain C \
B((µ+M)/2, (M − µ)/2).

As seen from the example of circle domains, we probably cannot weaken the

condition (6.2) that both Ω and Ω̃ be symmetric. It is possible to weaken the
requirement that Ω be simply connected by generalizing Lemma 6.2, but removing
this requirement entirely is beyond the scope of this paper.

We conclude this section by remarking that, if a function f satisfies the conditions
of Theorem 4.2 or Theorem 5.1, then there exists a bounded simply connected
domain Ω such that f = hΩ. By Lemma 6.4, Ω is symmetric. So Theorem 6.5 gives
uniqueness, and the following theorem is proven.

Theorem 6.6. Let f be a function that satisfies the conditions of Theorem 4.2 or
Theorem 5.1. Then there exists a domain Ω that is bounded and simply connected,
has locally connected complement and is symmetric in the sense of Definition 2.3,
such that f = hΩ. Furthermore, this domain Ω is unique up to sets of harmonic
measure zero among bounded symmetric domains.

7. Circle domains and estimates of harmonic measure

In this section we state and prove some lemmas, involving harmonic measure
and circle domains, that we have used in this paper. We begin with a fundamen-
tal estimate of harmonic measure. Next come our estimates for individual circle
domains, and finally our estimates for sequences of blocked circle domains.

Specifically, Lemmas 7.1 and 7.2 let us bound the harmonic measure of a set
at the bottom of a channel (such as a short arc in a circle domain or a gate in
a blocked circle domain). Lemma 7.3 puts a lower bound on the length of an
arc in terms of its harmonic measure, while Lemma 7.4 controls the harmonic
measure of an arc lying between two other arcs. Lemma 7.6 puts a bound on the
difference in harmonic measure distribution functions between a circle domain and
the corresponding blocked circle domain (using Lemmas 7.2 and 7.5). Finally, Lem-
ma 7.7 provides a sufficient condition for a sequence of blocked circle domains to
be uniformly locally connected.

7.1. A fundamental estimate on harmonic measure. The following estimate
is extremely useful.
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z0

r1e
iθ

r0e
iθ

Iθ

b
θ0

Figure 7.1. The curved domain of Lemma 7.2: If the channel is
long and thin, then the harmonic measure of F from z0 is small.

Lemma 7.1 ([GM05, Theorem H.8]). Suppose D is a finitely connected Jordan
domain and suppose

F ⊂
{
z ∈ D : Re(z) ≥ b

}
.

Let z0 ∈ D with Re(z0) = x0 < b and assume that for x0 < x < b, Ix ⊂ {z ∈ D :
Re(z) = x} separates z0 from F . If the length θ(x) of Ix is measurable, then

ω(z0, F,D) ≤ 8

π
exp

(
−π
∫ b

x0

dx

θ(x)

)
.

Roughly speaking, if a Brownian particle is released from a point z0 inside a long,
thin channel, the probability that the particle reaches the end of the channel before
it hits the side increases with the width of the channel and decreases exponentially
with the length of the channel.

We may adapt this lemma to blocked circle domains. See Figure 7.1 for an
illustration.

Lemma 7.2. Suppose D is a domain, and suppose

F ⊂
{
z ∈ D : 0 ≤ arg z ≤ b, r0 < |z| < r1

}
.

Here we take −π < arg z ≤ π for all z ∈ C; we require 0 ≤ b, 0 < r0 < r1.
Assume that D contains no points of the segment [r0, r1] of the real line, and

that there exists a θ0 > 0 such that rke
iθ /∈ D for k = 0, 1 and 0 ≤ θ ≤ θ0.

Let D̃ = {reiθ : r0 < r < r1, b < θ < θ0}; we remark that D̃ is a Jordan domain.

If z0 ∈ D \ D̃, then

ω(z0, F,D) ≤ 16

π
exp

(
−πr0

θ0 − b
2(r1 − r0)

)
.

Proof. Our approach was suggested by the derivation of inequality (19) in [SW08].
Define Iθ := {reiθ : r0 < r < r1}.

If z0 ∈ D \ D̃ and b < θ < θ0, then

ω(z0, F,D) ≤ sup
z∈Iθ

ω(z, F,D).

Let θ1 − b = θ0 − θ1. If z ∈ Iθ1 , then

ω(z, F,D) ≤ ω(z, Iθ0 ∪ Ib, D̃) = 2ω(z, Ib, D̃).
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So
ω(z0, F,D) ≤ 2 sup

z∈Iθ1
ω(z, Ib, D̃).

But D̃ is a curved rectangle bounded away from zero. By applying the conformal

map Φ(z) = i log(z), we may transform D̃ to the straight rectangle {z ∈ C : −θ0 <
Re z < −b, log r0 < Im z < log r1}. Then Φ(Iθ) = {−θ + ir : log r0 < r < log r1}.
Lemma 7.1 implies that

sup
z∈Iθ1

ω(Φ(z),Φ(Ib),Φ(D̃)) ≤ 8

π
exp

(
−π θ0 − b

2 log(r1/r0)

)
.

Note that log(r1/r0) ≤ (r1 − r0)/r0. Since ω(z, Ib, D̃) = ω(Φ(z),Φ(Ib),Φ(D̃)), this
completes the proof. �

7.2. Circle domains. We seek to understand the harmonic measure distribution of
circle domains more precisely. We begin by putting a lower bound on the arclength
of an individual arc in terms of the harmonic measure of that arc.

Lemma 7.3. Let X be a circle domain of radius M , and let Ak be the kth boundary
arc of X, located at radius rk and with arclength 2ψk.

Let β = ω(0, Ak, X). Suppose that rk ≥M(1− 1/e). Then

ψk > min

{
π

2
, πβ − 2

π

M − rk
rk

(
2 log

(
M

M − rk

)
+ π2

)}
.

We will use this lemma only when (M − rk)/M is small enough (depending
on β); if (M − rk)/M is large then the obvious inequality ψk ≥ 0 provides a better
estimate.

Proof. Write A = Ak, ψ = ψk, r = rk. If β = 0 then ψ = 0 ≥ πβ; if β = 1 or r = M
then ψ = π ≥ π/2, and so we are done. Otherwise, 0 < β < 1 and 0 < r < M , and
so 0 < ψ < π.

Let uA(z) = ω(z,A,B(0,M)\A); recall from Formula (2.1) that uA is harmonic
in B(0,M) \ A, uA = 1 on A and uA = 0 on ∂B(0,M). By the property of
monotonicity in the domain of harmonic measure,

β = ω(0, A,X) ≤ ω(0, A,B(0,M) \A) = uA(0).

Since uA is harmonic in B(0, r), we have that

β ≤ uA(0) =
1

2π

∫ π

−π
uA(reiθ) dθ.

We seek an upper bound on uA on ∂B(0, r). Consider the function

u(z) = 1− 2

π
arg

(
Mν + izν

Mν − izν

)
where ν > 0 is a positive real number (not necessarily an integer). We take the
branch cut of zν and of arg to lie along the negative real axis.

Suppose that |z0| ≤ M and that |arg z0| ≤ π/(2ν). We claim that if z0 6=
Me±iπ/(2ν), then u(z) is continuous and harmonic in a neighborhood of z0.

Since |arg z0| < π, M ± izν is analytic in a neighborhood of z0. If |z0| ≤ M
then Re(Mν ± izν0 ) ≥ Mν − |z0|ν ≥ 0. If |z0| < M or |arg z0| < π/(2ν) then this
inequality is strict, so ReMν ± izν0 > 0. By continuity this inequality holds in a
neighborhood of z0. So the function z 7→ (Mν + izν)/(Mν − izν) is analytic and



A NEW CLASS OF HARMONIC MEASURE DISTRIBUTION FUNCTIONS 23

bounded away from the negative real axis (the branch cut of arg) in a neighborhood
of z0; thus u(z) is harmonic in that neighborhood.

For all such z we can write

u(z) = 1− 2

π
arg

(
Mν + izν

Mν − izν
× Mν + izν

Mν + izν

)
= 1− 2

π
arg
(
M2ν − |z|2ν + 2iMν Re(zν)

)
.

If |z| = M and |arg z| < π/(2ν), then

u(z) = 1− 2

π
arg (2iMν Re(zν)) = 0.

Similarly, if | arg z| = π/(2ν) then Re(zν) = 0, and so if in addition |z| < M then

u(z) = 1− 2

π
arg
(
M2ν − |z|2ν

)
= 1.

Choose ν = π/(2(π − ψ)); then ν > 1/2 since ψ > 0. Consider the domain

Ω = {z ∈ B(0,M) : |arg z| > ψ} ⊂ B(0,M) \A.
Then ∂Ω consists of three smooth pieces: the two straight lines from the origin to
Me±iψ = −Me±iπ/2ν , and the arc (of radius M) connecting these two points and
passing through the negative real axis.

Then uA is harmonic in Ω ⊂ B(0,M) \A and continuous on Ω, and the function
v(z) = u(−z) is harmonic in Ω and continuous on Ω except at the pointsMe±iψ. We
remark that the boundary values of v are known; v(z) = 1 on the straight segments
and v(z) = 0 on the boundary circle. uA(z) is also zero on the boundary circle; on
the straight segments, uA(z) is unknown but satisfies 0 < uA(z) ≤ 1 = v(z) with
equality holding only at z = re±iψ.

So by the maximum principle 0 < uA(z) < v(z) < 1 in Ω. Recall that

β ≤ 1

2π

∫ π

−π
uA(reiθ) dθ

where r is the radius of the arc A. Since uA(z) = 1 on A = {reiθ : |θ| ≤ ψ}, and
uA(reiθ) = uA(re−iθ) < u(rei(π−θ)) for ψ ≤ |θ| ≤ π, we may rewrite this integral
as

1

2π

∫ π

−π
uA(reiθ) dθ <

ψ

π
+

1

π

∫ π−ψ

0

u(reiθ) dθ.

But∫ π−ψ

0

u(reiθ) dθ =

∫ π−ψ

0

1− 2

π
arg
(
M2ν − r2ν + 2iMνrν cos(θν)

)
dθ.

Rewriting the arg function using arctangents and changing variables, we see that

β <
ψ

π
+
π − ψ
π

∫ π/2

0

4

π2
arctan

M2ν − r2ν

2Mνrν cos θ
dθ.
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Since arctan(x) ≤ min(x, π/2), we see that for any 0 ≤ θ0 < π/2 we have∫ π/2

0

arctan
M2ν − r2ν

2Mνrν cos θ
dθ ≤

∫ θ0

0

M2ν − r2ν

2Mνrν cos θ
dθ +

∫ π/2

θ0

π

2
dθ

≤ M2ν − r2ν

2Mνrν
log | sec θ0 + tan θ0|+

π

2

(π
2
− θ0

)
≤ M2ν − r2ν

2Mνrν
log |2 sec θ0|+

π2

4
cos θ0

where the last inequality holds because (π/2)− θ0 ≤ (π/2) cos θ0 for 0 ≤ θ0 ≤ π/2.
Setting x0 = cos θ0, we see that

β <
ψ

π
+

4

π2

π − ψ
π

(
M2ν − r2ν

2Mνrν
log

2

x0
+
π2

4
x0

)
for any x0 with 0 < x0 ≤ 1, where ν = ν(ψ) = π/(2(π − ψ)). This inequality holds
for any arc A, of any radius or arclength, with 0 < β < 1. Unfortunately, we seek
a lower bound on ψ and not an upper bound on β, and so we must choose x0 and
then solve for ψ; to do so, we assume r ≥M(1−1/e) and ψ ≤ π/2 (implying ν ≤ 1
and that A lies in the right half-plane).

Suppose r/M ≥ 1− 1/e. Then since ν > 1/2 we have

2(1− (r/M)ν) ≤ 2(1−
√
r/M) ≤ 2(1−

√
1− 1/e) < 1,

and so we may choose x0 = 2(1− (r/M)ν). Now,

β <
ψ

π
+

4

π2

π − ψ
π

(
M2ν − r2ν

2Mνrν
log

1

1− (r/M)ν
+
π2

2
(1− (r/M)ν)

)
=
ψ

π
+

2

π2

π − ψ
π

(
Mν + rν

rν
Mν − rν

Mν
log

Mν

Mν − rν
+ π2M

ν − rν

Mν

)
.

Since ν ≤ 1 we have (Mν−rν)/Mν ≤ (M −r)/M ; by our assumption on r we have
(M − r)/M ≤ 1/e. The function x 7→ x log(1/x) is increasing on (0, 1/e). So

β <
ψ

π
+

2

π2

π − ψ
π

(
M + r

r

M − r
M

log
M

M − r
+ π2M − r

M

)
<
ψ

π
+

2

π2

M − r
r

(
2 log

M

M − r
+ π2

)
.

Solving for ψ completes the proof. �

Next, we prove a lemma that controls the harmonic measure of arcs lying in
between other arcs. This lemma is somewhat technical, but very useful. Informally,
Lemma 7.4 states that, if the h-function of a circle domain Xn approximates some
function f , and the minimal secant slope of f is positive, then any boundary arc
long enough to be almost a full circle must be close to the outer boundary circle,
and if two boundary arcs are close together then the arcs between them cannot be
too short.

These conditions mirror the conditions of Lemma 7.7, which provides a sufficient
condition for a sequence of blocked circle domains to be uniformly locally connected.
Thus, Lemma 7.4 and Lemma 7.7 are vital to the proof of Theorem 4.2. Also,
condition (7.2) in combination with Lemma 7.3 provides sufficient conditions to
ensure that none of the boundary arcs are very short, and so Lemmas 7.3 and 7.4
combine to give Theorem 5.1.
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Lemma 7.4. Let f be a function that is a candidate for a harmonic measure
distribution function, as in Section 4, and define the numbers µ and M and the
circle domains Xn as in that section. Let α be the minimal secant slope of f , as in
formula (4.5). Fix some n > 0. For each 0 ≤ j ≤ n and each 0 ≤ k ≤ n, write
X = Xn, Ak = An,k, rk = rn,k, ψk = ψn,k, ηj,k = ηn,j,k.

Suppose that α > 0. Then the following estimates hold.

(7.1) If 0 ≤ k ≤ n, then

M − rk ≤
M − µ
απ

(π − ψk).

(7.2) If 0 ≤ j < k ≤ n, then the depth ηj,k of the shortest arc between Aj and Ak
satisfies

ηj,k ≤
4

πµ
(rk − rj)

(
log

(
M − µ

α(rk − rj)

)
+ log

(
256

π

))
.

Therefore, for every ε > 0, there exist numbers δ1 > 0, δ2 > 0 depending only on
α, µ, M and ε (in particular, not on n) such that

(7.3) If 0 ≤ k ≤ n and π − ψk < δ2, then M − rk < ε, and
(7.4) If 0 ≤ j < k ≤ n and rk − rj < δ1, then ηj,k < ε.

The conclusion (7.4) follows from (7.2) because the function

(7.5) χ∞(δ) =
4

πµ
δ

(
log

(
M − µ
αδ

)
+ log

(
256

π

))
is increasing on (0,M −µ] and satisfies limδ→0+ χ∞(δ) = 0. We remark that by the
definition (4.2) of ηj,k, if Aj and Ak are two boundary arcs, then ηj,k ≤ min(ψj , ψk).
Thus, if ψj or ψk is small then condition (7.2) holds automatically; condition (7.2)
is of interest mainly if both of the arcs Aj and Ak are relatively long.

Proof. We consider condition (7.1) first. Simply note that by definition of α,

M − rk ≤
M − µ
α

(f(M)− f(rk)) =
M − µ
α

(hX(M)− hX(rk))

=
M − µ
α

ω(0, ∂X \B(0, rk), X) ≤ M − µ
α

ω(0, ∂B(0, rk) \ ∂X,B(0, rk))

= (π − ψk)
M − µ
απ

.

Thus if ψk is near π, then M − rk is near 0.
Condition (7.2) is much more complicated.
Recall that the jth boundary arc of X is denoted Aj , is a subset of the circle of

radius rj centered at zero, and has arclength 2ψj . If Aj and Ak are two boundary
arcs with j < k, then rj < rk, and if another arc Al lies between Aj and Ak, then
rj < rl < rk and so j < l < k.

Claim: Let p be an integer with p ≥ 1. Then there is an increasing function
χp(δ), defined for 0 ≤ δ ≤ M − µ, that satisfies the following condition. Suppose
that Aj and Ak are two boundary arcs with rj < rk, and that there are m arcs Al
between Aj and Ak. Then there are at most m/3p such arcs Al that satisfy

ψl < min(ψj , ψk)− χp(rk − rj).
The function χp depends only on p, α, µ and M . In particular, χp(δ) does not
depend on n, the number of boundary arcs.



26 ARIEL BARTON AND LESLEY A. WARD

Arc k

Arc j

ψ

χ

Figure 7.2. The boundary arcs and auxiliary radial line segments
L± for condition (7.2) of Lemma 7.4. The set B+ ∪ L+ is shown
in bold.

Suppose that the claim holds. If Aj and Ak are any pair of arcs with j < k, let
m be the number of arcs Al that lie between Aj and Ak. The number of such arcs
Al which also satisfy ψl < min(ψj , ψk)− χp(rk − rj) is an integer which is at most
m/3p. Therefore, if 3p > m, then none of the arcs Al between Aj and Ak satisfy
ψl < min(ψj , ψk)−χp(rk− rj). That is, none of these arcs have arclength less than
2(min(ψj , ψk)− χp(rk − rj)).

Recalling the definition (4.2) of ηj,k as the depth of the shortest arc between Aj
and Ak, we see that ηj,k ≤ supp≥1 χp(rk − rj). We will complete the proof of Lem-
ma 7.4 by showing that we may choose the functions χp(δ) such that supp≥1 χp(δ) =
χ∞(δ), where χ∞(δ) is given by formula (7.5) and χ∞(rk − rj) equals the quantity
on the right-hand side of formula (7.2).

We first find χ1(δ), that is, establish the claim for p = 1; we will use induction
to bound χp(δ) for p > 1.

LetAj andAk be any two boundary arcs ofX with rj < rk. Let ψ = min(ψj , ψk).
We remark that if ψ = 0 then the claim holds for any nonnegative functions χp(δ);
we will therefore assume ψ > 0.

Let m = k− j − 1 be the number of arcs between Aj and Ak. If m = 0 then the
claim holds for any functions χp(δ); we therefore assume m ≥ 1.

Fix some number χ with 0 < χ < ψ. If Al is between Aj and Ak, and ψl < ψ−χ,
we call Al a χ-short arc. Let

B(χ) = {Al : ψl < ψ − χ, j < l < k}
be the set of χ-short arcs between Aj and Ak. We want to find a function χ1(δ) such
that |B(χ1(rk − rj))| ≤ 1

3m. We will do this by bounding the harmonic measure of
these arcs.

Let 0 < λ < ψ−χ, and let L+ and L− be radial line segments of inner radius rj ,
outer radius rk, at angle ±λ. See Figure 7.2. Let X ′ be the connected component
of X \ (L+ ∪ L−) containing 0.
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Let B = ∪ψl<ψ−χAl be the union of the χ-short arcs, and let B+ = {z ∈ B :
arg z ≥ λ}. The set B+ ∪ L+ is drawn in bold in Figure 7.2. Then

ω(0, B,X) < ω(0, B ∪ L+ ∪ L−, X ′) = 2ω(0, B+ ∪ L+, X
′).

By Lemma 7.2,

ω(0, B+ ∪ L+, X
′) ≤ 16

π
exp

(
− πµχ

2(rk − rj)

)
.

Notice that by definition of α and X, ω(0, Al, X) = f(rl)−f(rl−1) ≥ α/n provided
l > 0. Therefore, ω(0, B,X) ≥ α|B(χ)|/n. So

(7.6)
α

n
|B(χ)| ≤ 32

π
exp

(
− πµχ

2(rk − rj)

)
.

We wish to control the right-hand side. Let χ1(0) = 0. If 0 < δ ≤M − µ, define
χ1(δ) to be the number that satisfies

32

π
exp

(
−πµχ1(δ)

2δ

)
=
α

4

δ

M − µ
.

We may solve for χ1(δ) to see that

(7.7) χ1(δ) =
2

πµ
δ log

(
128

πα

M − µ
δ

)
.

Observe that limδ→0+ χ1(δ) = 0, and so the function χ1 is continuous on [0,M−µ].
Furthermore, if C > 0 then the function δ 7→ δ log(C/δ) is increasing on (0, C/e].
Since 0 < α < 1, we have that 128/(πα) > e, and so χ1(δ) is increasing for
δ ∈ [0,M − µ].

If ψ ≤ χ1(rk − rj), then ψ − χ1(rk − rj) ≤ 0, and so none of the arcs Al
between Aj and Ak satisfy ψl < ψ − χ1(rk − rj). In this case, the claim holds
for p = 1. Otherwise, 0 < χ1(rk − rj) < ψ and we may apply formula (7.6) with
χ = χ1(rk − rj).

Recall that rk = µ + k(M − µ)/n. Thus, there are n(rk − rj)/(M − µ) − 1
boundary arcs lying between Aj and Ak; therefore, m = n(rk − rj)/(M − µ)− 1.

It follows that

|B(χ1(rk − rj))| ≤
1

4

n

M − µ
(rk − rj) =

m+ 1

4
.

|B(χ1(rk − rj))| and m are nonnegative integers. Thus, this inequality implies that
|B(χ1(rk − rj))| ≤ m/3.

Thus, the claim holds for p = 1, with χ1(δ) given by equation (7.7).
For the inductive step, suppose that the function χp(δ) exists and is finite. We

want to show that χp+1(δ) exists. Pick two boundary arcs Aj and Ak with rj < rk.
There are m = k− j− 1 arcs between Aj and Ak, not including Aj and Ak. Define
ψ = min(ψj , ψk). Recall that if Al lies between Aj and Ak, and ψl < ψ − χ, then
we call Al a χ-short arc.

We wish to find a χp+1(δ) such that at most 3−p−1m arcs are χp+1(rk−rj)-short
arcs. By definition of χp(δ), at most 3−pm arcs are χp(rk−rj)-short arcs. We refer
to χp(rk − rj)-short arcs simply as short arcs. If we choose the function χp+1 such
that χp+1(δ) ≥ χp(δ) for all δ, then all χp+1(rk − rj)-short arcs are short arcs. It
is this assumption that allows us to work by induction.
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If none of the arcs Al between Aj and Ak are short arcs, then the claim holds
for any χp+1(δ) ≥ χp(δ). In particular, if ψ ≤ χp(rk − rj) then the claim holds.
Therefore, we assume that at least one arc Al is a short arc.

We remark that the arcs Aj and Ak are not short. It is possible to find numbers
js and ks, for 1 ≤ s ≤ S, such that the following conditions hold.

• Ajs and Aks are not short arcs.
• If Al lies between Ajs and Aks , then Al is a short arc.
• Conversely, if Al is a short arc between Aj and Ak, then there is exactly

one number s with 1 ≤ s ≤ S such that Al lies between Ajs and Aks .

We may further require that if 1 ≤ s ≤ S, then j ≤ js < ks ≤ k and there is at
least one (necessarily short) arc Al between Ajs and Aks .

We begin our analysis of the short arcs by bounding rks − rjs for each s. There
are ks − js − 1 ≥ 1 arcs lying between Ajs and Aks , and they are all short arcs.
There are at most 3−pm = 3−p(k−j−1) short arcs between Aj and Ak. Therefore,

1 ≤ ks − js − 1 ≤ 3−pm = 3−p(k − j − 1).

Recall that rl = µ+ l(M − µ)/n. Therefore,

rks − rjs = (ks − js)
M − µ
n

= (ks − js)
rk − rj
k − j

≤ (rk − rj)
ks − js

1 + 3p(ks − js − 1)
.

Since ks − js ≥ 2, and p ≥ 1, we have that

ks − js
1 + 3p(ks − js − 1)

≥ 2

3p + 1
≥ 2−p

where the second inequality is chosen for the sake of simplicity. Thus, if 1 ≤ s ≤ S
then rks − rjs ≤ 2−p(rk − rj).

We now apply this bound. Let ms = ks − js − 1 denote the number of arcs
between Ajs and Aks . By definition of χ1(δ), there are at most ms/3 boundary
arcs Al between Ajs and Aks that satisfy

ψl < min(ψjs , ψks)− χ1(rks − rjs).
Recall that χ1(δ) is an increasing function. Furthermore, since Ajs and Aks are not
short, we have that min(ψjs , ψks) ≥ ψ − χp(rk − rj). Therefore, if 1 ≤ s ≤ S then

(7.8) min(ψjs , ψks)− χ1(rks − rjs) ≥ ψ − χp(rk − rj)− χ1(2−p(rk − rj)).
Suppose that Al lies between Aj and Ak and satisfies

(7.9) ψl ≤ ψ − χp(rk − rj)− χ1(2−p(rk − rj)).
Then Al is a short arc, and so there is some number s such that js < l < ks. By
equation (7.8), ψl < min(ψjs , ψks) − χ1(rks − rjs). For each s there are at most

ms/3 such arcs. Therefore, there are at most
∑S
s=1ms/3 arcs Al between Aj and

Ak that satisfy equation (7.9). But
∑S
s=1ms is equal to the number of short arcs

between Aj and Ak, which by definition is at most 3−pm.
Therefore, there are at most 3−p−1m arcs Al between Aj and Ak that satisfy

ψl ≤ ψ − χp(rk − rj)− χ1(2−p(rk − rj)).
Thus, the claim is established, with

χp+1(δ) = χp(δ) + χ1(2−pδ) =

p∑
q=0

χ1(2−qδ).
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Observe that since χ1(2−qδ) > 0 for all q > 0 and all 0 < δ ≤ M − µ, we have
that

sup
p≥1

χp(δ) =

∞∑
q=0

χ1

(
2−qδ

)
=

2

πµ
δ

∞∑
q=0

1

2q

(
log

(
M − µ
αδ

)
+ log

(
128

π

)
+ q log 2

)
=

4

πµ
δ

(
log

(
M − µ
αδ

)
+ log

(
128

π

)
+ log 2

)
.

This expression is precisely the χ∞(δ) of formula (7.5).
Finally, recall that ηj,k ≤ supp≥1 χp(rk − rj). So

ηj,k ≤ sup
p≥1

χp(rk − rj) ≤
4

πµ
(rk − rj)

(
log

(
M − µ

α(rk − rj)

)
+ log

(
256

π

))
as desired. �

7.3. Blocked circle domains. In our proof of Theorem 4.2, we needed condi-
tions guaranteeing that hXn − hΩn → 0. This means that we want estimates on
the harmonic measure of the gates of blocked circle domains. In this section we
establish those conditions. We follow the development originally given in [SW08],
but adapted to our situation.

Throughout this section, let X be a circle domain and Ω a blocked circle domain
with Ω ⊂ X, as in Definition 2.2. Let their boundary arcs be at radii rk and
have arclength 2ψk, and let the gates be at angles ±φk. (See Figure 4.1.) Let
χk = min(ψk, ψk+1)−φk. That is, χk measures the depth of the gate in its channel.

Lemma 7.2 will let us control the harmonic measure of most of the gates. In
Lemma 7.5, we develop an alternate bound for gates that lie along the positive real
axis.

Lemma 7.5. If l is a gate connecting the arcs at radii rk and rk+1, and if φk = 0,
so that l lies along the positive real axis, then

ω(0, l,Ω) ≤ 2

π

√
rk+1 − rk

rk
.

Proof. Define Ψ := B(0,M) \ [rk,M ] to be a disk minus a slit. Then since Ω ⊂ Ψ,

ω(0, l,Ω) ≤ ω(0, l,Ψ) = ω(0, [rk, rk+1],Ψ).

The harmonic measure on the right-hand side may be computed explicitly: we
transform Ψ to the upper half-plane U via the conformal map

z 7→

√(
1

rk +M
− 1

2M

)2

−
(

1

z +M
− 1

2M

)2

.

The point 0 is mapped to a point it on the positive imaginary axis, and [rk, rk+1]
to an interval [−r′, r′] in R = ∂U. Here

t =

√(
1

2M

)2

−
(

1

rk +M
− 1

2M

)2

> 0, and

r′ =

√(
1

rk +M
− 1

2M

)2

−
(

1

rk+1 +M
− 1

2M

)2

> 0.
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Using the harmonic function 1
π arg(z − r′)− 1

π arg(z + r′) we may compute

ω(0, [rk, rk+1],Ψ) = ω(it, [−r′, r′],U) =
2

π
arctan

r′

t

=
2

π
arctan

√
(rk+1 − rk)(M2 − rk+1rk)

rk(rk+1 +M)2
≤ 2

π

√
rk+1 − rk

rk
.

We omit the details. �

Recall that, in Theorem 4.2, we needed hΩn − hXn → 0. That is, we needed the
harmonic measure distribution functions of blocked circle domains Ωn to approach
those of the corresponding circle domains Xn. In the next lemma, we assemble the
known results involving gates in order to achieve a uniform bound on hX − hΩ.

Lemma 7.6. Let X be a circle domain, and let Ω ⊂ X be a blocked circle domain
such that ∂Ω \ ∂X is a union of gates. Define rk, ψk, and φk, χk as in Section 4,
so that rk is the radius of the kth arc, χk is the inset angle of the kth pair of gates,
and so on.

Then for all r ∈ [µ,M ],

|hX(r)− hΩ(r)| ≤
∑

k:φk>0

32

π
exp

(
− π rk χk

2(rk+1 − rk)

)
+
∑

k:φk=0

2

π

√
rk+1 − rk

rk
.

Proof. Fix r ∈ [µ,M ]. We first show that |hX(r) − hΩ(r)| is bounded by the
harmonic measure of the gates in Ω. Recall that

hX(r) := ω(0, B(0, r) ∩ ∂X,X),

hΩ(r) := ω(0, B(0, r) ∩ ∂Ω,Ω).

Let Er = B(0, r) ∩ ∂X and Fr = B(0, r) ∩ ∂Ω be the portions of ∂X and ∂Ω,
respectively, lying within a distance r of zero. Then hX(r) = ω(0, Er, X) and
hΩ(r) = ω(0, Fr,Ω), and so we need only bound |ω(0, Er, X)− ω(0, Fr,Ω)|.

We may transform X to Ω by adding the gates (and deleting disconnected com-
ponents). Let G = ∂Ω \ ∂X be the union of the gates, that is, the newly-added

boundary. Then Fr = (Er ∩ ∂Ω) ∪ (G ∩B(0, r)), and Er ∩G is empty.
Then by monotonicity in the domain, and since ∂Ω \ ∂X = G,

ω(0, Er, X) ≤ ω(0, G,Ω) + ω(0, Er ∩ ∂Ω,Ω) ≤ ω(0, G,Ω) + ω(0, Fr,Ω)

and

ω(0, Fr,Ω) ≤ ω(0, G,Ω) + ω(0, Er ∩ ∂Ω,Ω) ≤ ω(0, G,Ω) + ω(0, Er, X).

So |hX(r)− hΩ(r)| = |ω(0, Er, X)− ω(0, Fr,Ω)| ≤ ω(0, G,Ω).
Next, we estimate the harmonic measure of the gates. Write G = G0∪G1, where

G0 is the union of gates that lie along the real axis and G1 is the union of gates
that do not. By Lemma 7.5,

ω(0, G0,Ω) ≤
∑

k:φk=0

2

π

√
rk+1 − rk

rk
.

Let l ⊂ G1 be a gate that lies between the arcs Ak and Ak+1. We apply Lem-
ma 7.2 with D = Ω, z0 = 0, F = l, b = φk, θ0 = min(ψk, ψk+1), and r0 = rk,
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r1 = rk+1. By definition of ψk and φk, the conditions of Lemma 7.2 hold; thus,

ω(0, l,Ω) ≤ 16

π
exp

(
− πrkχk

2(rk+1 − rk)

)
.

Combining these estimates, and noting that if φk > 0 then there are two gates
between the arcs Ak and Ak+1, we have that

ω(0, G,Ω) ≤
∑

k:φk>0

32

π
exp

(
− πrkχk

2(rk+1 − rk)

)
+
∑

k:φk=0

2

π

√
rk+1 − rk

rk
. �

7.4. Sequences of blocked circle domains. Finally, we move to sequences of
blocked circle domains. In the proof of Theorem 4.2, we used a simple condition for
such a sequence to have uniformly locally connected complements. We now prove
that implication.

Lemma 7.7. Let Xn, Ωn, rn,k, ψn,k, φn,k, θn,j,k be defined as in Section 4. Then
{Ωn}∞n=1 is a sequence of blocked circle domains.

Suppose that for each ε > 0 there exist positive numbers δ1(ε), δ2(ε) such that
the following conditions hold.

(7.10) If 0 ≤ k ≤ n and π − ψn,k < δ2(ε), then M − rn,k < ε, and
(7.11) If 0 ≤ j < k ≤ n and rn,k − rn,j < δ1(ε) then θn,j,k < ε.

Then {C \ Ωn}∞n=1 is uniformly locally connected.

Proof. Fix some ε > 0. We wish to find some δ > 0 such that if z, w /∈ Ωn and
|z − w| < δ, then there is a continuum of diameter at most ε contained in C \ Ωn
connecting z and w. We need only consider the case where z, w ∈ ∂Ωn. In fact,
we can go further and consider only the case where z, w lie on boundary arcs (not
gates), that is, where z, w ∈ ∂Xn.

Define

δ := min
{
µ,

ε

C
, δ1(ε/MC),

µ

π
δ2(ε/C),

µ

π
δ2(δ1(ε/MC))

}
,

where C is a constant to be chosen later.
We will use two elementary geometric estimates throughout this proof. First, let

S = {z : r < |z| < R, θ0 < arg z < θ0 + θ} be an annular sector with inner radius
r, outer radius R, and subtending an angle of θ. Then its diameter is bounded by
the equation

(7.12) diamS ≤ (R− r) +Rθ.

Furthermore, let z and w be complex numbers. Suppose that the angle from zero
between z and w is θ, 0 ≤ θ ≤ π. Then

(7.13) |z|θ ≤ π|z − w|.
Take z, w ∈ ∂Xn with |z − w| < δ. Let rn,j = |w|, rn,k = |z|; without loss of

generality j ≤ k. Then rn,k − rn,j < δ. We wish to show that z and w may be
connected by a continuum of diameter at most ε.

Either z and w both lie on the same side of the real axis, or they do not.
If they do, then they are connected by a continuum lying in C \ Ωn that lies

on the boundary of a sector of an annulus of inner radius rn,j , outer radius rn,k,
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w

z

(b)

θn,j,k

z

w

(a)

Figure 7.3. The points z and w in Lemma 7.7 and the subsets
of ∂Ω connecting them. In the diagram at left, z and w lie on the
same side of the real axis; in the diagram on the right, they lie on
opposite sides of the real axis.

and that subtends an angle at most θn,j,k + |arg z − argw|. (See Figure 7.3a.) By
equation (7.12), the diameter of this continuum is at most

(rn,k − rn,j) + rn,k(|arg z − argw|+ θn,j,k) ≤ |z| − |w|+ π|z − w|+Mθn,j,k

≤ (1 + π)|z − w|+Mθn,j,k.

Since rn,k−rn,j < δ ≤ δ1(ε/MC), we know by Condition (7.11) that θn,j,k < ε/MC.
Also, |z − w| < δ < ε/C. By choosing C ≥ 2 + π, we see that z, w are connected
by a continuum in C \ Ωn of diameter at most ε.

If z and w lie on different sides of the real axis, then since δ ≤ µ, z and w must
lie on the same side of the imaginary axis. If they lie on the right-hand side, then
they can be connected by a path contained in the union of their boundary arcs in
∂Xn with the positive real axis. If the domain of the arg function is taken to be
(−π, π], then this path has length

|z| − |w|+ |z||arg z|+ |w||argw|
≤ |z − w|+ rn,k|arg z|+ rn,k|argw| = |z − w|+ rn,k|arg z − argw|.

By equation (7.13),

|z − w|+ rn,k|arg z − argw| ≤ (1 + π)|z − w| < (1 + π)δ ≤ (1 + π)ε/C.

Otherwise, z and w lie on the left-hand side of the imaginary axis. We will
connect them by a continuum on the left side of the circle.

Recall that M = rn,n, and so θn,j,n measures the inset angle of the deepest gate
between the arc An,j and the outer boundary circle. Let

ψ = min(|arg z|, |argw|, ψn,j − θn,j,n).

Consider the annular sector, symmetric about the real axis and containing part
of the negative real axis, with inner radius rn,j , outer radius M = rn,n, and lying
between the angles ±ψ. (See Figure 7.3b.) This sector subtends an angle of 2(π−ψ)
at zero. Now, z and w can be connected by a continuum in ∂Ω lying in this sector.
By equation (7.12), this path has diameter at most

M − rn,j + 2M(π − ψ).

We must control M − rn,j and π − ψ.
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Notice that ψn,j ≤ |argw| and ψn,k ≤ |arg z|. The angle (from zero) between z
and w is (π − |arg z|) + (π − |argw|). So by equation (7.13),

rn,j((π − ψn,j) + (π − ψn,k)) ≤ rn,j((π − |arg z|) + (π − |argw|)) ≤ π|z − w|
and so

π − ψ ≤ π|z − w|
rn,j

+ θn,j,n <
πδ

µ
+ θn,j,n ≤

πε

Cµ
+ θn,j,n.

Furthermore,

µ(π − ψn,j) < πδ ≤ µ δ2(ε/C),

µ(π − ψn,j) < πδ ≤ µ δ2(δ1(ε/MC)).

By condition (7.10), we have that M − rn,j < ε/C; since M = rn,n ≥ rn,j , we have
that |rn,n − rn,j | ≤ δ1(ε/MC). Thus by condition (7.11), we have that θn,j,n <
ε/MC.

Thus, π − ψ < πε/Cµ + ε/MC and M − rn,j < ε/C. Recall we can connect z
and w by a continuum of diameter at most

M − rn,j + 2M(π − ψ) ≤ ε

C
+

2Mπε

Cµ
+

2ε

C
.

Choosing C ≥ 3 + 2πM/µ completes the proof. �
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