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Abstract. This paper presents a survey of recent results, methods, and open
problems in the theory of higher order elliptic boundary value problems on
Lipschitz and more general non-smooth domains. The main topics include
the maximum principle and pointwise estimates on solutions in arbitrary do-
mains, analogues of the Wiener test governing continuity of solutions and
their derivatives at a boundary point, and well-posedness of boundary value
problems in domains with Lipschitz boundaries.
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1. Introduction

The last three decades have witnessed a surge of activity on boundary value prob-
lems on Lipschitz domains. The Dirichlet, Neumann, and regularity problems for
the Laplacian are now well-understood for data in Lp, Sobolev, and Besov spaces.
More generally, well-posedness in Lp has been established for divergence form ellip-
tic equations with non-smooth coefficients − divA∇ and, at least in the context of
real symmetric matrices, the optimal conditions on A needed for solvability of the
Dirichlet problem in Lp are known. We direct the interested reader to Kenig’s 1994
CBMS book [Ken94] for an excellent review of these matters and to [KKPT00,
KR09, Rul07, AAA+11, DPP07, DR10, AAH08, AAM10, AA11, AR11, HKMP12]
for recent results.
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Unfortunately, this beautiful and powerful theory has mostly been restricted
to the case of second-order operators. Higher-order elliptic boundary problems,
while having abundant applications in physics and engineering, have mostly been
out of reach of the methods devised to study the second order case. The present
survey is devoted to major recent results in this subject, new techniques, and
principal open problems.

The prototypical example of a higher-order elliptic operator is the bilaplacian
∆2 = ∆(∆) or, more generally, the polyharmonic operator ∆m, m ≥ 2. The
biharmonic problem in a domain Ω ⊂ Rn with Dirichlet boundary data consists,
roughly speaking, of finding a function u such that for given f , g, h,

∆2u = h in Ω, u
∣∣
∂Ω

= f, ∂νu
∣∣
∂Ω

= g,

subject to the appropriate estimates on u in terms of the data. To make it precise,
as usual, one needs to properly interpret restriction of solution to the boundary
u
∣∣
∂Ω

and its normal derivative ∂νu
∣∣
∂Ω

, as well as specify the desired estimates.
The biharmonic equation arises in numerous problems of structural engineering.
It models the displacements of a thin plate clamped near its boundary, the stresses
in an elastic body, the stream function in creeping flow of a viscous incompressible
fluid, to mention just a few applications (see, e.g., [Mel03]).

The primary goal of this survey is to address the biharmonic problem and
more general higher order partial differential equations in domains with non-
smooth boundaries, specifically, in the class of Lipschitz domains. However, the
analysis of such delicate questions as well-posedness in Lipschitz domains requires
preliminary understanding of fundamental properties of the solutions, such as
boundedness, continuity, and regularity near a boundary point. For the Laplacian,
these properties of solutions in general domains are described by the maximum
principle and by the 1924 Wiener criterion; for the bilaplacian, they turn out to be
highly nontrivial and partially open to date. For the purposes of the introduction,
let us mention just a few highlights and outline the paper.

In Section 3, we discuss the maximum principle for higher-order elliptic equa-
tions. Loosely, one expects that for a solution u to the equation Lu = 0 in Ω, where
L is a differential operator of order 2m, there holds

max
|α|≤m−1

‖∂αu‖L∞(Ω) ≤ C max
|β|≤m−1

‖∂βu‖L∞(∂Ω),

with the usual convention that the zeroth-order derivative of u is simply u itself.
For the Laplacian (m = 1), this formula is a slightly weakened formulation of the
maximum principle. In striking contrast with the case of harmonic functions, the
maximum principle for an elliptic operator of order 2m ≥ 4 may fail, even in a
Lipschitz domain. To be precise, in general, the derivatives of order (m − 1) of a
solution to an elliptic equation of order 2m need not be bounded. We discuss rel-
evant counterexamples, known positive results, as well as a more general question
of pointwise bounds on solutions and their derivatives in arbitrary domains, e.g.,
whether u (rather than ∇m−1u) is necessarily bounded in Ω.
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Section 4 is devoted to continuity of solutions to higher-order equations and
their derivatives near the boundary of the domain. Specifically, if for some operator
the aforementioned boundedness of the (m − 1)-st derivatives holds, one next
would need to identify conditions assuring their continuity near the boundary. For
instance, in the particular case of the bilaplacian, the gradient of a solution is
bounded in an arbitrary three-dimensional domain, and one would like to study
the continuity of the gradient near a boundary point. As is well known, for second-
order equations, necessary and sufficient conditions for continuity of the solutions
have been provided by the celebrated Wiener criterion. Analogues of the Wiener
test for higher order PDEs are known only for some operators, and in a restricted
range of dimensions. We shall discuss these results, testing conditions, and the
associated capacities, as well as similarities and differences with their second-order
antecedents.

Finally, Sections 5 and 6 are devoted to boundary-value problems in Lipschitz
domains. The simplest example is the Dirichlet problem for the bilaplacian,

∆2u = 0 in Ω, u
∣∣
∂Ω

= f ∈W p
1 (∂Ω), ∂νu

∣∣
∂Ω

= g ∈ Lp(∂Ω), (1.1)

in which case the expected sharp estimate on the solution is

‖N(∇u)‖Lp(∂Ω) ≤ C‖∇τf‖Lp(∂Ω) + C‖g‖Lp(∂Ω), (1.2)

where N denotes the non-tangential maximal function and W p
1 (∂Ω) is the Sobolev

space of functions with one tangential derivative in Lp (cf. Section 2 for pre-
cise definitions). In Sections 5.1–5.6 we discuss (1.1) and (1.2), and more general
higher-order homogeneous Dirichlet and regularity boundary value problems with
constant coefficients, with boundary data in Lp. Section 5.7 describes the specific
case of convex domains. The Neumann problem for the bilaplacian is addressed in
Section 5.8. In Section 5.9, we discuss inhomogeneous boundary value problems
with data in Besov and Sobolev spaces, which, in a sense, are intermediate be-
tween those with Dirichlet and regularity data. Finally, in Section 6, we discuss
boundary-value problems with variable coefficients.

The sharp range of p, such that the aforementioned biharmonic (or any other
higher order) Dirichlet problem with data in Lp is well-posed in Lipschitz domains,
is not yet known in high dimensions. However, over the recent years numerous ad-
vances have been made in this direction and some new methods have emerged.
For instance, several different layer potential constructions have proven to be use-
ful (again, note the difference with the second order case when the relevant layer
potentials are essentially uniquely defined by the boundary problem), as well as re-
cently discovered equivalence of well-posedness to certain reverse Hölder estimates
on the non-tangential maximal function. It is interesting to point out that the
main local estimates which played a role in recent well-posedness results actually
come from the techniques developed in connection with the Wiener test discussed
above. Thus, in the higher order case the two issues are intimately intertwined;
this was one of the reasons for the particular choice of topics in the present survey.
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The Neumann problem and the variable coefficient case are even more puz-
zling. The details will be presented in the body of the paper. Here, let us just
point out that in both cases even the proper statement of the “natural” boundary
problem presents a challenge. For instance, in the higher order case the choice of
Neumann data is not unique. Depending on peculiarities of the Neumann opera-
tor, one can be led to well-posed and ill-posed problems even for the bilaplacian,
and more general operators give rise to new issues related to the coercivity of the
underlying form. However, despite the aforementioned challenges, the first well-
posedness results have recently been obtained and will be discussed below.

To conclude this introduction, we refer the reader to the excellent exposi-
tory paper [Maz99b] by Vladimir Maz’ya on the topic of the Wiener criterion and
pointwise estimates. This paper largely inspired the corresponding sections of the
present manuscript, and its exposition of the related historical material extends
and complements that in Sections 3 and 4. Our main goal here, however, was to
discuss the most recent achievements (some of which appeared after the aforemen-
tioned survey was written) and their role in the well-posedness results on Lipschitz
domains which constitute the main topic of the present review. We also would like
to mention that this paper does not touch upon the methods and results of the
part of elliptic theory studying the behavior of solutions in the domains with iso-
lated singularities, conical points, cuspidal points, etc. Here, we have intentionally
concentrated on the case of Lipschitz domains, which can display accumulating
singularities—a feature drastically affecting both the available techniques and the
actual properties of solutions.

2. Definitions

As we pointed out in the introduction, the prototypical higher-order elliptic equa-
tion is the biharmonic equation ∆2u = 0, or, more generally, the polyharmonic
equation ∆mu = 0 for some integer m ≥ 2. It naturally arises in numerous appli-
cations in physics and in engineering, and in mathematics it is a basic model for
a higher-order partial differential equation. These operators may be generalized
to constant-coefficient differential operators of order 2m, or to variable-coefficient
operators in either divergence or nondivergence form.

Let us discuss the details. To start, a general constant coefficient elliptic
operator is defined as follows.

Definition 2.1. Let L be an operator acting on functions u : Rn 7→ C`. Suppose
that we may write

(Lu)j =
∑̀
k=1

∑
|α|=|β|=m

∂αajkαβ∂
βuk (2.2)

for some coefficients ajkαβ defined for all 1 ≤ j, k ≤ ` and all multiindices α, β of

length n with |α| = |β| = m. Then we say that L is a differential operator of
order 2m.
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Suppose the coefficients ajkαβ are constant and satisfy the Legendre-Hadamard
ellipticity condition

Re
∑̀
j,k=1

∑
|α|=|β|=m

ajkαβξ
αξβζj ζ̄k ≥ λ|ξ|2m|ζ|2 (2.3)

for all ξ ∈ Rn and all ζ ∈ C`, where λ > 0 is a real constant. Then we say that L
is an elliptic operator of order 2m.

If ` = 1 we say that L is a scalar operator and refer to the equation Lu = 0 as
an elliptic equation; if ` > 1 we refer to Lu = 0 as an elliptic system. If ajk = akj ,

then we say the operator L is symmetric. If ajkαβ is real for all α, β, j, and k, we
say that L has real coefficients.

Here if α is a multiindex of length n, then ∂α = ∂α1
x1
. . . ∂αnxn .

Now let us discuss the case of variable coefficients. A divergence-form higher-
order elliptic operator is given by

(Lu)j(X) =
∑̀
k=1

∑
|α|=|β|=m

∂α(ajkαβ(X)∂βuk(X)). (2.4)

This form affords a notion of weak solution; we say that Lu = h weakly if∑̀
j=1

ˆ
Ω

ϕj hj =
∑

|α|=|β|=m

∑̀
j,k=1

(−1)m
ˆ

Ω

∂αϕj a
jk
αβ ∂

βuk (2.5)

for any function ϕ : Ω 7→ C` smooth and compactly supported.

If the coefficients ajkαβ : Rn → C are sufficiently smooth, we may rewrite (2.4)
in nondivergence form

(Lu)j(X) =
∑̀
k=1

∑
|α|≤2m

ajkα (X)∂αuk(X). (2.6)

This form is particularly convenient when we allow equations with lower-order
terms (note their appearance in (2.6)).

A simple criterion for ellipticity of the operators L of (2.6) is the condition

that (2.3) holds with ajkαβ replaced by ajkα (X) for any X ∈ Rn, that is, that

Re
∑̀
j,k=1

∑
|α|=2m

ajkα (X)ξαζj ζ̄k ≥ λ|ξ|2m|ζ|2 (2.7)

for any fixed X ∈ Rn and for all ξ ∈ Rn, ζ ∈ C2. This means in particular that
ellipticity is only a property of the highest-order terms of (2.6); the value of ajkα ,
for |α| < m, is not considered.

For divergence-form operators, some known results use a weaker notion of
ellipticity, namely that 〈ϕ,Lϕ〉 ≥ λ‖∇mϕ‖2L2 for all smooth compactly supported
functions ϕ; this notion is written out in full in Formula (6.5) below.
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Finally, let us mention that throughout we let C and ε denote positive con-
stants whose value may change from line to line. We let

ffl
denote the average

integral, that is,
ffl
E
f dµ = 1

µ(E)

´
E
f dµ. The only measures we will consider are

the Lebesgue measure dX (on Rn or on domains in Rn) or the surface measure dσ
(on the boundaries of domains).

3. The maximum principle and pointwise estimates on solutions

The maximum principle for harmonic functions is one of the fundamental results in
the theory of elliptic equations. It holds in arbitrary domains and guarantees that
every solution to the Dirichlet problem for the Laplace equation, with bounded
data, is bounded. Moreover, it remains valid for all second-order divergence-form
elliptic equations with real coefficients.

In the case of equations of higher order, the maximum principle has been
established only in relatively nice domains. It was proven to hold for operators with
smooth coefficients in smooth domains of dimension two in [Mir48] and [Mir58],
and of arbitrary dimension in [Agm60]. In the early 1990s, it was extended to
three-dimensional domains diffeomorphic to a polyhedron ([KMR01, MR91]) or
having a Lipschitz boundary ([PV93, PV95b]). However, in general domains, no
direct analog of the maximum principle exists (see Problem 4.3, p. 275, in Nečas’s
book [Neč67]). The increase of the order leads to the failure of the methods which
work for second order equations, and the properties of the solutions themselves
become more involved.

To be more specific, the following theorem was proved by Agmon.

Theorem 3.1 ([Agm60, Theorem 1]). Let m ≥ 1 be an integer. Suppose that Ω is
domain with C2m boundary. Let

L =
∑
|α|≤2m

aα(X)∂α

be a scalar operator of order 2m, where aα ∈ C |α|(Ω). Suppose that L is elliptic
in the sense of (2.7). Suppose further that solutions to the Dirichlet problem for
L are unique.

Then, for every u ∈ Cm−1(Ω) ∩ C2m(Ω) that satisfies Lu = 0 in Ω, we have

max
|α|≤m−1

‖∂αu‖L∞(Ω) ≤ C max
|β|≤m−1

‖∂βu‖L∞(∂Ω). (3.2)

We remark that the requirement that the Dirichlet problem have unique
solutions is not automatically satisfied for elliptic equations with lower-order terms;
for example, if λ is an eigenvalue of the Laplacian then solutions to the Dirichlet
problem for ∆u− λu are not unique.

Equation (3.2) is called the Agmon-Miranda maximum principle. In [Šul75],
Šul’ce generalized this to systems of the form (2.6), elliptic in the sense of (2.7),
that satisfy a positivity condition (strong enough to imply Agmon’s requirement
that solutions to the Dirichlet problem be unique).
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Thus the Agmon-Miranda maximum principle holds for sufficiently smooth
operators and domains. Moreover, for some operators, the maximum principle is
valid even in domains with Lipschitz boundary, provided the dimension is small
enough. We postpone a more detailed discussion of the Lipschitz case to Sec-
tion 5.6; here we simply state the main results. In [PV93] and [PV95b], Pipher and
Verchota showed that the maximum principle holds for the biharmonic operator
∆2, and more generally for the polyharmonic operator ∆m, in bounded Lipschitz
domains in R2 or R3. In [Ver96, Section 8], Verchota extended this to symmet-
ric, strongly elliptic systems with real constant coefficients in three-dimensional
Lipschitz domains.

For Laplace’s equation and more general second order elliptic operators, the
maximum principle continues to hold in arbitrary bounded domains. In contrast,
the maximum principle for higher-order operators in rough domains generally fails.

In [MNP83], Maz’ya, Nazarov and Plamenevskii studied the Dirichlet prob-
lem (with zero boundary data) for constant-coefficient elliptic systems in cones.
Counterexamples to (3.2) for systems of order 2m in dimension n ≥ 2m+ 1 imme-
diately follow from their results. (See [MNP83, Formulas (1.3), (1.18) and (1.28)].)
Furthermore, Pipher and Verchota constructed counterexamples to (3.2) for the
biharmonic operator ∆2 in dimension n = 4 in [PV92, Section 10], and for the
polyharmonic equation ∆mu = 0 in dimension n, 4 ≤ n < 2m + 1, in [PV95b,
Theorem 2.1]. Independently Maz’ya and Rossmann showed that (3.2) fails in the
exterior of a sufficiently thin cone in dimension n, n ≥ 4, where L is any constant-
coefficient elliptic scalar operator of order 2m ≥ 4 (without lower-order terms).
See [MR92, Theorem 8 and Remark 3].

Moreover, with the exception of [MR92, Theorem 8], the aforementioned
counterexamples actually provide a stronger negative result than simply the failure
of the maximum principle: they show that the left-hand side of (3.2) may be infinite
even if the data of the elliptic problem is as nice as possible, that is, smooth and
compactly supported.

The counterexamples, however, pertain to high dimensions and do not in-
dicate, e.g., the behavior of the derivatives of order (m − 1) of a solution to an
elliptic equation of order 2m in the lower-dimensional case.

Recently in [MM09b], the second author of the present paper together with
Maz’ya have considered this question for the inhomogeneous Dirichlet problem

∆2u = h in Ω, u ∈ W̊ 2
2 (Ω). (3.3)

Here Ω is a bounded domain in R3 or R2, the Sobolev space W̊ 2
2 (Ω) is a completion

of C∞0 (Ω) in the norm ‖u‖W̊ 2
2 (Ω) = ‖∇2u‖L2(Ω), and h is a reasonably nice function

(e.g., C∞0 (Ω)). We remark that if Ω is an arbitrary domain, defining ∇u
∣∣
∂Ω

is
a delicate matter, and so considering the Dirichlet problem with homogeneous
boundary data is somewhat more appropriate.
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Motivated by (3.2), the authors showed that if u solves (3.3), then ∇u ∈
L∞(Ω), under no restrictions on Ω other than its dimension. Moreover, they proved
the following bounds on the Green’s function.

Let Ω be an arbitrary bounded domain in R3 and let G be the Green’s
function for the biharmonic equation. Then

|∇X∇YG(X,Y )| ≤ C|X − Y |−1
, X, Y ∈ Ω, (3.4)

|∇XG(X,Y )| ≤ C and |∇YG(X,Y )| ≤ C, X, Y ∈ Ω, (3.5)

where C is an absolute constant.
The boundedness of the gradient of a solution to the biharmonic equation in

a three-dimensional domain is a sharp property in the sense that the function u
satisfying (3.3) generally does not exhibit more regularity. For example, let Ω be
the three-dimensional punctured unit ball B(0, 1) \ {0}, where B(X, r) = {Y ∈
R3 : |X − Y | < r}, and consider a function η ∈ C∞0 (B(0, 1/2)) such that η = 1 on
B(0, 1/4). Let

u(X) := η(X)|X|, X ∈ B1 \ {0}. (3.6)

Obviously, u ∈ W̊ 2
2 (Ω) and ∆2u ∈ C∞0 (Ω). While ∇u is bounded, it is not continu-

ous at the origin. Therefore, the continuity of the gradient does not hold in general
and must depend on some delicate properties of the domain. These questions will
be addressed in Section 4 in the framework of the Wiener criterion.

In the absence of boundedness of the gradient ∇u of a harmonic function, or
the higher-order derivatives ∇m−1u of a solution to a higher-order equation, we
may instead consider boundedness of a solution itself. Let

∆mu = h in Ω, u ∈ W̊ 2
m(Ω), (3.7)

and h ∈ C∞0 (Ω). Observe that if Ω ⊂ Rn for n ≤ 2m− 1, then every u ∈ W̊ 2
m(Ω)

is Hölder continuous on Ω and so must necessarily be bounded.
In [Maz99b, Section 10], Maz’ya showed that the Green’s function Gm(X,Y )

for ∆m in an arbitrary bounded domain Ω ⊂ Rn satisfies

|Gm(X,Y )| ≤ C(2m) log
C diam Ω

min(|X − Y |,dist(Y, ∂Ω))
(3.8)

in dimension n = 2m, and satisfies

|Gm(X,Y )| ≤ C(n)

|X − Y |n−2m (3.9)

if n = 2m + 1 or n = 2m + 2. If m = 2, then (3.9) also holds in dimension
n = 7 = 2m+3 (cf. [Maz79]). Whether (3.9) holds in dimension n ≥ 8 (for m = 2)
or n ≥ 2m+ 3 (for m > 2) is an open problem; see [Maz99b, Problem 2].

If (3.9) holds, then solutions to (3.7) satisfy

‖u‖L∞(Ω) ≤ C(m,n, p) diam(Ω)2m−n/p‖h‖Lp(∂Ω)

provided p > n/2m (see, e.g., [Maz99b, Section 2]).
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Thus, if Ω ⊂ Rn is bounded for n ≤ 2m+ 2, n 6= 2m, and if u satisfies (3.7)
for a reasonably nice function h, then u ∈ L∞(Ω). This result also holds if Ω ⊂ R7

and m = 2.
As in the case of the Green function estimates, if Ω ⊂ Rn is bounded and

n ≥ 2m + 3, or if m = 2 and n ≥ 8, then the question of whether solutions u to
(3.7) are bounded is open. In particular, it is not known whether solutions u to

∆2u = h in Ω, u ∈ W̊ 2
2 (Ω)

are bounded if Ω ⊂ Rn for n ≥ 8. However, there exists another fourth-order oper-
ator whose solutions are not bounded in higher-dimensional domains. In [MN86],
Maz’ya and Nazarov showed that if n ≥ 8 and if a > 0 is large enough, then
there exists an open cone K ⊂ Rn and a function h ∈ C∞0 (K \ {0}) such that the
solution u to

∆2u+ a∂4
nu = h in K, u ∈ W̊ 2

2 (K) (3.10)

is unbounded near the origin.
To conclude our discussion of Green’s functions, we mention two results from

[MM11]; these results are restricted to relatively well-behaved domains. In [MM11],
D. Mitrea and I. Mitrea showed that, if Ω is a bounded Lipschitz domain in R3,
and G denotes the Green’s function for the bilaplacian ∆2, then the estimates

∇2G(X, · ) ∈ L3(Ω), dist( · , ∂Ω)−α∇G(X, · ) ∈ L3/α,∞

hold, uniformly in X ∈ Ω, for all 0 < α ≤ 1.
Moreover, they considered more general elliptic systems. Suppose that L is

an arbitrary elliptic operator of order 2m with constant coefficients, as defined
by Definition 2.1, and that G denotes the Green’s function for L. Suppose that
Ω ⊂ Rn, for n > m, is a Lipschitz domain, and that the unit outward normal ν to
Ω lies in the Sarason space VMO(∂Ω) of functions of vanishing mean oscillations
on ∂Ω. Then the estimates

∇mG(X, · ) ∈ L
n

n−m ,∞(Ω), (3.11)

dist( · , ∂Ω)−α∇m−1G(X, · ) ∈ L
n

n−m−1+α ,∞(Ω)

hold, uniformly in X ∈ Ω, for any 0 ≤ α ≤ 1.

4. The Wiener test

In this section, we discuss conditions that ensure that solutions (or appropriate
gradients of solutions) are continuous up to the boundary. These conditions parallel
the famous result of Wiener, who in 1924 formulated a criterion that ensured
continuity of harmonic functions at boundary points [Wie24]. Wiener’s criterion
has been extended to a variety of second-order elliptic and parabolic equations
([LSW63, FJK82, FGL89, DMM86, MZ97, AH96, TW02, Lab02, EG82]; see also
the review papers [Maz97, Ada97]). However, as with the maximum principle,
extending this criterion to higher-order elliptic equations is a subtle matter, and
many open questions remain.
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We begin by stating the classical Wiener criterion for the Laplacian. If Ω ⊂ Rn
is a domain and Q ∈ ∂Ω, then Q is called regular for the Laplacian if every solution
u to

∆u = h in Ω, u ∈ W̊ 2
1 (Ω)

for h ∈ C∞0 (Ω) satisfies limX→Q u(X) = 0. According to Wiener’s theorem [Wie24],
the boundary point Q ∈ ∂Ω is regular if and only if the equation

ˆ 1

0

cap2(B(Q, s) \ Ω)s1−n ds =∞ (4.1)

holds, where

cap2(K) = inf
{
‖u‖2L2(Rn) + ‖∇u‖2L2(Rn) : u ∈ C∞0 (Rn), u ≥ 1 on K

}
.

For example, suppose Ω satisfies the exterior cone condition at Q. That is,
suppose there is some open cone K with vertex at Q and some ε > 0 such that
K ∩ B(Q, ε) ⊂ ΩC . It is elementary to show that cap2(B(Q, s) \ Ω) ≥ C(K)sn−2

for all 0 < s < ε, and so (4.1) holds and Q is regular. Regularity of such points was
known prior to Wiener (see [Poi90], [Zar09], and [Leb13]) and provided inspiration
for the formulation of the Wiener test.

By [LSW63], if L = −divA∇ is a second-order divergence-form operator,
where the matrix A(X) is bounded, measurable, real, symmetric and elliptic, then
Q ∈ ∂Ω is regular for L if and only if Q and Ω satisfy (4.1). In other words, Q ∈ ∂Ω
is regular for the Laplacian if and only if it is regular for all such operators. Similar
results hold for some other classes of second-order equations; see, for example,
[FJK82], [DMM86], or [EG82].

One would like to consider the Wiener criterion for higher-order elliptic equa-
tions, and that immediately gives rise to the question of natural generalization of
the concept of a regular point. The Wiener criterion for the second order PDEs
ensures, in particular, that weak W̊ 2

1 solutions are classical. That is, the solution
approaches its boundary values in the pointwise sense (continuously). From that
point of view, one would extend the concept of regularity of a boundary point as
continuity of derivatives of order m− 1 of the solution to an equation of order 2m
up to the boundary. On the other hand, as we discussed in the previous section,
even the boundedness of solutions cannot be guaranteed in general, and thus, in
lower dimensions the study of the continuity up to the boundary for solutions
themselves is also very natural. We begin with the latter question, as it is better
understood.

Let us first define a regular point for an arbitrary differential operator L of
order 2m analogously to the case of the Laplacian, by requiring that every solution
u to

Lu = h in Ω, u ∈ W̊ 2
m(Ω) (4.2)

for h ∈ C∞0 (Ω) satisfy limX→Q u(X) = 0. Note that by the Sobolev embedding

theorem, if Ω ⊂ Rn for n ≤ 2m − 1, then every u ∈ W̊ 2
m(Ω) is Hölder continuous
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on Ω and so satisfies limX→Q u(X) = 0 at every point Q ∈ ∂Ω. Thus, we are only
interested in continuity of the solutions at the boundary when n ≥ 2m.

In this context, the appropriate concept of capacity is the potential-theoretic
Riesz capacity of order 2m, given by

cap2m(K) = inf
{ ∑

0≤|α|≤m

‖∂αu‖2L2(Rn) : u ∈ C∞0 (Rn), u ≥ 1 on K
}
. (4.3)

The following is known. If m ≥ 3, and if Ω ⊂ Rn for n = 2m, 2m + 1 or
2m + 2, or if m = 2 and n = 4, 5, 6 or 7, then Q ∈ ∂Ω is regular for ∆m if and
only if ˆ 1

0

cap2m(B(Q, s) \ Ω)s2m−n−1 ds =∞. (4.4)

The biharmonic case was treated in [Maz77] and [Maz79], and the polyharmonic
case for m ≥ 3 in [MD83] and [Maz99a].

Let us briefly discuss the method of the proof in order to explain the restric-
tions on the dimension. Let L be an arbitrary elliptic operator, and let F be the
fundamental solution for L in Rn with pole at Q. We say that L is positive with
weight F if, for all u ∈ C∞0 (Rn \ {Q}), we have thatˆ

Rn
Lu(X) · u(X)F (X) dX ≥ c

m∑
k=1

ˆ
Rn
|∇ku(X)|2|X|2k−n dX. (4.5)

The biharmonic operator is positive with weight F in dimension n if 4 ≤
n ≤ 7, and the polyharmonic operator ∆m, m ≥ 3, is positive with weight F
in dimension 2m ≤ n ≤ 2m + 2. (The Laplacian ∆ is positive with weight F
in any dimension.) The biharmonic operator ∆2 is not positive with weight F in
dimensions n ≥ 8, and ∆m is not positive with weight F in dimension n ≥ 2m+3.
See [Maz99a, Propositions 1 and 2].

The proof of the Wiener criterion for the polyharmonic operator required
positivity with weight F . In fact, it turns out that positivity with weight F suffices
to provide a Wiener criterion for an arbitrary scalar elliptic operator with constant
coefficients.

Theorem 4.6 ([Maz02, Theorems 1 and 2]). Suppose Ω ⊂ Rn and that L is a
scalar elliptic operator of order 2m with constant real coefficients, as defined by
Definition 2.1.

If n = 2m, then Q ∈ ∂Ω is regular for L if and only if (4.4) holds.
If n ≥ 2m+ 1, and if the condition (4.5) holds, then again Q ∈ ∂Ω is regular

for L if and only if (4.4) holds.

This theorem is also valid for certain variable-coefficient operators in diver-
gence form; see the remark at the end of [Maz99a, Section 5].

Similar results have been proven for some second-order elliptic systems. In
particular, for the Lamé system Lu = ∆u + α grad div u, α > −1, positivity with
weight F and Wiener criterion have been established for a range of α close to zero,
that is, when the underlying operator is close to the Laplacian ([LM10]). It was
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also shown that positivity with weight F may in general fail for the Lamé system.
Since the present review is restricted to the higher order operators, we shall not
elaborate on this point and instead refer the reader to [LM10] for more detailed
discussion.

In the absense of the positivity condition (4.5), the situation is much more
involved. Let us point out first that the condition (4.5) is not necessary for reg-
ularity of a boundary point, that is, the continuity of the solutions. There exist
fourth-order elliptic operators that are not positive with weight F whose solutions
exhibit nice behavior near the boundary; there exist other such operators whose
solutions exhibit very bad behavior near the boundary.

Specifically, recall that (4.5) fails for L = ∆2 in dimension n ≥ 8. Nonetheless,
solutions to ∆2u = h are often well-behaved near the boundary. By [MP81], the
vertex of a cone is regular for the bilaplacian in any dimension. Furthermore, if
the capacity condition (4.4) holds with m = 2, then by [Maz02, Section 10], any
solution u to

∆2u = h in Ω, u ∈ W̊ 2
2 (Ω)

for h ∈ C∞0 (Ω) satisfies limX→Q u(X) = 0 provided the limit is taken along a
nontangential direction.

Conversely, if n ≥ 8 and L = ∆2 + a∂4
n, then by [MN86], there exists a cone

K and a function h ∈ C∞0 (K \ {0}) such that the solution u to (3.10) is not only
discontinuous but unbounded near the vertex of the cone. We remark that a careful
examination of the proof in [MN86] implies that solutions to (3.10) are unbounded
even along some nontangential directions.

Thus, conical points in dimension eight are regular for the bilaplacian and
irregular for the operator ∆2 + a∂4

n. Hence, a relevant Wiener condition must use
different capacities for these two operators. This is a striking contrast with the
second-order case, where the same capacity condition implies regularity for all
divergence-form operators, even with variable coefficients.

This concludes the discussion of regularity in terms of continuity of the solu-
tion. We now turn to regularity in terms of continuity of the (m−1)-st derivatives.
Unfortunately, much less is known in this case. The first such result has recently
appeared in [MM09a]. It pertains to the biharmonic equation in dimension three.

We say that Q ∈ ∂Ω is 1-regular for the operator ∆2 if every solution u to

∆2u = h in Ω, u ∈ W̊ 2
2 (Ω) (4.7)

for h ∈ C∞0 (Ω) satisfies limX→Q∇u(X) = 0. In [MM09a] the second author of this
paper and Maz’ya proved that in a three-dimensional domain the following holds.
If ˆ c

0

inf
P∈Π1

capP (B(0, as) \B(0, s) \ Ω) ds =∞ (4.8)

for some a ≥ 4 and some c > 0, then 0 is 1-regular. Conversely, if 0 ∈ ∂Ω is
1-regular for ∆2 then for every c > 0 and every a ≥ 8,

inf
P∈Π1

ˆ c

0

capP (B(0, as) \B(0, s) \ Ω) ds =∞. (4.9)
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Here

capP (K) = inf{‖∆u‖2L2(R3) : u ∈ W̊ 2
2 (R3 \ {0}), u = P in a neighborhood of K}

and Π1 is the space of functions P (X) of the form P (X) = b0+b1X1+b2X2+b3X3

with coefficients bk ∈ R that satisfy
√
b20 + b21 + b22 + b23 = 1.

Note that the notion of capacity capP is quite different from the classical
analogues, and even from the Riesz capacity used in the context of the higher
order elliptic operators before (cf. (4.3)). Its properties, as well as properties of
1-regular and 1-irregular points, can be different from classical analogous as well.
For instance, for some domains 1-irregularity turns out to be unstable under affine
transformations of coordinates.

The slight discrepancy between the sufficient condition (4.8) and the neces-
sary condition (4.9) is needed, in the sense that (4.8) is not always necessary for
1-regularity. However, in an important particular case, there exists a single simpler
condition for 1-regularity. To be precise, let Ω ⊂ R3 be a domain whose boundary
is the graph of a function ϕ, and let ω be its modulus of continuity. Ifˆ 1

0

t dt

ω2(t)
=∞, (4.10)

then every solution to the biharmonic equation (4.7) satisfies ∇u ∈ C(Ω). Con-
versely, for every ω such that the integral in (4.10) is convergent, there exists a
C0,ω domain and a solution u of the biharmonic equation such that ∇u /∈ C(Ω).
In particular, as expected, the gradient of a solution to the biharmonic equation is
always bounded in Lipschitz domains and is not necessarily bounded in a Hölder
domain. Moreover, one can deduce from (4.10) that the gradient of a solution is

always bounded, e.g., in a domain with ω(t) ≈ t log1/2 t, which is not Lipschitz,
and might fail to be bounded in a domain with ω(t) ≈ t log t. More properties of
the new capacity and examples can be found in [MM09a].

5. Boundary value problems in Lipschitz domains for elliptic
operators with constant coefficients

The maximum principle (3.2) provides estimates on solutions whose boundary
data lies in L∞. Recall that for second-order partial differential equations with
real coefficients, the maximum principle is valid in arbitrary bounded domains. The
corresponding sharp estimates for boundary data in Lp, 1 < p <∞, are much more
delicate. They are not valid in arbitrary domains, even for harmonic functions,
and they depend in a delicate way on the geometry of the boundary. At present,
boundary-value problems for the Laplacian and for general real symmetric elliptic
operators of the second order are fairly well understood on Lipschitz domains. See,
in particular, [Ken94].

We consider biharmonic functions and more general higher-order elliptic
equations. The question of estimates on biharmonic functions with data in Lp
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was raised by Rivière in the 1970s ([CFS79]), and later Kenig redirected it to-
wards Lipschitz domains in [Ken90, Ken94]. The sharp range of well-posedness
in Lp, even for biharmonic functions, remains an open problem (see [Ken94, Prob-
lem 3.2.30]). In this section we shall review the current state of the art in the
subject, the main techniques that have been successfully implemented, and their
limitations in the higher-order case.

Most of the results we will discuss are valid in Lipschitz domains, defined as
follows.

Definition 5.1. A domain Ω ⊂ Rn is called a Lipschitz domain if, for every Q ∈ ∂Ω,
there is a number r > 0, a Lipschitz function ϕ : Rn−1 7→ R with ‖∇ϕ‖L∞ ≤ M ,
and a rectangular coordinate system for Rn such that

B(Q, r) ∩ Ω = {(x, s) : x ∈ Rn−1, s ∈ R, |(x, s)−Q)| < r, and s > ϕ(x)}.

If we may take the functions ϕ to be Ck (that is, to possess k continuous
derivatives), we say that Ω is a Ck domain.

The outward normal vector to Ω will be denoted ν. The surface measure will
be denoted σ, and the tangential derivative along ∂Ω will be denoted ∇τ .

In this paper, we will assume that all domains under consideration have
connected boundary. Furthermore, if ∂Ω is unbounded, we assume that there is
a single Lipschitz function ϕ and coordinate system that satisfies the conditions
given above; that is, we assume that Ω is the domain above (in some coordinate
system) the graph of a Lipschitz function.

In order to properly state boundary-value problems on Lipschitz domains, we
will need the notions of non-tangential convergence and non-tangential maximal
function.

In this and subsequent sections we say that u
∣∣
∂Ω

= f if f is the nontangential
limit of u, that is, if

lim
X→Q, X∈Γ(Q)

u(X) = f(Q)

for almost every (dσ) Q ∈ ∂Ω, where Γ(Q) is the nontangential cone

Γ(Q) = {Y ∈ Ω : dist(Y, ∂Ω) < (1 + a)|X − Y |}. (5.2)

Here a > 0 is a positive parameter; the exact value of a is usually irrelevant to
applications. The nontangential maximal function is given by

NF (Q) = sup{|F (X)| : X ∈ Γ(Q)}. (5.3)

The normal derivative of u of order m is defined as

∂mν u(Q) =
∑
|α|=m

ν(Q)α
m!

α!
∂αu(Q),

where ∂αu(Q) is taken in the sense of nontangential limits as usual.
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5.1. The Dirichlet problem: definitions, layer potentials, and some well-posedness
results

We say that the Lp-Dirichlet problem for the biharmonic operator ∆2 in a domain
Ω is well-posed if there exists a constant C > 0 such that, for every f ∈ W p

1 (∂Ω)
and every g ∈ Lp(∂Ω), there exists a unique function u that satisfies

∆2u = 0 in Ω,

u = f on ∂Ω,

∂νu = g on ∂Ω,

‖N(∇u)‖Lp(∂Ω) ≤ C‖g‖Lp(∂Ω) + C‖∇τf‖Lp(∂Ω).

(5.4)

The Lp-Dirichlet problem for the polyharmonic operator ∆m is somewhat
more involved, because the notion of boundary data is necessarily more subtle.
We say that the Lp-Dirichlet problem for ∆m in a domain Ω is well-posed if
there exists a constant C > 0 such that, for every g ∈ Lp(∂Ω) and every ḟ in
the Whitney-Sobolev space WApm−1(∂Ω), there exists a unique function u that
satisfies

∆mu = 0 in Ω,

∂αu
∣∣
∂Ω

= fα for all 0 ≤ |α| ≤ m− 2,

∂m−1
ν u = g on ∂Ω,

‖N(∇m−1u)‖Lp(∂Ω) ≤ C‖g‖Lp(∂Ω + C
∑

|α|=m−2

‖∇τfα‖Lp(∂Ω).

(5.5)

The space WApm(∂Ω) is defined as follows.

Definition 5.6. Suppose that Ω ⊂ Rn is a Lipschitz domain, and consider arrays
of functions ḟ = {fα : |α| ≤ m − 1} indexed by multiindices α of length n,
where fα : ∂Ω 7→ C. We let WApm(∂Ω) be the completion of the set of arrays

ψ̇ = {∂αψ : |α| ≤ m− 1}, for ψ ∈ C∞0 (Rn), under the norm∑
|α|≤m−1

‖∂αψ‖Lp(∂Ω) +
∑

|α|=m−1

‖∇τ∂αψ‖Lp(∂Ω). (5.7)

If we prescribe ∂αu = fα on ∂Ω for some f ∈ WApm(∂Ω), then we are pre-
scribing the values of u, ∇u, . . . ,∇m−1u on ∂Ω, and requiring that (the prescribed
part of) ∇mu

∣∣
∂Ω

lie in Lp(∂Ω).

The study of these problems began with biharmonic functions in C1 domains.
In [SS81], Selvaggi and Sisto proved that, if Ω is the domain above the graph of a
compactly supported C1 function ϕ, with ‖∇ϕ‖L∞ small enough, then solutions
to the Dirichlet problem exist provided 1 < p < ∞. Their method used certain
biharmonic layer potentials composed with the Riesz transforms.

In [CG83], Cohen and Gosselin proved that, if Ω is a bounded, simply con-
nected C1 domain contained in the plane R2, then the Lp-Dirichlet problem is
well-posed in Ω for any 1 < p < ∞. In [CG85], they extended this result to the
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complements of such domains. Their proof used multiple layer potentials intro-
duced by Agmon in [Agm57] in order to solve the Dirichlet problem with continu-
ous boundary data. The general outline of their proof parallelled that of the proof
of the corresponding result [FJR78] for Laplace’s equation.

As in the case of Laplace’s equation, a result in Lipschitz domains soon fol-
lowed. In [DKV86], Dahlberg, Kenig and Verchota showed that the Lp-Dirichlet
problem for the biharmonic equation is well-posed in any bounded simply con-
nected Lipschitz domain Ω ⊂ Rn, provided 2 − ε < p < 2 + ε for some ε > 0
depending on the domain Ω.

In [Ver87], Verchota used the construction of [DKV86] to extend Cohen and
Gosselin’s results from planar C1 domains to C1 domains of arbitrary dimension.
Thus, the Lp-Dirichlet problem for the bilaplacian is well-posed for 1 < p <∞ in
C1 domains.

In [Ver90], Verchota showed that the Lp-Dirichlet problem for the polyhar-
monic operator ∆m could be solved for 2 − ε < p < 2 + ε in starlike Lipschitz
domains by induction on the exponent m. He simultaneously proved results for
the Lp-regularity problem in the same range; we will thus delay discussion of his
methods to Section 5.3.

All three of the papers [SS81], [CG83] and [DKV86] constructed biharmonic
functions as potentials. However, the potentials used differ. [SS81] constructed
their solutions as

u(X) =

ˆ
∂Ω

∂2
nF (X − Y ) f(Y ) dσ(Y ) +

n−1∑
i=1

ˆ
∂Ω

∂i∂nF (X − Y )Rig(Y ) dσ(Y )

where Ri are the Riesz transforms. Here F (X) is the fundamental solution to the
biharmonic equation; thus, u is biharmonic in Rn \∂Ω. As in the case of Laplace’s
equation, well-posedness of the Dirichlet problem follows from the boundedness
relation ‖N(∇u)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω) +C‖g‖Lp(∂Ω) and from invertibility of the

mapping (f, g) 7→ (u
∣∣
∂Ω
, ∂νu) on Lp(∂Ω)× Lp(∂Ω) 7→W p

1 (∂Ω)× Lp(∂Ω).

The multiple layer potential of [CG83] is an operator of the form

Lḟ(P ) = p.v.

ˆ
∂Ω

L(P,Q)ḟ(Q) dσ(Q) (5.8)

where L(P,Q) is a 3 × 3 matrix of kernels, also composed of derivatives of the

biharmonic equation, and ḟ = (f, fx, fy) is a “compatible triple” of boundary data,
that is, an element of W 1,p(∂Ω)×Lp(∂Ω)×Lp(∂Ω) that satisfies ∂τf = fxτx+fyτy.
Thus, the input is essentially a function and its gradient, rather than two functions,
and the Riesz transforms are not involved.

The method of [DKV86] is to compose two potentials. First, the function
f ∈ L2(∂Ω) is mapped to its Poisson extension v. Next, u is taken to be the
solution of the inhomogeneous equation ∆u(Y ) = (n+ 2Y · ∇)v(Y ) with u = 0 on
∂Ω. If G(X,Y ) is the Green’s function for ∆ in Ω and kY is the harmonic measure
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density at Y , we may write the map f 7→ u as

u(X) =

ˆ
Ω

G(X,Y )(n+ 2Y · ∇)

ˆ
∂Ω

kY (Q) f(Q) dσ(Q) dY. (5.9)

Since (n+ 2Y · ∇)v(Y ) is harmonic, u is biharmonic, and so u solves the Dirichlet
problem.

5.2. The Lp-Dirichlet problem: the summary of known results on well-posedness
and ill-posedness

Recall that by [Ver90], the Lp-Dirichlet problem is well-posed in Lipschitz domains
provided 2− ε < p < 2 + ε. As in the case of Laplace’s equation (see [FJL77]), the
range p > 2−ε is sharp. That is, for any p < 2 and any integers m ≥ 2, n ≥ 2, there
exists a bounded Lipschitz domain Ω ⊂ Rn such that the Lp-Dirichlet problem for
∆m is ill-posed in Ω. See [DKV86, Section 5] for the case of the biharmonic operator
∆2, and the proof of Theorem 2.1 in [PV95b] for the polyharmonic operator ∆m.

The range p < 2 + ε is not sharp and has been studied extensively. Proving
or disproving well-posedness of the Lp-Dirichlet problem for p > 2 in general
Lipschitz domains has been an open question since [DKV86], and was formally
stated as such in [Ken94, Problem 3.2.30]. (Earlier in [CFS79, Question 7], the
authors had posed the more general question of what classes of boundary data
give existence and uniqueness of solutions.)

In [PV92, Theorem 10.7], Pipher and Verchota constructed Lipschitz domains
Ω such that the Lp-Dirichlet problem for ∆2 was ill-posed in Ω, for any given
p > 6 (in four dimensions) or any given p > 4 (in five or more dimensions). Their
counterexamples built on the study of solutions near a singular point, in particular
upon [MNP83] and [MP81]. In [PV95b], they provided other counterexamples to
show that the Lp-Dirichlet problem for ∆m is ill-posed, provided p > 2(n−1)/(n−
3) and 4 ≤ n < 2m + 1. They remarked that if n ≥ 2m + 1, then ill-posedness
follows from the results of [MNP83] provided p > 2m/(m− 1).

The endpoint result at p = ∞ is the Agmon-Miranda maximum principle
(3.2) discussed above. We remark that if 2 < p0 ≤ ∞, and the Lp0-Dirichlet prob-
lem is well-posed (or (3.2) holds) then by interpolation, the Lp-Dirichlet problem
is well-posed for any 2 < p < p0.

We shall adopt the following definition (justified by the discussion above).

Definition 5.10. Suppose that m ≥ 2 and n ≥ 4. Then pm,n is defined to be the
extended real number that satisfies the following properties. If 2 ≤ p ≤ pm,n, then
the Lp-Dirichlet problem for ∆m is well-posed in any bounded Lipschitz domain
Ω ⊂ Rn. Conversely, if p > pm,n, then there exists a bounded Lipschitz domain
Ω ⊂ Rn such that the Lp-Dirichlet problem for ∆m is ill-posed in Ω. Here, well-
posedness for 1 < p < ∞ is meant in the sense of (5.5), and well-posedness for
p =∞ is meant in the sense of the maximum principle (see (5.24) below).

As in [DKV86], we expect the range of solvability for any particular Lipschitz
domain Ω to be 2−ε < p < pm,n+ε for some ε depending on the Lipschitz character
of Ω.
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Let us summarize here the results currently known for pm,n. More details will
follow in Section 5.3.

For any m ≥ 2, we have that

• If n = 2 or n = 3, then the Lp-Dirichlet problem for ∆m is well-posed in any
Lipschitz domain Ω for any 2 ≤ p <∞. ([PV92, PV95b])

• If 4 ≤ n ≤ 2m+ 1, then pm,n = 2(n− 1)/(n− 3). ([She06a, PV95b].)
• If n = 2m+2, then pm,n = 2m/(m−1) = 2(n−2)/(n−4). ([She06b, MNP83].)
• If n ≥ 2m+3, then 2(n−1)/(n−3) ≤ pm,n ≤ 2m/(m−1). ([She06a, MNP83].)

The value of pm,n, for n ≥ 2m+ 3, is open.

In the special case of biharmonic functions (m = 2), more is known.

• p2,4 = 6, p2,5 = 4, p2,6 = 4, and p2,7 = 4. ([She06a] and [She06b])
• If n ≥ 8, then

2 +
4

n− λn
< p2,n ≤ 4

where

λn =
n+ 10 + 2

√
2(n2 − n+ 2)

7
.

([She06c])
• If Ω is a C1 or convex domain of arbitrary dimension, then the Lp-Dirichlet

problem for ∆2 is well-posed in Ω for any 1 < p < ∞. ([Ver90, She06c,
KS11a].)

We comment on the nature of ill-posedness. The counterexamples of [DKV86]
and [PV95b] for p < 2 are failures of uniqueness. That is, those counterexamples
are nonzero functions u, satisfying ∆mu = 0 in Ω, such that ∂kνu = 0 on ∂Ω for
0 ≤ k ≤ m− 1, and such that N(∇m−1u) ∈ Lp(∂Ω).

Observe that if Ω is bounded and p > 2, then Lp(∂Ω) ⊂ L2(∂Ω). Because
the L2-Dirichlet problem is well-posed, the failure of well-posedness for p > 2
can only be a failure of the optimal estimate N(∇m−1u) ∈ Lp(∂Ω). That is, if
the Lp-Dirichlet problem for ∆m is ill-posed in Ω, then for some Whitney array
ḟ ∈ WApm−1(∂Ω) and some g ∈ Lp(∂Ω), the unique function u that satisfies

∆mu = 0 in Ω, ∂αu = fα, ∂m−1
ν u = g and N(∇m−1u) ∈ L2(∂Ω) does not satisfy

N(∇m−1u) ∈ Lp(∂Ω).

5.3. The regularity problem and the Lp-Dirichlet problem

In this section we elaborate on some of the methods used to prove the Dirich-
let well-posedness results listed above, as well as their historical context. This
naturally brings up a consideration of a different boundary value problem, the
Lq-regularity problem for higher order operators.

Recall that for second-order equations the regularity problem corresponds
to finding a solution with prescribed tangential gradient along the boundary. In
analogy, we say that the Lq-regularity problem for ∆m is well-posed in Ω if there
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exists a constant C > 0 such that, whenever ḟ ∈WAqm(∂Ω), there exists a unique
function u that satisfies

∆mu = 0 in Ω,

∂αu
∣∣
∂Ω

= fα for all 0 ≤ |α| ≤ m− 1,

‖N(∇mu)‖Lq(∂Ω) ≤ C
∑

|α|=m−1

‖∇τfα‖Lq(∂Ω).
(5.11)

There is an important endpoint formulation at q = 1 for the regularity prob-
lem. We say that the H1-regularity problem is well-posed if there exists a constant
C > 0 such that, whenever ḟ lies in the Whitney-Hardy space H1

m(∂Ω), there
exists a unique function u that satisfies

∆mu = 0 in Ω,

∂αu
∣∣
∂Ω

= fα for all 0 ≤ |α| ≤ m− 1,

‖N(∇mu)‖L1(∂Ω) ≤ C
∑

|α|=m−1

‖∇τfα‖H1(∂Ω).

The space H1
m(∂Ω) is defined as follows.

Definition 5.12. We say that ȧ ∈WAqm(∂Ω) is a H1
m(∂Ω)-Lq atom if ȧ is supported

in a ball B(Q, r) ∩ ∂Ω and if∑
|α|=m−1

‖∇τaα‖Lq(∂Ω) ≤ σ(B(Q, r) ∩ ∂Ω)1/q−1.

If ḟ ∈WA1
m(∂Ω) and there are H1

m-L2 atoms ȧk and constants λk ∈ C such that

∇τfα =

∞∑
k=1

λk∇τ (ak)α for all |α| = m− 1

and such that
∑
|λk| < ∞, we say that ḟ ∈ H1

m(∂Ω), with ‖ḟ‖H1
m(∂Ω) being the

smallest
∑
|λk| among all such representations.

In [Ver90], Verchota proved well-posedness of the L2-Dirichlet problem and
the L2-regularity problem for the polyharmonic operator ∆m in any bounded
starlike Lipschitz domain by simultaneous induction.

The base case m = 1 is valid in all bounded Lipschitz domains by [Dah79]
and [JK81b]. The inductive step is to show that well-posedness for the Dirichlet
problem for ∆m+1 follows from well-posedness of the lower-order problems. In par-
ticular, solutions with ∂αu = fα may be constructed using the regularity problem
for ∆m, and the boundary term ∂mν u = g, missing from the regularity data, may be
attained using the inhomogeneous Dirichlet problem for ∆m. On the other hand,
it was shown that the well-posedness for the regularity problem for ∆m+1 follows
from well-posedness of the lower-order problems and from the Dirichlet problem
for ∆m+1, in some sense, by realizing the solution to the regularity problem as an
integral of the solution to the Dirichlet problem.
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As regards a broader range of p and q, Pipher and Verchota showed in
[PV92] that the Lp-Dirichlet and Lq-regularity problems for ∆2 are well-posed
in all bounded Lipschitz domains Ω ⊂ R3, provided 2 ≤ p < ∞ and 1 < q ≤ 2.
Their method relied on duality. Using potentials similar to those of [DKV86],
they constructed solutions to the L2-Dirichlet problem in domains above Lips-
chitz graphs. The core of their proof was the invertibility on L2(∂Ω) of a certain
potential operator T . They were able to show that the invertibility of its adjoint
T ∗ on L2(∂Ω) implies that the L2-regularity problem for ∆2 is well-posed. Then,
using the atomic decomposition of Hardy spaces, they analyzed the H1-regularity
problem. Applying interpolation and duality for T ∗ once again, now in the reverse
regularity-to-Dirichlet direction, the full range for both regularity and Dirichlet
problems was recovered in domains above graphs. Localization arguments then
completed the argument in bounded Lipschitz domains.

In four or more dimensions, further progress relied on the following theorem
of Shen.

Theorem 5.13 ([She06b]). Suppose that Ω ⊂ Rn is a Lipschitz domain. The fol-
lowing conditions are equivalent.

• The Lp-Dirichlet problem for L is well-posed, where L is a symmetric elliptic
system of order 2m with real constant coefficients.

• There exists some constant C > 0 and some p > 2 such that( 
B(Q,r)∩∂Ω

N(∇m−1u)p dσ

)1/p

≤ C

( 
B(Q,2r)∩∂Ω

N(∇m−1u)2 dσ

)1/2

(5.14)

holds whenever u is a solution to the L2-Dirichlet problem for L in Ω, with
∇u ≡ 0 on B(Q, 3r) ∩ ∂Ω.

For the polyharmonic operator ∆m, this theorem was essentially proven in
[She06a]. Furthermore, the reverse Hölder estimate (5.14) with p = 2(n−1)/(n−3)
was shown to follow from well-posedness of the L2-regularity problem. Thus the
Lp-Dirichlet problem is well-posed in bounded Lipschitz domains in Rn for p =
2(n−1)/(n−3). By interpolation, and because reverse Hölder estimates have self-
improving properties, well-posedness in the range 2 ≤ p ≤ 2(n− 1)/(n− 3) + ε for
any particular Lipschtiz domain follows automatically.

Using regularity estimates and square-function estimates, Shen was able to
further improve this range of p. He showed that with p = 2+4/(n−λ), 0 < λ < n,
the reverse Hölder estimate (5.14) is true, provided thatˆ

B(Q,r)∩Ω

|∇m−1u|2 ≤ C
( r
R

)λ ˆ
B(Q,R)∩Ω

|∇m−1u|2 (5.15)

holds whenever u is a solution to the L2-Dirichlet problem in Ω with N(∇m−1u) ∈
L2(∂Ω) and ∇ku

∣∣
B(Q,R)∩Ω

≡ 0 for all 0 ≤ k ≤ m− 1.

It is illuminating to observe that the estimates arising in connection with the
pointwise bounds on the solutions in arbitrary domains (cf. Section 3) and the
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Wiener test (cf. Section 4), take essentially the form (5.15). Thus, Theorem 5.13
and its relation to (5.15) provide a direct way to transform results regarding local
boundary regularity of solutions, obtained via the methods underlined in Sections 3
and 4, into well-posedness of the Lp-Dirichlet problem.

In particular, consider [Maz02, Lemma 5]. If u is a solution to ∆mu = 0 in
B(Q,R) ∩ Ω, where Ω is a Lipschitz domain, then by [Maz02, Lemma 5] there is
some constant λ0 > 0 such that

sup
B(Q,r)∩Ω

|u|2 ≤
( r
R

)λ0 C

Rn

ˆ
B(Q,R)∩Ω

|u(X)|2 dX (5.16)

provided that r/R is small enough, that u has zero boundary data on B(Q,R)∩∂Ω,
and where Ω ⊂ Rn has dimension n = 2m+ 1 or n = 2m+ 2, or where m = 2 and
n = 7 = 2m+ 3. (The bound on dimension comes from the requirement that ∆m

be positive with weight F ; see equation (4.5).)
It is not difficult to see (cf., e.g., [She06b, Theorem 2.6]), that (5.16) implies

(5.15) for some λ > n−2m+2, and thus implies well-posedness of the Lp-Dirichlet
problem for a certain range of p. This provides an improvement on the results
of [She06a] in the case m = 2 and n = 6 or n = 7, and in the case m ≥ 3
and n = 2m + 2. Shen has stated this improvement in [She06b, Theorems 1.4
and 1.5]: the Lp-Dirichlet problem for ∆2 is well-posed for 2 ≤ p < 4 + ε in
dimensions n = 6 or n = 7, and the Lp-Dirichlet problem for ∆m is well-posed if
2 ≤ p < 2m/(m− 1) + ε in dimension n = 2m+ 2.

The method of weighted integral identities, related to positivity with weight F
(cf. (4.5)), can be further finessed in a particular case of the biharmonic equation.
[She06c] uses this method (extending the ideas from [Maz79]) to show that if n ≥ 8,
then (5.15) is valid for solutions to ∆2 with λ = λn, where

λn =
n+ 10 + 2

√
2(n2 − n+ 2)

7
. (5.17)

We now return to the Lq-regularity problem. Recall that in [PV92], Pipher
and Verchota showed that if 2 < p < ∞ and 1/p + 1/q < 1, then the Lp-
Dirichlet problem and the Lq-regularity problem for ∆2 are both well-posed in
three-dimensional Lipschitz domains. They proved this by showing that, in the
special case of a domain above a Lipschitz graph, there is duality between the Lp-
Dirichlet and Lq-regularity problems. Such duality results are common. See [KP93],
[She07b], and [KR09] for duality results in the second-order case; although even
in that case, duality is not always guaranteed. (See [May10].) Many of the known
results concerning the regularity problem for the polyharmonic operator ∆m are
results relating the Lp-Dirichlet problem to the Lq-regularity problem.

In [MM10], I. Mitrea and M. Mitrea showed that if 1 < p <∞ and 1/p+1/q =
1, and if the Lq-regularity problem for ∆2 and the Lp-regularity problem for ∆
were both well-posed in a particular bounded Lipschitz domain Ω, then the Lp-
Dirichlet problem for ∆2 was also well-posed in Ω. They proved this result (in
arbitrary dimensions) using layer potentials and a Green representation formula
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for biharmonic equations. Observe that the extra requirement of well-posedness for
the Laplacian is extremely unfortunate, since in bad domains it essentially restricts
consideration to p < 2 + ε and thus does not shed new light on well-posedness in
the general class of Lipschitz domains. As will be discussed below, later Kilty and
Shen established an optimal duality result for biharmonic Dirichlet and regularity
problems.

Recall that the formula (5.14) provides a necessary and sufficient condition for
well-posedness of the Lp-Dirichlet problem. In [KS11b], Kilty and Shen provided
a similar condition for the regularity problem. To be precise, they demonstrated
that if q > 2 and L is a symmetric elliptic system of order 2m with real constant
coefficients, then the Lq-regularity problem for L is well-posed if and only if the
estimate( 

B(Q,r)∩Ω

N(∇mu)q dσ

)1/q

≤ C

( 
B(Q,2r)∩Ω

N(∇mu)2 dσ

)1/2

(5.18)

holds for all points Q ∈ ∂Ω, all r > 0 small enough, and all solutions u to the
L2-regularity problem with ∇ku

∣∣
B(Q,3r)∩∂Ω

= 0 for 0 ≤ k ≤ m− 1. Observe that

(5.18) is identical to (5.14) with p replaced by q and m− 1 replaced by m.

As a consequence, well-posedness of the Lq-regularity problem in Ω for certain
values of q implies well-posedness of the Lp-Dirichlet problem for some values of p.
Specifically, arguments using interior regularity and fractional integral estimates
(given in [KS11b, Section 5]) show that (5.18) implies (5.14) with 1/p = 1/q −
1/(n−1). But recall from [She06b] that (5.14) holds if and only if the Lp-Dirichlet
problem for L is well-posed in Ω. Thus, if 2 < q < n− 1, and if the Lq-regularity
problem for a symmetric elliptic system is well-posed in a Lipschitz domain Ω,
then the Lp-Dirichlet problem for the same system and domain is also well-posed,
provided 2 < p < p0 + ε where 1/p0 = 1/q − 1/(n− 1).

For the bilaplacian, a full duality result is known. In [KS11a], Kilty and
Shen showed that, if 1 < p < ∞ and 1/p + 1/q = 1, then well-posedness of the
Lp-Dirichlet problem for ∆2 in a Lipschitz domain Ω, and well-posedness of the
Lq-regularity problem for ∆2 in Ω, were both equivalent to the bilinear estimate∣∣∣∣ˆ

Ω

∆u∆v

∣∣∣∣ ≤ C (‖∇τ∇f‖Lp + |∂Ω|−1/(n−1)‖∇f‖Lp + |∂Ω|−2/(n−1)‖f‖Lp
)

(5.19)

×
(
‖∇g‖Lq + |∂Ω|−1/(n−1)‖g‖Lq

)
for all f , g ∈ C∞0 (Rn), where u and v are solutions of the L2-regularity problem
with boundary data ∂αu = ∂αf and ∂αv = ∂αg. Thus, if Ω ⊂ Rn is a bounded
Lipschitz domain, and if 1/p+1/q = 1, then the Lp-Dirichlet problem is well-posed
in Ω if and only if the Lq-regularity problem is well-posed in Ω.

All in all, we see that the Lp-regularity problem for ∆2 is well-posed in
Ω ⊂ Rn if
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• Ω is C1 or convex, and 1 < p <∞.
• n = 2 or n = 3 and 1 < p < 2 + ε.
• n = 4 and 6/5− ε < p < 2 + ε.
• n = 5, 6 or 7, and 4/3− ε < p < 2 + ε.
• n ≥ 8, and 2− 4

4+n−λn < p < 2 + ε, where λn is given by (5.17). The above
ranges of p are sharp, but this range is still open.

5.4. Higher-order elliptic systems

The polyharmonic operator ∆m is part of a larger class of elliptic higher-order op-
erators. Some study has been made of boundary-value problems for such operators
and systems.

The Lp-Dirichlet problem for a strongly elliptic system L of order 2m, as
defined in Definition 2.1, is well-posed in Ω if there exists a constant C such that,
for every ḟ ∈ WApm−1(∂Ω 7→ C`) and every ~g ∈ Lp(∂Ω 7→ C`), there exists a

unique vector-valued function ~u : Ω 7→ C` such that

(L~u)j =
∑̀
k=1

∑
|α|=|β|=m

∂αajkαβ∂
βuk = 0 in Ω for each 1 ≤ j ≤ `,

∂α~u = fα on ∂Ω for |α| ≤ m− 2,

∂m−1
ν ~u = ~g on ∂Ω,

‖N(∇m−1u)‖Lq(∂Ω) ≤ C
∑

|α|=m−2

‖∇τfα‖Lq(∂Ω) + C‖~g‖Lp(∂Ω).

(5.20)

The Lq-regularity problem is well-posed in Ω if there is some constant C such that,
for every ḟ ∈WApm(∂Ω 7→ C`), there exists a unique ~u such that

(L~u)j =
∑̀
k=1

∑
|α|=|β|=m

∂αajkαβ∂
βuk = 0 in Ω for each 1 ≤ j ≤ `,

∂α~u = fα on ∂Ω for |α| ≤ m− 1,

‖N(∇mu)‖Lq(∂Ω) ≤ C
∑

|α|=m−1

‖∇τfα‖Lq(∂Ω).

(5.21)

In [PV95a], Pipher and Verchota showed that the Lp-Dirichlet and Lp-regu-
larity problems were well-posed for 2− ε < p < 2 + ε, for any higher-order elliptic
partial differential equation with real constant coefficients, in Lipschitz domains of
arbitrary dimension. This was extended to symmetric elliptic systems in [Ver96].
A key ingredient of the proof was the boundary G̊arding inequality

λ

4

ˆ
∂Ω

|∇mu|(−νn) dσ

≤
∑̀
j,k=1

∑
|α|=|β|=m

ˆ
∂Ω

∂αajkαβ∂
βuk(−νn) dσ + C

ˆ
∂Ω

|∇m−1∂nu|
2
dσ
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valid if u ∈ C∞0 (Rn)`, if L = ∂αajkαβ∂
β is a symmetric elliptic system with real

constant coefficients, and if Ω is the domain above the graph of a Lipschitz function.
We observe that in this case, (−νn) is a positive number bounded from below.
Pipher and Verchota then used this G̊arding inequality and a Green’s formula to
construct the nontangential maximal estimate. See [PV95b] and [Ver96, Sections
4 and 6].

As in the case of the polyharmonic operator ∆m, this first result concerned
the Lp-Dirichlet problem and Lq-regularity problem only for 2 − ε < p < 2 + ε
and for 2 − ε < q < 2 + ε. The polyharmonic operator ∆m is an elliptic system,
and so we cannot in general improve upon the requirement that 2 − ε < p for
well-posedness of the Lp-Dirichlet problem.

However, we can improve on the requirement p < 2 + ε. Recall that Theo-
rem 5.13 from [She06b], and its equivalence to (5.15), were proven in the general
case of strongly elliptic systems with real symmetric constant coefficients. As in
the case of the polyharmonic operator ∆m, (5.14) follows from well-posedness of
the L2-regularity problem provided p = 2(n − 1)/(n − 3), and so if L is such a
system, the Lp-Dirichlet problem for L is well-posed in Ω provided 2 − ε < p <
2(n−1)/(n−3)+ε. This is [She06b, Corollary 1.3]. Again, by the counterexamples
of [PV95b], this range cannot be improved if m ≥ 2 and 4 ≤ n ≤ 2m+1; the ques-
tion of whether this range can be improved for general operators L if n ≥ 2m+ 2
is still open.

Little is known concerning the regularity problem in a broader range of p.
Recall that (5.18) from [KS11b] was proven in the general case of strongly elliptic
systems with real symmetric constant coefficients. Thus, we known that for such
systems, well-posedness of the Lq-regularity problem for 2 < q < n−1 implies well-
posedness of the Lp-Dirichlet problem for appropriate p. The question of whether
the reverse implication holds, or whether this result can be extended to a broader
range of q, is open.

5.5. The area integral

One of major tools in the theory of second-order elliptic differential equations is
the Lusin area integral, defined as follows. If w lies in W 2

1,loc(Ω) for some domain

Ω ⊂ Rn, then the area integral (or square function) of w is defined for Q ∈ ∂Ω as

Sw(Q) =

(ˆ
Γ(Q)

|∇w(X)|2 dist(X, ∂Ω)2−ndX

)1/2

.

In [Dah80], Dahlberg showed that if u is harmonic in a bounded Lipschitz domain
Ω, if P0 ∈ Ω and u(P0) = 0, then for any 0 < p <∞,

1

C

ˆ
∂Ω

Sup dσ ≤
ˆ
∂Ω

(Nu)p dσ ≤ C
ˆ
∂Ω

(Su)p dσ (5.22)

for some constants C depending only on p, Ω and P0. Thus, the Lusin area integral
bears deep connections to the Lp-Dirichlet problem. In [DJK84], Dahlberg, Jerison
and Kenig generalized this result to solutions to second-order divergence-form
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elliptic equations with real coefficients for which the Lr-Dirichlet problem is well-
posed for at least one r.

If L is an operator of order 2m, then the appropriate estimate is

1

C

ˆ
∂Ω

N(∇um−1)p dσ ≤
ˆ
∂Ω

S(∇um−1)p dσ ≤ C
ˆ
∂Ω

N(∇um−1)p dσ. (5.23)

Before discussing their validity for particular operators, let us point out that such
square-function estimates are very useful in the study of higher-order equations.
In [She06b], Shen used (5.23) to prove the equivalence of (5.15) and (5.14), above.
In [KS11a], Kilty and Shen used (5.23) to prove that well-posedness of the Lp-
Dirichlet problem for ∆2 implies the bilinear estimate (5.19). The proof of the
maximum principle (3.2) in [Ver96, Section 8] (to be discussed in Section 5.6) also
exploited (5.23). Estimates on square functions can be used to derive estimates on
Besov space norms; see [AP98, Proposition S].

In [PV91], Pipher and Verchota proved that (5.23) (with m = 2) holds for
solutions u to ∆2u = 0, provided Ω is a bounded Lipschitz domain, 0 < p <∞, and
∇u(P0) = 0 for some fixed P0 ∈ Ω. Their proof was an adaptation of Dahlberg’s
proof [Dah80] of the corresponding result for harmonic functions. They used the
L2-theory for the biharmonic operator [DKV86], the representation formula (5.9),
and the L2-theory for harmonic functions to prove good-λ inequalities, which, in
turn, imply Lp estimates for 0 < p <∞.

In [DKPV97], Dahlberg, Kenig, Pipher and Verchota proved that (5.23) held
for solutions u to Lu = 0, for a symmetric elliptic system L of order 2m with real
constant coefficients, provided as usual that Ω is a bounded Lipschitz domain, 0 <
p < ∞, and ∇m−1u(P0) = 0 for some fixed P0 ∈ Ω. The argument is necessarily
considerably more involved than the argument of [PV91] or [Dah80]. In particular,
the bound ‖S(∇m−1u)‖L2(∂Ω) ≤ C‖N(∇m−1u)‖L2(∂Ω) was proven in three steps.

The first step was to reduce from the elliptic system L of order 2m to the
scalar elliptic operator M = detL of order 2`m, where ` is as in formula (2.2). The
second step was to reduce to elliptic equations of the form

∑
|α|=m aα∂

2αu = 0,

where |aα| > 0 for all |α| = m. Finally, it was shown that for operators of this
form ∑

|α|=m

ˆ
Ω

aα ∂
αu(X)2 dist(X, ∂Ω) dX ≤ C

ˆ
∂Ω

N(∇m−1u)2 dσ.

The passage to 0 < p <∞ in (5.23) was done, as usual, using good-λ inequalities.
We remark that these arguments used the result of [PV95a] that the L2-Dirichlet
problem is well-posed for such operators L in Lipschitz domains.

It is quite interesting that for second-order elliptic systems, the only currently
known approach to the square-function estimate (5.22) is this reduction to a higher-
order operator.

5.6. The maximum principle in Lipschitz domains

We are now in a position to discuss the maximum principle (3.2) for higher-order
equations in Lipschitz domains.
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We say that the maximum principle for an operator L of order 2m holds in the
bounded Lipschitz domain Ω if there exists a constant C > 0 such that, whenever
f ∈ WA∞m−1(∂Ω) ⊂ WA2

m−1(∂Ω) and g ∈ L∞(∂Ω) ⊂ L2(∂Ω), the solution u to
the Dirichlet problem (5.20) with boundary data f and g satisfies

‖∇m−1u‖L∞ ≤ C‖g‖L∞(∂Ω) + C
∑

|α|=m−2

‖∇τfα‖L∞(∂Ω). (5.24)

The maximum principle (5.24) was proven to hold in three-dimensional Lip-
schitz domains by Pipher and Verchota in [PV93] (for biharmonic functions), in
[PV95b] (for polyharmonic functions), and by Verchota in [Ver96, Section 8] (for
solutions to symmetric systems with real constant coefficients). Pipher and Ver-
chota also proved in [PV93] that the maximum principle was valid for biharmonic
functions in C1 domains of arbitrary dimension. In [KS11a, Theorem 1.5], Kilty
and Shen observed that the same techinque gives validity of the maximum principle
for biharmonic functions in convex domains of arbitrary dimension.

The proof of [PV93] uses the L2-regularity problem in the domain Ω to con-
struct the Green’s function G(X,Y ) for ∆2 in Ω. Then if u is biharmonic in Ω
with N(∇u) ∈ L2(∂Ω), we have that

u(X) =

ˆ
∂Ω

u(Q) ∂ν∆G(X,Q) dσ(Q) +

ˆ
∂Ω

∂νu(Q) ∆G(X,Q) dσ(Q)

where all derivatives of G are taken in the second variable Q. If the H1-regularity
problem is well-posed in appropriate subdomains of Ω, then ∇2∇XG(X, · ) is in
L1(∂Ω) with L1-norm independent of X, and so the second integral is at most
C‖∂νu‖L∞(∂Ω). By taking Riesz transforms, the normal derivative ∂ν∆G(X,Q)

may be transformed to tangential derivatives ∇τ∆G(X,Q); integrating by parts
transfers these derivatives to u. The square-function estimate (5.23) implies that
the Riesz transforms of ∇X∆QG(X,Q) are bounded on L1(∂Ω). This completes
the proof of the maximum principle.

Similar arguments show that the maximum principle is valid for more general
operators. See [PV95b] for the polyharmonic operator, or [Ver96, Section 8] for
arbitrary symmmetric operators with real constant coefficients.

An important transitional step is the well-posedness of the H1-regularity
problem. It was established in three-dimensional (or C1) domains in [PV93, The-
orem 4.2] and [PV95b, Theorem 1.2] and discussed in [Ver96, Section 7]. In each

case, well-posedness was proven by analyzing solutions with atomic data ḟ using a
technique from [DK90]. A crucial ingredient in this technique is the well-posedness
of the Lp-Dirichlet problem for some p < (n−1)/(n−2); the latter is valid if n = 3
by [DKV86], and (for ∆2) in C1 and convex domains by [Ver90] and [KS11a], but
fails in general Lipschitz domains for n ≥ 4.

5.7. Biharmonic functions in convex domains

We say that a domain Ω is convex if, whenever X, Y ∈ Ω, the line segment
connecting X and Y lies in Ω. Observe that all convex domains are necessarily
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Lipschitz domains but the converse does not hold. Moreover, while convex domains
are in general no smoother than Lipschitz domains, the extra geometrical structure
often allows for considerably stronger results.

Recall that in [MM09a], the second author of this paper and Maz’ya showed
that the gradient of a biharmonic function is bounded in a three-dimensional
domain. This is a sharp property in dimension three, and in higher dimensional
domains the solutions can be even less regular (cf. Section 3). However, using
some intricate linear combination of weighted integrals, the same authors showed
in [MM08] that second derivatives to biharmonic functions were locally bounded
when the domain was convex. To be precise, they showed that if Ω is convex, and
u ∈ W̊ 2

2 (Ω) is a solution to ∆2u = h for some h ∈ C∞0 (Ω \ B(Q, 10R)), R > 0,
Q ∈ ∂Ω, then

sup
B(Q,R/5)∩Ω

|∇2u| ≤ C

R2

( 
Ω∩B(Q,5R)\B(Q,R/2)

|u|2
)1/2

. (5.25)

In particular, not only are all boundary points of convex domains 1-regular, but
the gradient ∇u is Lipschitz continuous near such points.

Kilty and Shen noted in [KS11a] that (5.25) implies that (5.18) holds in
convex domains for any q; thus, the Lq-regularity problem for the bilaplacian
is well-posed for any 2 < q < ∞ in a convex domain. Well-posedness of the
Lp-Dirichlet problem for 2 < p < ∞ has been established by Shen in [She06c].
By the duality result (5.19), again from [KS11a], this implies that both the Lp-
Dirichlet and Lq-regularity problems are well-posed, for any 1 < p < ∞ and any
1 < q <∞, in a convex domain of arbitrary dimension. They also observed that, by
the techniques of [PV93] (discussed in Section 5.6 above), the maximum principle
(5.24) is valid in arbitrary convex domains.

It is interesting to note how, once again, the methods and results related to
pointwise estimates, the Wiener criterion, and local regularity estimates near the
boundary are intertwined with the well-posedness of boundary problems in Lp.

5.8. The Neumann problem for the biharmonic equation

So far we have only discussed the Dirichlet and regularity problems for higher order
operators. Another common and important boundary-value problem that arises in
applications is the Neumann problem. Indeed, the principal physical motivation
for the inhomogeneous biharmonic equation ∆2u = h is that it describes the equi-
librium position of a thin elastic plate subject to a vertical force h. The Dirichlet
problem u

∣∣
∂Ω

= f , ∇u
∣∣
∂Ω

= g describes an elastic plate whose edges are clamped,
that is, held at a fixed position in a fixed orientation. The Neumann problem,
on the other hand, corresponds to the case of a free boundary. Guido Sweers has
written an excellent short paper [Swe09] discussing the boundary conditions that
correspond to these and other physical situations.

More precisely, if a thin two-dimensional plate is subject to a force h and
the edges are free to move, then its displacement u satisfies the boundary value



28 Ariel Barton and Svitlana Mayboroda

problem 
∆2u = h in Ω,

ρ∆u+ (1− ρ)∂2
νu = 0 on ∂Ω,

∂ν∆u+ (1− ρ)∂ττνu = 0 on ∂Ω.

Here ρ is a physical constant, called the Poisson ratio. This formulation goes
back to Kirchoff and is well known in the theory of elasticity; see, for example,
Section 3.1 and Chapter 8 of the classic engineering text [Nad63]. We remark that
by [Nad63, Formula (8-10)],

∂ν∆u+ (1− ρ)∂ττνu = ∂ν∆u+ (1− ρ)∂τ (∂ντu) .

This suggests the following homogeneous boundary value problem in a Lips-
chitz domain Ω of arbitrary dimension. We say that the Lp-Neumann problem is
well-posed if there exists a constant C > 0 such that, for every f0 ∈ Lp(∂Ω) and
Λ0 ∈W p

−1(∂Ω), there exists a function u such that

∆2u = 0 in Ω,

Mρu := ρ∆u+ (1− ρ)∂2
νu = f0 on ∂Ω,

Kρu := ∂ν∆u+ (1− ρ)
1

2
∂τij

(
∂ντiju

)
= Λ0 on ∂Ω,

‖N(∇2u)‖Lp(∂Ω) ≤ C‖f0‖Wp
1 (∂Ω) + C‖Λ0‖Wp

−1(∂Ω).

(5.26)

Here τij = νiej − νjei is a vector orthogonal to the outward normal ν and lying
in the xixj-plane.

In addition to the connection to the theory of elasticity, this problem is of
interest because it is in some sense adjoint to the Dirichlet problem (5.4). That is,
if ∆2u = ∆2w = 0 in Ω, then

´
∂Ω
∂νwMρu−wKρu dσ =

´
∂Ω
∂νuMρw−uKρw dσ,

where Mρ and Kρ are as in (5.26); this follows from the more general formulaˆ
Ω

w∆2u =

ˆ
Ω

(ρ∆u∆w + (1− ρ)∂jku ∂jkw) +

ˆ
∂Ω

wKρu− ∂νwMρu dσ

(5.27)

valid for arbitrary smooth functions. This formula is analogous to the classical
Green’s identity for the Laplacianˆ

Ω

w∆u = −
ˆ

Ω

∇u · ∇w +

ˆ
∂Ω

w ν · ∇u dσ. (5.28)

Observe that, contrary to the Laplacian or more general second order oper-
ators, there is a family of relevant Neumann data for the biharmonic equation.
Moreover, different values (or, rather, ranges) of ρ correspond to different natural
physical situations. We refer the reader to [Ver05] for a detailed discussion.

In [CG85], Cohen and Gosselin showed that the Lp-Neumann problem (5.26)
was well-posed in C1 domains contained in R2 for for 1 < p < ∞, provided in
addition that ρ = −1. The method of proof was as follows. Recall from (5.8)
that Cohen and Gosselin showed that the Lp-Dirichlet problem was well-posed
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by constructing a multiple layer potential Lḟ with boundary values (I + K)ḟ ,
and showing that I+K is invertible. We remark that because Cohen and Gosselin
preferred to work with Dirichlet boundary data of the form (u, ∂xu, ∂yu)

∣∣
∂Ω

rather

than of the form (u, ∂νu)
∣∣
∂Ω

, the notation of [CG85] is somewhat different from
that of the present paper. In the notation of the present paper, the method of
proof of [CG85] was to observe that (I+K)∗θ̇ is equivalent to (K−1vθ̇,M−1vθ̇)∂ΩC ,
where v is another biharmonic layer potential and (I+K)∗ is the adjoint to (I+K).
Well-posedness of the Neumann problem then follows from invertibility of I + K
on ∂ΩC .

In [Ver05], Verchota investigated the Neumann problem (5.26) in full general-
ity. He considered Lipschitz domains with compact, connected boundary contained
in Rn, n ≥ 2. He showed that if −1/(n−1) ≤ ρ < 1, then the Neumann problem is
well-posed provided 2− ε < p < 2 + ε. That is, the solutions exist, satisfy the de-
sired estimates, and are unique either modulo functions of an appropriate class, or
(in the case where Ω is unbounded) when subject to an appropriate growth condi-
tion. See [Ver05, Theorems 13.2 and 15.4]. Verchota’s proof also used boundedness
and invertibility of certain potentials on Lp(∂Ω); a crucial step was a coercivity
estimate ‖∇2u‖L2(∂Ω) ≤ C‖Kρu‖W 2

−1(∂Ω) +C‖Mρu‖L2(∂Ω). (This estimate is valid

provided u is biharmonic and satisfies some mean-value hypotheses; see [Ver05,
Theorem 7.6]).

In [She07a], Shen improved upon Verchota’s results by extending the range
on p (in bounded simply connected Lipschitz domains) to 2(n− 1)/(n+ 1)− ε <
p < 2 + ε if n ≥ 4, and 1 < p < 2 + ε if n = 2 or n = 3. This result again
was proven by inverting layer potentials. Observe that the Lp-regularity problem
is also known to be well-posed for p in this range, and (if n ≥ 6) in a broader
range of p; see Section 5.3. The question of the sharp range of p for which the
Lp-Neumann problem is well-posed is still open.

It turns out that extending the well-posedness results for the Neumann prob-
lem beyond the case of the bilaplacian is an excruciatingly difficult problem, even
if one considers only fourth-order operators with constant coefficients.

The solutions to (5.26) in [CG85], [Ver05] and [She07a] were constructed
using layer potentials. It is possible to construct layer potential operators, and
to prove their boundedness, for a fairly general class of higher order operators.
However, the problems arise at a much more fundamental level.

In analogy to (5.27) and (5.28), one can writeˆ
Ω

wLu = A[u,w] +

ˆ
∂Ω

wKAu− ∂νwMAu dσ, (5.29)

where A[u,w] =
∑
|α|=|β|=2 aαβ

´
Ω
DβuDαw is an energy form associated to the

operator L =
∑
|α|=|β|=2 aαβD

αDβ . Note that in the context of fourth-order op-

erators, the pair (w, ∂νw) constitutes the Dirichlet data for w on the boundary,
and so one can say that the operators KAu and MAu define the Neumann data
for u. One immediately faces the problem that the same higher-order operator L
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can be rewritten in many different ways and gives rise to different energy forms.
The corresponding Neumann data will be different. (This is the reason why there
is a family of Neumann data for the biharmonic operator.)

Furthermore, whatever the choice of the form, in order to establish well-
posedness of the Neumann problem, one needs to be able to estimate all second
derivatives of a solution on the boundary in terms of the Neumann data. In the
analogous second-order case, such an estimate is provided by the Rellich identity,
which shows that the tangential derivatives are equivalent to the normal derivative
in L2 for solutions of elliptic PDEs. In the higher-order scenario, such a result calls
for certain coercivity estimates which are still rather poorly understood. We refer
the reader to [Ver10] for a detailed discussion of related results and problems.

5.9. Inhomogeneous problems for the biharmonic equation and other classes of
boundary data

In [AP98], Adolfsson and Pipher investigated the inhomogeneous Dirichlet problem
for the biharmonic equation with data in Besov and Sobolev spaces. While resting
on the results for homogeneous boundary value problems discussed in Sections 5.1
and 5.3, such a framework presents a completely new setting, allowing for the
inhomogeneous problem and for consideration of the classes of boundary data
which are, in some sense, intermediate between the Dirichlet and the regularity
problems.

They showed that if f ∈WAp1+s(∂Ω) and h ∈ Lps+1/p−3(Ω), then there exists

a unique function u that satisfies{
∆2u = h in Ω,

Tr ∂αu = fα, for 0 ≤ |α| ≤ 1
(5.30)

subject to the estimate

‖u‖Lp
s+1/p+1

(Ω) ≤ C‖h‖Lp
s+1/p−3

(Ω) + C‖ḟ‖WAp1+s(∂Ω) (5.31)

provided 2− ε < p < 2 + ε and 0 < s < 1. Here Trw denotes the trace of w in the
sense of Sobolev spaces; that these may be extended to functions u ∈ Lps+1+1/p,

s > 0, was proven in [AP98, Theorem 1.12].
In Lipschitz domains contained in R3, they proved these results for a broader

range of p and s, namely for 0 < s < 1 and for

max

(
1,

2

s+ 1 + ε

)
< p <

{
∞, s < ε,

2
s−ε , ε ≤ s < 1.

(5.32)

Finally, in C1 domains, they proved these results for any p and s with 1 < p <∞
and 0 < s < 1.

In [MMW11], I. Mitrea, M. Mitrea and Wright extended the three-dimen-
sional results to p =∞ (for 0 < s < ε) or 2/(s+1+ε) < p ≤ 1 (for 1−ε < s < 1).

They also extended these results to data h and ḟ in more general Besov or Triebel-
Lizorkin spaces.
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Let us define the function spaces appearing above. Lpα(Rn) is defined to be
{g : (I −∆)α/2g ∈ Lp(Rn)}; we say g ∈ Lpα(Ω) if g = h

∣∣
Ω

for some h ∈ Lpα(Rn).

If k is a nonnegative integer, then Lpk = W p
k . If m is an integer and 0 < s < 1,

then the Whitney-Besov space WApm−1+s is defined analogously to WApm (see
Definition 5.6), except that we take the completion with respect to the Whitney-
Besov norm ∑

|α|≤m−1

‖∂αψ‖Lp(∂Ω) +
∑

|α|=m−1

‖∂αψ‖Bp,ps (∂Ω) (5.33)

rather than the Whitney-Sobolev norm∑
|α|≤m−1

‖∂αψ‖Lp(∂Ω) +
∑

|α|=m−1

‖∇τ∂αψ‖Lp(∂Ω).

The general problem (5.30) was first reduced to the case h = 0 (that is,
to a homogeneous problem) by means of trace/extension theorems, that is, sub-

tracting w(X) =
´
Rn F (X,Y ) h̃(Y ) dY , and showing that if h ∈ Lps+1/p−3(Ω) then

(Trw,Tr∇w) ∈ WAp1+s(∂Ω). Next, the well-posedness of Dirichlet and regularity
problems discussed in Sections 5.1 and 5.3 provide the endpoint cases s = 0 and
s = 1, respectively. The core of the matter is to show that, if u is biharmonic, k is
an integer and 0 ≤ α ≤ 1, then u ∈ Lpk+α(Ω) if and only ifˆ

Ω

|∇k+1u(X)|p dist(X, ∂Ω)p−pα + |∇ku(X)|p + |u(X)|p dX <∞, (5.34)

(cf. [AP98, Proposition S]). With this at hand, one can use square-function es-
timates to justify the aforementioned endpoint results. Indeed, observe that for
p = 2 the first integral on the left-hand side of (5.34) is exactly the L2 norm
of S(∇ku). The latter, by [PV91] (discussed in Section 5.5), is equivalent to the
L2 norm of the corresponding non-tangential maximal function, connecting the
estimate (5.31) to the nontangential estimates in the Dirichlet problem (5.4) and
the regularity problem 5.11. Finally, one can build an interpolation-type scheme
to pass to well-posedness in intermediate Besov and Sobolev spaces.

6. Boundary value problems with variable coefficients

In this section we discuss divergence-form operators with variable coefficients. At
the moment, well-posedness results for such operators are restricted in two serious
ways. First, the coefficients cannot oscillate too much. Secondly, the boundary
problems treated fall strictly between the range of Lp-Dirichlet and Lp-regularity,
in the sense of Section 5.9. That is, the Lp-Dirichlet, regularity, and Neumann
problems on Lipschitz domains with the usual sharp estimates in terms of the
non-tangential maximal function for these divergence-form operators seem to be
completely open.

To be more precise, recall from the discussion in Section 5.9 that the classical
Dirichlet and regularity problems, with boundary data in Lp, can be viewed as the
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s = 0, 1 endpoints of the boundary problem studied in [AP98] and [MMW11]

∆2u = h in Ω, ∂αu
∣∣
∂Ω

= fα for all |α| ≤ 1

with ḟ lying in an intermediate smoothness space WAp1+s(∂Ω), 0 ≤ s ≤ 1. In the
context of divergence-form higher-order operators with variable coefficients, essen-
tially the known results pertain only to boundary data of intermediate smoothness.

We now establish some terminology. A divergence-form operator L, acting on
W 2
m,loc(Ω 7→ C`), may be defined weakly via (2.5); we say that Lu = h if

∑̀
j=1

ˆ
Ω

ϕj hj = (−1)m
∑̀
j,k=1

∑
|α|=|β|=m

ˆ
Ω

∂αϕj(X) ajkαβ(X) ∂βuk(X) dX (6.1)

for all ϕ smooth and compactly supported in Ω.
In [Agr07], Agranovich investigated the inhomogeneous Dirichlet problem, in

Lipschitz domains, for such operators L that are elliptic (in the sense of (2.7)) and

whose coefficients ajkαβ are Lipschitz continuous in Ω.

He showed that if h ∈ Lp−m−1+1/p+s(Ω) and ḟ ∈ WApm−1+s(∂Ω), for some

0 < s < 1, and if |p− 2| is small enough, then the Dirichlet problem{
Lu = h in Ω,

Tr ∂αu = fα for all 0 ≤ |α| ≤ m− 1
(6.2)

has a unique solution u that satisfies the estimate

‖u‖Lp
m−1+s+1/p

(Ω) ≤ C‖h‖Lp−m−1+1/p+s
(∂Ω) + C‖ḟ‖WApm−1+s(∂Ω). (6.3)

Agranovich also considered the Neumann problem for such operators. As we
discussed in Section 5.8, defining Neumann problem is a delicate matter. In the
context of zero boundary data, the situation is a little simpler as one can take a
formal functional analytic point of view and avoid to some extent the discussion
of estimates at the boundary. First, observe that if the test function ϕ does not
have zero boundary data, then formula (6.1) becomes∑̀

j=1

ˆ
Ω

(Lu)j ϕj = (−1)m
∑̀
j,k=1

∑
|α|=|β|=m

ˆ
Ω

∂αϕj(X) ajkαβ(X) ∂βuk(X) dX

+

m−1∑
i=0

ˆ
∂Ω

Bm−1−iu ∂
i
νϕdσ

where Biu is an appropriate linear combination of the functions ∂αu where |α| =
m + i. The expressions Biu may then be regarded as the Neumann data for u.
Notice that if L is a fourth-order constant-coefficient operator, then B0 = −MA

and B1 = KA, where KA, MA are given by (5.29).
We say that u solves the Neumann problem for L, with homogeneous bound-

ary data, if (6.1) is valid for all test functions ϕ compactly supported in Rn (but

not necessarily in Ω.) Agranovich showed that, if h ∈ L̊p−m−1+1/p+s(Ω), then there
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exists a unique function u ∈ Lpm−1+1/p+s(Ω) that solves this Neumann problem

with homogeneous boundary data, under the same conditions on p, s, L as for
his results for the Dirichlet problem. He also provided some brief discussion (see
[Agr07, Section 5.2]) of the conditions needed to resolve the Neumann problem with

inhomogeneous boundary data. Here h ∈ L̊pα(Ω) if h = g
∣∣
Ω

for some g ∈ Lpα(Rn)

that in addition is supported in Ω̄.
In [MMS10], Maz’ya, M. Mitrea and Shaposhnikova considered the Dirichlet

problem, again with boundary data in intermediate Besov spaces, for much rougher
coefficients. They showed that if f ∈ WApm−1+s, for some 0 < s < 1 and some
1 < p <∞, if h lies in an appropriate space, and if L is a divergence-form operator
of order 2m (as defined by (2.5)), then under some conditions, there is a unique
function u that satisfies (6.2) subject to the estimate∑

|α|≤m

ˆ
Ω

|∂αu(X)|p dist(X, ∂Ω)p−ps−1 dX <∞. (6.4)

See [MMS10, Theorem 8.1]. The inhomogeneous data h is required to lie in the
space V p−m,1−s−1/p(Ω), the dual space to V qm,s+1/p−1(Ω), where

‖w‖V pm,a =

( ∑
|α|≤m

ˆ
Ω

|∂αu(X)|p dist(X, ∂Ω)pa+p|α|−pm dX

)1/p

.

The conditions are that Ω be a Lipschitz domain whose normal vector ν lies in
VMO(∂Ω), and that the coefficients aijαβ lie in VMO(Rn). Recall that this con-

dition on Ω has also arisen in [MM11] (it ensures the validity of formula (3.11)).
The ellipticity condition they required was that the coefficients be bounded and
that 〈ϕ,Lϕ〉 ≥ λ‖∇mϕ‖2L2 for all smooth compactly supported functions ϕ, that
is, that

Re
∑

|α|=|β|=m

∑̀
j,k=1

ˆ
Ω

ajkαβ(X)∂βϕk(X)∂αϕj(X) dX ≥ λ
∑
|α|=m

∑̀
k=1

ˆ
Ω

|∂αϕk|2

(6.5)
for all functions ϕ ∈ C∞0 (Ω 7→ C`). This is a weaker requirement than condi-
tion (2.7).

In fact, [MMS10] provides a more intricate result, allowing one to deduce
a well-posedness range of s and p, given information about the oscillation of the

coefficients ajkαβ and the normal to the domain ν. In the extreme case, when the
oscillations for both are vanishing, the allowable range expands to 0 < s < 1,
1 < p <∞, as stated above.

We comment on the estimate (6.4). First, by [AP98, Propositon S] (listed
above as formula (5.34)), if u is biharmonic then the estimate (6.4) is equivalent to

the estimate (6.3) of [Agr07]. Second, by (5.23), if the coefficients ajkαβ are constant,

one can draw connections between (6.4) for s = 0, 1 and the nontangential maximal
estimates of the Dirichlet or regularity problems (5.20) or (5.21). However, as we
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pointed out earlier, this endpoint case, corresponding to the true Lp-Dirichlet and
regularity problems, has not been achieved.

6.1. The Kato problem and the Riesz transforms

An important topic in elliptic theory, which formally stands somewhat apart from
the well-posedness issues, is the Kato problem and the properties of the Riesz
transform. In the framework of elliptic boundary problems, the related results can
be viewed as the estimates for the solutions with data in Lp for certain operators
in block form.

Suppose that L is a variable-coefficient operator in divergence form, that is,
an operator defined by (2.5). Suppose that L satisfies the ellipticity estimate (6.5),
and the bounds∣∣∣∣ ∑

|α|=|β|=m

∑̀
j,k=1

ˆ
Rn
ajkαβ∂

βfk ∂
αgj

∣∣∣∣ ≤ C‖∇mf‖L2(Rn)‖∇
mg‖L2(Rn). (6.6)

(This is a weaker condition than the assumption of [MMS10] that aijαβ be bounded

pointwise.) Auscher, Hofmann, McIntosh and Tchamitchian [AHMT01] proved
that under these conditions, the Kato estimate

1

C
‖∇mf‖L2(Rn) ≤ ‖

√
Lf‖L2(Rn) ≤ C‖∇

mf‖L2(Rn) (6.7)

is valid for some constant C. They also proved similar results for operators with
lower-order terms.

It was later observed in [Aus04] that by the methods of [AT98], if 1 ≤ n ≤ 2m,
then the bound on the Riesz transform ∇mL−1/2 in Lp (that is, the first inequality
in (6.7)) extends to the range 1 < p < 2+ε, and the reverse Riesz transform bound
(that is, the second inequality in (6.7)) extends to the range 1 < p < ∞. This
also holds if the Schwartz kernel Wt(X,Y ) of the operator e−tL satisfies certain
pointwise bounds (e.g., if the coefficients of A are real).

In the case where n > 2m, the inequality ‖∇mL−1/2f‖Lp(Rn) ≤ C‖f‖Lp(Rn)

holds for 2n/(n + 2m) − ε < p ≤ 2; see [BK04, Aus04]. The reverse inequality
holds for max(2n/(n + 4m) − ε, 1) < p < 2 by [Aus04, Theorem 18], and for
2 < p < 2n/(n− 2m) + ε by duality (see [Aus07, Section 7.2]).

Going further, let us consider the second-order divergence-form operator L =
−divA∇ in Rn+1, where A is an (n+ 1)× (n+ 1) matrix in block form; that is,
Aj,n+1 = An+1,j = 0 for 1 ≤ j ≤ n, and An+1,n+1 = 1. It is fairly easy to see that

one can formally realize the solution to Lu = 0 in Rn+1
+ , u

∣∣
Rn = f , as the Poisson

semigroup u(x, t) = e−t
√
Lf(x), (x, t) ∈ Rn+1

+ . Then (6.7) essentially provides an
analogue of the Rellich identity-type estimate for the block operator L, that is,
the L2-equivalence between normal and tangential derivatives of the solution on
the boundary

‖∂tu( · , 0)‖L2(Rn) ≈ ‖∇xu( · , 0)‖L2(Rn).
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As we discussed in Section 5, such a Rellich identity-type estimate is, in a sense, a
core result needed to approach Neumann and regularity problems, and for second-
order equations it was formally shown that it translates into familiar well-posedness
results with the sharp non-tangential maximal function bounds. ([May10]; see also
[AAA+11].)

Following the same line of reasoning, one can build a higher order “block-
type” operator L, for which the Kato estimate (6.7) would imply a certain com-
parison between normal and tangential derivatives on the boundary

‖∂mt u( · , 0)‖L2(Rn) ≈ ‖∇
m
x u( · , 0)‖L2(Rn).

It remains to be seen whether these bounds lead to standard well-posedness results.
However, we would like to emphasize that such a result would be restricted to very
special, block-type, operators.
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[Šul75] B. V. Šul’ce, A priori estimates in uniform norms for strongly elliptic systems,
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