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Abstract. The present paper commences the study of higher order differ-

ential equations in composition form. Specifically, we consider the equation
Lu = divB∗∇(a divA∇u) = 0, where A and B are elliptic matrices with

complex-valued bounded measurable coefficients and a is an accretive func-

tion. Elliptic operators of this type naturally arise, for instance, via a pull-
back of the bilaplacian ∆2 from a Lipschitz domain to the upper half-space.

More generally, this form is preserved under a Lipschitz change of variables,

contrary to the case of divergence-form fourth-order differential equations. We
establish well-posedness of the Dirichlet problem for the equation Lu = 0, with

boundary data in L2, and with optimal estimates in terms of nontangential

maximal functions and square functions.

1. Introduction

The last few decades have witnessed a surge of activity on boundary-value
problems on Lipschitz domains for second-order divergence-form elliptic equations
−divA∇u = 0. Their investigation has, in particular, been guided by two princi-
ples.

First, divergence-form equations are naturally associated to a bilinear “energy”
form, and admit a variational formulation. It turns out that some smoothness of
the coefficients A in a selected direction is necessary for well-posedness of the un-
derlying boundary problems in Rn+1

+ = {(x, t) : x ∈ Rn, t > 0} (see [14]). This
observation led to the study of the coefficients constant along a single coordinate
(the t-coordinate when n ≥ 2). The well-posedness of the corresponding boundary-
value problems was established for real symmetric matrices in [39, 42], and the real
nonsymmetric case was recently treated in [40, 45, 55, 36]. In addition, the reso-
lution of the Kato problem [9] provided well-posedness for complex t-independent
matrices in a block form; see [7, 47]. Furthermore, a number of perturbation-type
results have been obtained, pertaining to the coefficient matrices close to “good”
ones in the sense of the L∞ norm [26, 7, 8, 3, 12], or in the sense of Carleson
measures [20, 28, 29, 30, 42, 43, 24, 25, 6, 4, 38].

A seemingly different point of view emerges from the ultimate goal of treating
boundary-value problems on non-smooth domains rather than just the upper half-
space. However, it brings to focus equations of the same type as above. Indeed, the
direct pull-back of the Laplacian ∆ from a Lipschitz domain {(x, t) : t > ϕ(x)} to
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Rn+1
+ yields a boundary-value problem for an operator of the form −divA∇u = 0

on Rn+1
+ , and the corresponding matrix A is, once again, independent of t. More

generally, if ρ is a change of variables, then there is a real symmetric matrix A =
A(x) such that if ∆u = 0 in Ω and ũ = u ◦ ρ, then divA∇ũ = 0 in ρ−1(Ω).

The model higher order differential operator is the bilaplacian ∆2 = −∆(−∆).
Investigating the behavior of biharmonic functions under changes of variables, we
find that there exists a scalar-valued function a and a real elliptic matrix A such
that, if ∆2u = 0 in Ω, then

(1.1) divA∇(a divA∇ũ) = 0 in ρ−1(Ω),

More generally, such a form is preserved under changes of variables. We em-
phasize that this is not the case for higher order operators in divergence-form
(−1)m

∑
|β|=|γ|=m ∂

βAβγ∂
γ .

In addition, the form appearing in (1.1) mimics the structure of the bilaplacian
as a composition of two Laplace operators. As it turns out, this is an important
feature that underpins several key properties of the solutions to the biharmonic and
polyharmonic equations (−∆)mu = 0, m ≥ 1.

Motivated by these considerations, the present paper commences the study of
well-posedness problems for higher order equations in composition form. Specifi-
cally, consider the equation

(1.2) divB∗∇(a divA∇u) = 0.

Here a : Rn+1 7→ C is a scalar-valued accretive function and A and B are (n+ 1)
× (n+ 1) elliptic matrices with complex coefficients. That is, there exist constants
Λ > λ > 0 such that, if M = A or M = B, then

(1.3) λ ≤ Re a(X) ≤ |a(X)| ≤ Λ, λ|η|2 ≤ Re η̄ ·M(X)η, |ξ ·M(X)η| ≤ Λ|η||ξ|

for all X ∈ Rn+1 and all vectors ξ, η ∈ Cn+1. The second-order operators divA∇
and divB∗∇ are meant in the weak sense; see Definition 2.9 below for a precise
definition. We assume that the coefficients a, A and B are t-independent; no
additional regularity assumptions are imposed. For technical reasons we also require
that A and B satisfy the De Giorgi-Nash-Moser condition, that is, that solutions u
to divM∇u = 0 are locally Hölder continuous for M = A, B, A∗ and B∗.

The main result of this paper is as follows. We show that whenever the second
order regularity boundary-value problems for A and B are well-posed, and whenever
the operator L = divB∗∇ a divA∇ is close to being self-adjoint, the L2-Dirichlet
problem

(1.4)


divB∗∇(a divA∇u) = 0 in Rn+1

+ ,

u = f on ∂Rn+1
+ , ∇f ∈ L2(Rn),

~en+1 ·A∇u = g on ∂Rn+1
+ , g ∈ L2(Rn),

has a unique solution u that satisfies the optimal estimates

Ñ+(∇u) ∈ L2(Rn) and 9t divA∇u9+ <∞,

where

Ñ+(∇u)(x) = sup

{( 
B((y,s),s/2)

|∇u|2
)1/2

: y ∈ Rn, |x− y| < s

}
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and where

9t F9+ =

ˆ
Rn

ˆ ∞
0

|F (x, t)|2 t dt dx.

Specifically, we will construct solutions whenever ‖Im a‖L∞(Rn) and ‖A−B‖L∞(Rn)

are sufficiently small. It is assumed that the second-order regularity problem

divA∇u = 0 in Rn+1
± , u = f on ∂Rn+1

± , Ñ±(∇u) ∈ L2(Rn)

has a unique solution in both the upper and lower half-spaces whenever ∇f ∈
L2(Rn), and that the same is true for A∗. By perturbation results in [8], an analo-
gous statement is then automatically valid for B and B∗.

We will construct solutions using layer potentials; the De Giorgi-Nash-Moser
requirement mentioned above is necessary for this approach and at the moment is
common in the theory of second-order problems. If, for example, A and B are real
symmetric or complex and constant, then the De Giorgi-Nash-Moser condition is
valid and regularity problems are well-posed; hence, in these cases there is well-
posedness of (1.4). We mention that in passing we prove that if the second-order
regularity problems are well-posed then the solutions necessarily can be written
as layer potentials.1 This fact is new and interesting on its own right. We will
precisely state the main theorems in Section 2.2, after the notation of this paper
has been established.

Let us point out that to the best of the authors’ knowledge, this is the first result
regarding well-posedness of higher order boundary-value problems with non-smooth
variable coefficients and with boundary data in Lp. For divergence-form equations,
some results for boundary data in Besov and Sobolev spaces Lpα, 0 < α < 1, are
available (see [2, 48]), but they do not reach out to the “end-point” case of Lp

data. Until now, well-posedness in Lipschitz domains with Lp data was known
only for constant coefficient higher order operators (see [19, 53, 54, 64, 58, 59, 60]).
As explained above, our results extend to Lipschitz domains automatically via a
change of variables. (See Theorem 2.34 for the precise statement.)

Let us discuss the history of the subject and our methods in more detail. We will
concentrate on higher order operators and only mention the second-order results
that directly affect our methods. The basic boundary-value problem for elliptic
differential equations of order greater than 2 is the Lp-Dirichlet problem for the
biharmonic operator ∆2. It is said to be well-posed in a domain Ω if, for every
f ∈W p

1 (∂Ω) and g ∈ Lp(∂Ω), there exists a unique function u that satisfies

(1.5) ∆2u = 0 in Ω, u = f on ∂Ω, ν · ∇u = g on ∂Ω, NΩ(∇u) ∈ Lp(∂Ω)

where ν is the outward unit normal derivative and

(1.6) NΩ(∇u)(X) = sup{|∇u(Y )| : Y ∈ Ω, |X − Y | < (1 + a) dist(Y, ∂Ω)}

for some constant a > 0. In [56, 16, 62], well-posedness of the Lp-Dirichlet problem
for ∆2 was established in C1 domains for any 1 < p <∞. (This result is also valid
in convex domains; see [60, 46].) For general Lipschitz domains, the L2-Dirichlet
problem for ∆2 was shown to be well-posed by Dahlberg, Kenig and Verchota in [19]

1This result is tantamount to proving invertibility of the single layer potential. The method of

establishing injectivity from the regularity problem and from jump relations is known; the authors
would like to thank Carlos Kenig for bringing this argument to their attention. The method of

establishing surjectivity is new and again uses jump relations.
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(when the domain is bounded; cf. [53, Theorem 3.7] for domains above Lipschitz
graphs).

The sharp range of p for which the Lp-Dirichlet problem is well-posed in n-
dimensional Lipschitz domains is a difficult problem, still open in higher dimensions
even for the bilaplacian (cf. [15, 41]). We do not tackle the well-posedness in Lp,
p 6= 2, in the present paper; it is a subject for future investigation. However, let
us mention in passing that for the bilaplacian the sharp results are only known in
dimensions less than or equal to 7 [58, 59, 60] and, in a dramatic contrast with
the case of the second-order boundary-value problems, there is a sharp dimension-
dependent upper bound on the range of well-posedness. That is, if Ω ⊂ Rn is a
Lipschitz domain, then solutions to (1.5) are guaranteed to exist only for 2 ≤ p ≤ pn
for some pn < ∞. Related counterexamples can be found in [53, Theorem 10.7].
See also [13] for a review of this and related matters.

Our methods in the present paper depart from the ideas in [19] and [53]. The
solution is represented via

u(X) = −DAf(X)− SAg(X) + EB,a,Ah(X).

Here DA and SA are the classic double and single layer potentials associated to the
operator divA∇, given by the formulas

DAf(x, t) = −
ˆ
Rn

~en+1 ·A∗(y)∇ΓA
∗

(x,t)(y, 0) f(y) dy,

SAg(x, t) =

ˆ
Rn

ΓA
∗

(x,t)(y, 0) g(y) dy

where ΓA
∗

X is the fundamental solution to −divA∗∇ (that is, the solution to

−divA∗∇ΓA
∗

X = δX). On the other hand, EB,a,A is a new layer potential, specifi-
cally built for the problem at hand, to satisfy

−a divA∇EB,a,Ah = 1Rn+1
+

∂2
n+1SB∗h.

See Section 2.4. This resembles the formula used in [53] to construct solutions
to ∆2u = 0. To prove existence of solutions to (1.4) or (1.5), in addition to the
second-order results, we require appropriate nontangential maximal function (and
square-function) estimates for the new potential EB,a,A, as well as the invertibility
of h 7→ ∂n+1EB,a,Ah|∂Rn+1

+
in L2. However, beyond the representation formula and

invertibility argument, our method is necessarily different from [19] and [53].
After a certain integration by parts, the bounds on the nontangential maximal

function of the new potential Eh in the case of the bilaplacian become an automatic
consequence of the Calderón-Zygmund theory and boundedness of the Cauchy in-
tegral in L2. On the other hand, for a general composition operator, the related
singular integral operators do not fall under the scope of the Calderón-Zygmund
theory and, because of the presence of non-smooth matrices A and B, are not
amenable to a similar integration by parts. We develop an alternative argument,
appealing to some elements of the method in [3], to obtain square-function bounds,
and then employ the jump relations and intricate interplay between solutions in the
upper and lower half-spaces to obtain the desired nontangential maximal function
estimates.

It is interesting to observe that, given an involved composition form of the oper-
ator, with several “layers” of non-smooth coefficients, the difficulties also manifest
themselves in the absence of a classical variational formulation. In particular, such
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standard properties of solutions as the Caccioppoli inequality have to be reproven
and even the existence of the Green function or fundamental solution in Rn+1 is
not obvious, in any function space. In the same vein, the existence of the normal
derivative of a solution cannot be viewed as the result of an integration by parts and
an approximation scheme. Instead, it once again calls for some special properties
of the associated higher order potentials.

Needless to say, our results build extensively on the developments from the theory
of second-order divergence-form operators LA = −divA∇. We refer the reader to
[41] for a detailed summary of the theory as it stood in the mid-1990s, and to the
papers [40, 44, 24, 45, 55, 7, 8, 47, 25, 3, 6, 4, 36, 38] for more recent developments.

Finally, let us mention that aside from the Dirichlet case, it is natural to consider
the Neumann and regularity problems as well as the inhomogeneous equation Lu =
f , for f in a suitable function space. Recent achievements in this direction for
higher order equations include [17, 65, 61], [63, 53, 46], and [1, 50, 2, 48] respectively.
Unfortunately, much as in the homogeneous Dirichlet case, they concentrate mostly
on constant coefficients, with the exception of [2, 48]; these two papers consider the
inhomogeneous problem Lu = f but require that the boundary data have extra
smoothness in Lp.

The outline of this paper is as follows. In Section 2 we will define the no-
tation used throughout this paper and state our main results. In Section 3 we
will review known results from the theory of second-order operators of the form
LA = − divA∇. In Section 4, we will prove fourth-order analogues to some basic
theorems concerning solutions to second-order equations, such as the Caccioppoli
inequality. We will construct solutions to (1.4) using potential operators and estab-
lish that these potentials are well-defined and bounded in Sections 5, 6 and 7. The
invertibility and uniqueness results will be presented in Section 8 together with the
end of proof of the main theorems.

2. Notation and the main theorems

In this section we define the notation used throughout this paper; in Section 2.2
we will state our main theorems. (The proofs will be delayed until Section 8.)

We work in the upper half-space Rn+1
+ = Rn × (0,∞) and the lower half-space

Rn+1
− = Rn×(−∞, 0). We identify ∂Rn+1

± with Rn. The coordinate vector ~e = ~en+1

is the inward unit normal to Rn+1
+ and the outward unit normal to Rn+1

− . We will
reserve the letter t to denote the (n+ 1)st coordinate in Rn+1.

If Ω is an open set (contained in Rn or Rn+1), then W 2
1 (Ω) denotes the Sobolev

space of functions f ∈ L2(Ω) whose weak gradient ∇f also lies in L2(Ω), and
W 2
−1(Ω) denotes its dual space. The local Sobolev space W 2

1,loc(Ω) denotes the

set of all functions f that lie in W 2
1 (V ) for all open sets V compactly contained

in Ω. We let Ẇ 2
1 (Rn) be the completion of C∞0 (Rn) under the norm ‖f‖Ẇ 2

1 (Rn) =

‖∇f‖L2(Rn); equivalently Ẇ 2
1 (Rn) is the space of functions f ∈ W 2

1,loc(Rn) for

which ‖∇f‖L2(Rn) is finite. Observe that functions in Ẇ 2
1 (Rn) are only defined up

to additive constants.
If u ∈W 2

1,loc(Ω) for some Ω ⊂ Rn+1, we let ∇‖u denote the gradient of u in the

first n variables, that is, ∇‖u = (∂1u, ∂2u, . . . , ∂nu). We will occasionally use ∇‖
to denote the full gradient of a function defined on Rn.
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As in [3, 7] and other papers, we will let the triple-bar norm denote the L2 norm
with respect to the measure (1/|t|) dx dt. That is, we will write

(2.1) 9F92
± =

ˆ ∞
0

ˆ
Rn

|F (x,±t)|2 dx 1

t
dt, 9F92 = 9F92

+ + 9F92
−

with the understanding that a t inside a triple-bar norm denotes the (n + 1)st
coordinate, that is,

9t F92
± =

ˆ ∞
0

ˆ
Rn

|F (x,±t)|2 dx t dt.

We let B(X, r) denote balls in Rn+1 and let ∆(x, r) denote “surface balls” on
∂Rn+1
± , that is, balls in Rn. If Q ⊂ Rn or Q ⊂ Rn+1 is a cube, we let `(Q) denote its

side-length, and let rQ denote the concentric cube with side-length r`(Q). If E is a
set and µ is a measure, we let

ffl
denote the average integral

ffl
E
f dµ = 1

µ(E)

´
E
f dµ.

We will use the standard nontangential maximal function N , as well as the

modified nontangential maximal function Ñ introduced in [42]. These functions
are defined as follows. If a > 0 is a constant and x ∈ Rn, then the nontangential
cone γ±(x) is given by

γ±(x) =
{

(y, s) ∈ Rn+1
± : |x− y| < a|s|

}
.(2.2)

The nontangential maximal function and modified nontangential maximal func-
tion are given by

N±F (x) = sup {|F (y, s)| : (y, s) ∈ γ±(x)} ,(2.3)

Ñ±F (x) = sup

{( 
B((y,s),|s|/2)

|F |2
)1/2

: (y, s) ∈ γ±(x)

}
.(2.4)

We remark that by [27, Section 7, Lemma 1], if we let

NaF (x) = sup {|F (y, s)| : |x− y| < as, 0 < s} ,

then for each 1 ≤ p ≤ ∞ and for each 0 < b < a, there is a constant C depending
only on p, a and b such that ‖NaF‖Lp(Rn) ≤ C‖NbF‖Lp(Rn). Thus, for our purposes,
the exact value of a in (2.2) is irrelevant provided a > 0.

Suppose that A : Rn+1 7→ C(n+1)×(n+1) is a bounded measurable matrix-valued
function defined on Rn+1. We let AT denote the transpose matrix and let A∗ denote

the adjoint matrix AT . Recall from the introduction that A is elliptic if there exist
constants Λ > λ > 0 such that

(2.5) λ|η|2 ≤ Re η̄ ·A(X)η, |ξ ·A(X)η| ≤ Λ|η||ξ|

for all X ∈ Rn+1 and all vectors η, ξ ∈ Cn+1. We refer to λ and Λ as the ellipticity
constants of A. Recall also that a scalar function a is accretive if

(2.6) λ ≤ Re a(X) ≤ |a(X)| ≤ Λ for all X ∈ Rn+1.

We say that a function or coefficient matrix A is t-independent if

(2.7) A(x, t) = A(x, s) for all x ∈ Rn and all s, t ∈ R.
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2.1. Elliptic equations and boundary-value problems. If A is an elliptic ma-
trix, then for any u ∈ W 2

1,loc(Ω), the expression LAu = −divA∇u ∈ W 2
−1,loc(Ω) is

defined by

(2.8) 〈ϕ,LAu〉 =

ˆ
Ω

ϕLAu =

ˆ
∇ϕ ·A∇u for all ϕ ∈ C∞0 (Ω).

If A and B are elliptic matrices and a is an accretive function, we may define
L∗B(aLAu) in the weak sense as follows.

Definition 2.9. Suppose u ∈W 2
1,loc(Ω). Then LAu = −divA∇u is a well-defined

element of W 2
−1,loc(Ω). Suppose that aLAu = v, for some v ∈ W 2

1,loc(Ω), in the
sense that ˆ

∇ϕ ·A∇u =

ˆ
ϕ

1

a
v for all ϕ ∈ C∞0 (Ω).

If v satisfies ˆ
∇v ·B∇η =

ˆ
ηf for all η ∈ C∞0 (Ω),

that is, if −divB∗∇v = f in the weak sense, then we say that L∗B(aLAu) = f .

Suppose that U is defined in Rn+1
± . We define the boundary values of U as the

L2 limit of U up to the boundary, that is,

(2.10) U
∣∣
∂Rn+1
±

= F provided lim
t→0±

‖U( · , t)− F‖L2(Rn) = 0.

Given these definitions, we may define the Dirichlet problem for the fourth-order
operator L∗B(aLA) as follows.

Definition 2.11. Suppose that there is a constant C0 such that, for any f ∈
W 2

1 (Rn) and any g ∈ L2(Rn), there exists a unique function u ∈W 2
1,loc(R

n+1
+ ) that

satisfies

(2.12)


L∗B(aLAu) = 0 in Rn+1

+ ,

u = f, ∇‖u = ∇f on ∂Rn+1
+ ,

~e ·A∇u = g on ∂Rn+1
+ ,

‖Ñ+(∇u)‖L2(Rn) + 9t LAu9+ ≤ C0‖∇f‖L2(Rn) + C0‖g‖L2(Rn)

where L∗B(aLAu) = 0 in the sense of Definition 2.9 and where the boundary values
are in the sense of (2.10).

Then we say that the L2-Dirichlet problem for L∗B(aLA) is well-posed in Rn+1
+ .

We specify ∇‖u = ∇f as well as u = f in order to emphasize that u( · , t) → f

in W 2
1 (Rn) and not merely in L2(Rn).

Remark 2.13. The solutions u to (2.12) constructed in the present paper will also
satisfy the square-function estimate

(2.14) 9t∇∂tu9+ ≤ C1‖∇f‖2L2(Rn) + C1‖g‖2L2(Rn)

for some constant C1. If u is a solution to a fourth-order elliptic equation with
constant coefficients, then by [18] we have a square-function bound on the com-
plete Hessian matrix ∇2u. However, in the case of solutions to variable-coefficient
operators in the composition form of Definition 2.9, we do not expect all second
derivatives to be well-behaved, and so (2.14) cannot be strengthened.
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Our main theorem is that, if a, A and B satisfy certain requirements, then the
fourth-order Dirichlet problem (2.12) is well-posed. We now define these require-
ments. We begin with the De Giorgi-Nash-Moser condition.

Definition 2.15. We say that a function u is locally Hölder continuous in the
domain Ω if there exist constants H and α > 0 such that, whenever B(X0, 2r) ⊂ Ω,
we have that

(2.16) |u(X)− u(X ′)| ≤ H
(
|X −X ′|

r

)α( 
B(X0,2r)

|u|2
)1/2

for all X, X ′ ∈ B(X0, r). If u is locally Hölder continuous in B(X, r) for some
r > 0, then u also satisfies Moser’s “local boundedness” estimate

(2.17) |u(X)| ≤ C

( 
B(X,r)

|u|2
)1/2

for some constant C depending only on H and the dimension n+ 1.
If A is a matrix, we say that A satisfies the De Giorgi-Nash-Moser condition if

A is elliptic and, for every open set Ω and every function u such that divA∇u = 0
in Ω, we have that u is locally Hölder continuous in Ω, with constants H and α
depending only on A (not on u or Ω).

Throughout we reserve the letter α for the exponent in the estimate (2.16). We
will show (see Corollary 4.5 below) that if A, A∗ and B∗ satisfy the De Giorgi-
Nash-Moser condition then solutions to L∗B(aLAu) = 0 are also locally Hölder
continuous.

We say that the L2-regularity problem (R)A2 is well-posed in Rn+1
± if, for each

f ∈ Ẇ 2
1 (Rn), there is a function u, unique up to additive constants, that satisfies

(R)A2


divA∇u = 0 in Rn+1

± ,

u = f on ∂Rn+1
± ,

‖Ñ±(∇u)‖L2(Rn) ≤ C‖∇f‖L2(Rn).

Remark 2.18. If Ñ±(∇u) ∈ L2(Rn), then averages of u have a weak nontangential
limit at the boundary, in the sense that there is some function f such that( 

B((x,t),|t|/2)

|u(y, s)− f(x∗)|2 dy ds
)1/2

≤ C|t|Ñ±(∇u)(x∗)

for all (x, t) ∈ γ±(x∗). See the proof of [42, Theorem 3.1a]; here C is a constant
depending only on the constant a in the definition (2.2) of γ±. If u is locally Hölder
continuous then this implies that u itself has a nontangential limit, which by the
dominated convergence theorem must equal its limit in the sense of (2.10). Thus,
the requirement in (2.12) or (R)A2 that u = f on ∂Rn+1

± in the sense of vertical

L2 limits is equivalent to the requirement that u = f on ∂Rn+1
± in the sense of

pointwise nontangential limits almost everywhere.

2.2. The main theorems. The main theorems of this paper are as follows.

Theorem 2.19. Let a : Rn+1 7→ R and A : Rn+1 7→ C(n+1)×(n+1), where n+1 ≥ 3.
Assume that

• a is accretive and t-independent.
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• a is real-valued.
• A is elliptic and t-independent.
• A and A∗ satisfy the De Giorgi-Nash-Moser condition.
• The regularity problems (R)A2 and (R)A

∗

2 are well-posed in Rn+1
± .

Then the L2-Dirichlet problem for L∗A(aLA) is well-posed in Rn+1
+ , and the con-

stants C0 and C1 in (2.12) and (2.14) depend only on the dimension n + 1, the
ellipticity and accretivity constants λ, Λ in (2.5) and (2.6), the De Giorgi-Nash-
Moser constants H and α, and the constants C in the definition of (R)A2 and (R)A

∗

2 .

We can generalize Theorem 2.19 to the following perturbative version.

Theorem 2.20. Let A be as in Theorem 2.19, and let a : Rn+1 7→ C be accretive
and t-independent. Let B : Rn+1 7→ C(n+1)×(n+1) be t-independent.

There is some ε > 0, depending only on the quantities listed in Theorem 2.19,
such that if

‖Im a‖L∞(Rn) < ε and ‖A−B‖L∞(Rn) < ε,

then the L2-Dirichlet problem for L∗B(aLA) is well-posed in Rn+1
+ , and the constants

C0 and C1 in (2.12) and (2.14) depend only on the quantities listed in Theorem 2.19.

We will see that if ε is small enough then B also satisfies the conditions of
Theorem 2.19; see Theorem 2.21. It is possible to generalize from Rn+1

+ to domains
above Lipschitz graphs; see Theorem 2.34 below.

We remark that throughout this paper, we will let C denote a positive constant
whose value may change from line to line, but which in general depends only on
the quantities listed in Theorem 2.19; any other dependencies will be indicated
explicitly.

In the remainder of this section we will remind the reader of some known sufficient
conditions for a matrix A to satisfy the De Giorgi-Nash-Moser condition or for the
regularity problem (R)A2 to be well-posed. To prove Theorems 2.19 and 2.20, we
will need some consequences of these conditions; we will establish notation for these
consequences in Section 2.3.

We begin with the De Giorgi-Nash-Moser condition. Suppose that A is elliptic.
It is well known that if A is constant then solutions to divA∇u = 0 are smooth
(and in particular are Hölder continuous). More generally, the De Giorgi-Nash-
Moser condition was proven to hold for real symmetric coefficients A by De Giorgi
and Nash in [23, 52] and extended to real nonsymmetric coefficients by Morrey in
[51]. The De Giorgi-Nash-Moser condition is also valid if A is t-independent and
the ambient dimension n+ 1 = 3; this was proven in [3, Appendix B].

Furthermore, this condition is stable under perturbation. That is, let A0 be ellip-
tic, and suppose that A0 and A∗0 both satisfy the De Giorgi-Nash-Moser condition.
Then there is some constant ε > 0, depending only on the dimension n + 1 and
the constants λ, Λ in (2.5) and H, α in (2.16), such that if ‖A−A0‖L∞(Rn+1) < ε,
then A satisfies the De Giorgi-Nash-Moser condition. This result is from [5]; see
also [10, Chapter 1, Theorems 6 and 10].

We observe that in dimension n+1 ≥ 4, or in dimension n+1 = 3 for t-dependent
coefficients, the De Giorgi-Nash-Moser condition may fail; see [31] for an example.

The regularity problem (R)A2 has been studied extensively. In particular, if A is
t-independent, then (R)A2 is known to be well-posed in Rn+1

± provided A is constant,
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real symmetric ([42]), self-adjoint ([8]), or of “block” form

A(x) =

(
A‖(x) ~0
~0T a⊥(x)

)
for some n × n matrix A‖ and some complex-valued function a⊥. The block case
follows from validity of the Kato conjecture, as explained in [41, Remark 2.5.6];
see [9] for the proof of the Kato conjecture and [11, Consequence 3.8] for the case
a⊥ 6≡ 1.

Furthermore, well-posedness of (R)A2 is stable under perturbation by [8]; that is,

if (R)A0
2 is well-posed in Rn+1

± for some elliptic t-independent matrix A0, then so is

(R)A2 for every elliptic t-independent matrix A with ‖A−A0‖L∞ small enough.
We mention that if A is a nonsymmetric matrix, the L2-regularity problem need

not be well-posed, even in the case where A is real. See the appendix of [45] for a
counterexample.

We may summarize the results listed above as follows.

Theorem 2.21. Let A be elliptic and t-independent, and suppose that the dimen-
sion n+1 is at least 3. If A satisfies any of the following conditions, then A satisfies
the conditions of Theorem 2.19.

• A is constant.
• A is real symmetric.
• A is a 3× 3 self-adjoint matrix.
• A is a real or 3× 3 block matrix.

If A0 satisfies the conditions of Theorem 2.19, and if ‖A−A0‖L∞(Rn) < ε for
some ε depending only on the quantities enumerated in Theorem 2.19, then A also
satisfies the conditions of Theorem 2.19.

2.3. Second-order boundary-value problems and layer potentials. In or-
der to prove Theorem 2.19, we will need well-posedness of several second-order
boundary-value problems and good behavior of layer potentials; these conditions
follow from well-posedness of (R)A2 and (R)A

∗

2 .
We say that the oblique L2-Neumann problem (N⊥)A2 is well-posed in Rn+1

± if,
for each g ∈ L2(Rn), there exists a unique (modulo constants) function u that
satisfies

(N⊥)A2


divA∇u = 0 in Rn+1

± ,

∂n+1u = g on ∂Rn+1
± ,

‖Ñ±(∇u)‖L2(Rn) ≤ C‖g‖L2(Rn).

By [7, Proposition 2.52] and [8, Corollary 3.6] (see also [8, Proposition 4.4]), if A is
t-independent, then (R)A

∗

2 is well-posed in Rn+1
± if and only if (N⊥)A2 is well-posed

in Rn+1
± .

We say that the L2-Dirichlet problem (D)A2 is well-posed in Rn+1
± if there is

some constant C such that, for each f ∈ L2(Rn), there is a unique function u that
satisfies

(D)A2


divA∇u = 0 in Rn+1

± ,

u = f on ∂Rn+1
± ,

‖N±u‖L2(Rn) ≤ C‖f‖L2(Rn).
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Observe that if u is a solution to (N⊥)A2 with boundary data f , then v = ∂n+1u is
a solution to (D)A2 with boundary data f ; thus, well-posedness of (N⊥)A2 implies
existence of solutions to (D)A2 . Recall that well-posedness of (N⊥)A2 also implies
existence of solutions to (R)A

∗

2 . It is possible to show that if (R)A
∗

2 solutions exist
then solutions to (D)A2 are unique; see the proof of [3, Lemma 4.31].

Thus, if (R)A
∗

2 is well-posed in Rn+1
± then so is (D)A2 . We observe that this result

was proven for real symmetric A by Kenig and Pipher in [42].
The L2-Neumann problem (N)A2 more usually considered differs from (N⊥)A2 in

that the boundary condition is ~e · A∇u = g rather than ∂n+1u = g on ∂Rn+1
+ . We

remark that if A is constant, self-adjoint or of block form then (N)A2 is known to be
well-posed (again see [8] or [41, Remark 2.5.6] and [9, 11]). (N)A2 is in many ways
more natural than the oblique Neumann problem; however, we will not use well-
posedness of the traditional Neumann problem and so do not provide a definition
here.

A classic method for constructing solutions to second-order boundary-value prob-
lems is the method of layer potentials. We will use the double and single layer
potentials of the second-order theory, as well as a new fourth-order potential (see
Section 2.4) to construct solutions to (2.12); thus, we will need some properties of
these potentials.

These potentials for second-order operators are defined as follows. The funda-
mental solution to LA = −divA∇ with pole at X is a function ΓAX such that
(formally) −divA∇ΓAX = δX . For general complex coefficients A such that A and
A∗ satisfy the De Giorgi-Nash-Moser condition, the fundamental solution was con-
structed by Hofmann and Kim. See [37, Theorem 3.1] (reproduced as Theorem 3.12
below) for a precise definition of the fundamental solution.

If f and g are functions defined on Rn, the classical double and single layer
potentials DAf and SAg are defined by the formulas

DAf(x, t) = −
ˆ
Rn

~e ·AT (y)∇ΓA
T

(x,t)(y, 0) f(y) dy,(2.22)

SAg(x, t) =

ˆ
Rn

ΓA
T

(x,t)(y, 0) g(y) dy.(2.23)

For well-behaved functions f and g, these integrals converge absolutely for x ∈ Rn
and for t 6= 0, and satisfy divA∇DAf = 0 and divA∇SAg = 0 in Rn+1 \ Rn; see
Section 3.2.

We define the boundary layer potentials

D±Af = DAf
∣∣
∂Rn+1
±

, (∇SA)±g = ∇SAg
∣∣
∂Rn+1
±

,

S±A g = SAg
∣∣
∂Rn+1
±

, S⊥,±A g = ∂n+1SAg
∣∣
∂Rn+1
±

where the boundary values are in the sense of (2.10).
We remind the reader of the classic method of layer potentials for construct-

ing solutions to boundary-value problems. Suppose the nontangential estimate

‖Ñ±(∇SAg)‖L2(Rn) ≤ C‖g‖L2(Rn) is valid. Then if S±A is invertible L2(Rn) 7→
Ẇ 2

1 (Rn), then u = SA((S±A )−1g) is a solution to (R)A2 with boundary data g.

Similarly, if S⊥,±A or the operator g 7→ ~e · A(∇SA)±g is invertible on L2(Rn),
then we may construct solutions to (N⊥)A2 or (N)A2 , respectively. The adjoint to
g 7→ ~e ·A(∇SA)±g is the operator D∓A∗ , and so if we can construct solutions to (N)A2
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using the single layer potential then we can construct solutions to (D)A
∗

2 using the
double layer potential. In the case of t-independent matrices, we may also construct

solutions to (D)A2 by using invertibility of S⊥,±A .
Thus, if layer potentials are bounded and invertible, we have well-posedness of

boundary-value problems. The formulas (2.22) and (2.23) for solutions are often
useful; thus, the layer potential results above are of interest even if well-posedness
is known by other methods. It turns out that we can derive the layer potential
results from well-posedness.

Lemma 2.24. Suppose (R)A2 and (R)A
∗

2 are well-posed in Rn+1
± . Then there exists

a constant C such that

(2.25) 9t ∂2
t SAg92 =

ˆ
Rn+1

|∂2
t SAg(x, t)|2 |t| dx dt ≤ C‖g‖2L2(Rn).

Proof. Recall that if (R)A2 is well-posed then so is (D)A
∗

2 . The square-function
estimate (2.25) follows from well-posedness of (D)A

∗

2 and (R)A
∗

2 via a local T (b)
theorem for square functions. This argument was carried out in [3, Section 8] in
the case where A is real and symmetric; we refer the reader to [34, Section 5.3] for
appropriate functions b to use in the general case. (The interested reader should
note that [34, Chapter 5] is devoted to a proof of (2.25) in the case of elliptic
systems.) �

It was observed in [38, Proposition 1.19] that by results from [3] and [6], if (2.25)
is valid then

‖Ñ±(∇SAg)‖L2(Rn) ≤ C‖g‖L2(Rn).(2.26)

Using classic techniques involving jump relations, we will show (see Theorem 3.27

below) that if (R)A2 is well-posed in Rn+1
± then S±A is invertible L2(Rn) 7→ Ẇ 2

1 (Rn),

and if in addition (N⊥)A2 is well-posed then S⊥,±A is invertible. Thus, if (R)A2
and (R)A

∗

2 are well-posed, then not only do solutions to (R)A2 , (N⊥)A2 and (D)A2
exist, they are given by the formulas u = SA((S±A )−1g), u = SA((S⊥,±A )−1g) and

u = ∂n+1SA((S⊥,±A )−1g), respectively.
In many of the results in the later parts of this paper, we will only need a few

specific consequences of well-posedness of (R)A2 and (R)A
∗

2 . These consequences are
as follows.

Definition 2.27. Suppose that A and A∗ are elliptic, t-independent and satisfy
the De Giorgi-Nash-Moser condition.

Suppose that

• the square-function estimate (2.25) is valid,

• the operators S⊥,±A are invertible L2(Rn) 7→ L2(Rn), and

• solutions to the Dirichlet problem (D)A2 are unique in Rn+1
+ and in Rn+1

− .

Then we say that A satisfies the single layer potential requirements.

We remark that if A satisfies the single layer potential requirements then (N⊥)A2
(and hence (R)A

∗

2 and (D)A2 ) are well-posed. Thus, A satisfies the conditions of
Theorem 2.19 if and only if both A and A∗ satisfy the single layer potential re-
quirements. We will prove a few bounds under the assumption that A (not nec-
essarily A∗) satisfies the single layer potential requirements. We also remark that
because we have no need of well-posedness of the Neumann problem (N)A2 , we have
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not required invertibility of D±A or its adjoint. Consequently, our layer potential
requirements are weaker than those considered elsewhere in the literature.

2.4. Layer potentials for fourth-order differential equations. We will con-
struct solutions to the fourth-order Dirichlet problem (2.12) using potential oper-
ators. For u = EB,a,Ah to be a solution to L∗B(aLA(Eh)) = 0, we must have that

v = aLAEB,a,Ah is a solution to LB∗v = 0 in Rn+1
+ . We choose v = ∂2

n+1SB∗h;
if B∗ is t-independent then L∗B(∂2

n+1SB∗h) = ∂2
n+1L

∗
B(SB∗h) = 0. It will be seen

that with this choice of v, the operator EB,a,A is bounded and invertible in some
sense.

Formally, the solution to the equation

−adivA∇EB,a,Ah = 1Rn+1
+

∂2
n+1SB∗h

is given by

EB,a,Ah(x, t) =

ˆ
Rn

ˆ ∞
0

ΓA(y,s)(x, t)
1

a(y)
∂2
sSB∗h(y, s) ds dy.

However, to avoid certain convergence issues, we will instead define

EB,a,Ah(x, t) = FB,a,Ah(x, t)− SA
(

1

a
S⊥,+B∗ h

)
(x, t)(2.28)

where the auxiliary potential FB,a,A is given by

FB,a,Ah(x, t) = −
ˆ
Rn

ˆ ∞
0

∂sΓ
A
(y,s)(x, t)

1

a(y)
∂sSB∗h(y, s) ds dy.(2.29)

That these two definitions are formally equivalent may be seen by integrating by
parts in s.

In Section 5, we will show that the integral in (2.29) converges absolutely for
sufficiently well-behaved functions h; we will see that if A and B∗ satisfy the sin-
gle layer potential requirements, then by the second-order theory the difference

EB,a,Ah − FB,a,Ah = −SA
(
(1/a)S⊥,+B∗ h

)
is also well-defined and satisfies square-

function and nontangential bounds.

2.5. Lipschitz domains. As we discussed in the introduction, by applying the
change of variables (x, t) 7→ (x, t− ϕ(x)), boundary-value problems for the second-
order operator divA∇ in the domain Ω given by

(2.30) Ω = {(x, t) : x ∈ Rn, t > ϕ(x)}

may be transformed to boundary-value problems in the upper half-space for an

appropriate second-order operator div Ã∇. In particular, the theory of harmonic
functions in domains of the form (2.30) is encompassed by the theory of solutions

to div Ã∇u = 0, for elliptic t-independent matrices Ã, in the upper half-space.
We now investigate the behavior of fourth-order operators under this (or another)

change of variables. Let ρ : Ω 7→ Rn+1
+ be any bilipschitz change of variables and let

Jρ be the Jacobean matrix, so ∇(ũ ◦ ρ) = JTρ (∇ũ) ◦ ρ. For any accretive function a

and elliptic matrix M , we let ã and M̃ be such that

a =
ã ◦ ρ
|Jρ|

, JρM JTρ = |Jρ| (M̃ ◦ ρ).(2.31)
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By the weak definition (2.8) of L
M̃

= −div M̃∇ and elementary multivariable

calculus, we have that if ũ ∈W 2
1,loc(R

n+1
+ ) and L

M̃
ũ ∈ L2

loc(R
n+1
+ ), then

(2.32) LM (ũ ◦ ρ) = |Jρ| (LM̃ ũ) ◦ ρ in Ω = ρ−1(Rn+1
+ ).

Observe that u is Hölder continuous if and only if ũ is; thus M satisfies the De

Giorgi-Nash-Moser condition if and only if M̃ does.

Now, suppose that L∗
B̃

(ã LÃũ) = 0 in Rn+1
+ , where ã, Ã, B̃ are given by (2.31).

Let u = ũ ◦ ρ. By Definition 2.9, ṽ = ã LÃũ lies in W 2
1,loc(R

n+1
+ ). By (2.32),

ṽ ◦ ρ = a (LAu) ∈ W 2
1,loc(Ω) and LB∗(ṽ ◦ ρ) = 0. Thus a (LAu) ∈ W 2

1,loc(Ω) and so

L∗B(aLAu) is well-defined in Ω, and furthermore L∗B(aLAu) = 0. Thus, existence

of solutions in Ω follows from existence of solutions in Rn+1
+ .

Similarly, if L∗B(aLAu) = 0 in Ω and ũ = u ◦ ρ−1 then L∗
B̃

(ã LÃũ) = 0 in Rn+1
+ .

Thus, uniqueness of solutions in Ω follows from uniqueness of solutions in Rn+1
+ .

We remark that the preceding argument is valid with Ω and Rn+1
+ replaced by

V and ρ(V ) for any domain V .
Because we wish to preserve t-independence, we consider only the change of

variables ρ(x, t) = (x, t − ϕ(x)). This change of variables allows us to generalize
Theorem 2.20 to domains Ω of the form (2.30). The argument is straightforward;
however, to state the result we must first define the fourth-order Dirichlet and
second-order regularity problems in such domains.

Let Ω be a Lipschitz domain of the form (2.30). Let ν denote the unit outward
normal to Ω and σ denote surface measure on ∂Ω. Let W 2

1 (∂Ω) denote the Sobolev
space of functions in L2(∂Ω) whose weak tangential derivative also lies in L2(∂Ω);
in both cases we take the norm with respect to surface measure. We say that U = F
on ∂Ω if F is the vertical limit of U in L2(∂Ω), that is, if

(2.33) lim
t→0+

ˆ
∂Ω

|U(X + t~en+1)− F (X)|2 dσ(X) = 0.

If f is defined on ∂Ω, we let ∇τf be the tangential gradient of f along ∂Ω. If u is
defined in Ω, then ∇‖u is the gradient of u parallel to ∂Ω; that is, if X = X0 +t~en+1

for some X0 ∈ ∂Ω and some t > 0, then ∇‖u(X) = ∇u(X)−(ν(X0) ·∇u(X))ν(X0).

If Ω is the domain above a Lipschitz graph, we say that the L2-Dirichlet problem
for L∗B(aLA) is well-posed in Ω if there is a constant C0 such that, for every
f ∈W 2

1 (∂Ω) and every g ∈ L2(∂Ω), there exists a unique function u that satisfies



L∗B(aLAu) = 0 in Ω,

u = f, ∇‖u = ∇τf on ∂Ω,

ν ·A∇u = g on ∂Ω,

‖ÑΩ(∇u)‖L2(∂Ω) ≤ C0‖∇τf‖L2(Rn) + C0‖g‖L2(Rn),ˆ
Ω

|LAu(X)|2 dist(X, ∂Ω) dX ≤ C0‖∇τf‖L2(Rn) + C0‖g‖L2(Rn).
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The modified nontangential maximal function ÑΩ is given by

ÑΩ(∇u)(X) = sup

{( 
B(Y,dist(Y,∂Ω)/2)

|∇u|2
)1/2

: Y ∈ Ω, |X − Y | < (1 + a) dist(Y, ∂Ω)

}
.

As in Remark 2.18, we also have that u→ f nontangentially in the sense that

lim
Y→X, Y ∈γ(X)

u(Y ) = f(X), γ(X) = {Y ∈ Ω, |X − Y | < (1 + a) dist(Y, ∂Ω)}.

We say that the L2-regularity problem (R)A2 is well-posed in Ω if for every f ∈
W 2

1 (∂Ω) there is a unique function u that satisfies

(R)A2


divA∇u = 0 in Ω,

u = f on ∂Ω,

‖ÑΩ(∇u)‖L2(Rn) ≤ C‖∇τf‖L2(Rn)

where u = f in the sense of either (2.33) or in the sense of nontangential limits.

Clearly, (R)A2 is well-posed in Ω if and only if (R)Ã2 is well-posed in Rn+1
+ .

We may now generalize Theorem 2.20 to Lipschitz domains.

Theorem 2.34. Let Ω = {(x, t) : t > ϕ(x)} for some Lipschitz function ϕ. Let
a : Rn+1 7→ C, and let A, B : Rn+1 7→ C(n+1)×(n+1), where n+ 1 ≥ 3.

Suppose that a, A and B are t-independent, that a is accretive, that A and A∗

satisfy the De Giorgi-Nash-Moser condition, and that (R)A2 and (R)A
∗

2 are well-
posed in Ω and in Ω̄C .

Then there is some ε > 0, depending only on ‖∇ϕ‖L∞(Rn) and the quantities
listed in Theorem 2.19, such that if

‖Im a‖L∞(Rn) < ε and ‖A−B‖L∞(Rn) < ε,

then the L2-Dirichlet problem for L∗B(aLA) is well-posed in Ω.

3. Preliminaries: the second-order theory

In this section, we will review some known results concerning solutions to second-
order elliptic equations of the form divA∇u = 0, and more specifically, concerning
solutions to second-order boundary-value problems. In Sections 3.1 and 3.2, we
will discuss the second-order fundamental solution and some properties of layer
potentials.

In this section we will state several results valid in Rn+1
+ ; the obvious analogues

are also valid in Rn+1
− .

The following two lemmas are well known.

Lemma 3.1 (The Caccioppoli inequality). Suppose that A is elliptic. Let X ∈
Rn+1 and let r > 0. Suppose that divA∇u = 0 in B(X, 2r), for some u ∈
W 2

1 (B(X, 2r)). Then ˆ
B(X,r)

|∇u|2 ≤ C

r2

ˆ
B(X,2r)\B(X,r)

|u|2

for some constant C depending only on the ellipticity constants of A and the di-
mension n+ 1.
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Lemma 3.2. [49, Theorem 2]. Let A be elliptic, and suppose that divA∇u = 0
in B(X, 2r). Then there exists a p > 2, depending only on the constants λ, Λ in
(2.5), such that ( 

B(X,r)

|∇u|p
)1/p

≤ C

( 
B(X,2r)

|∇u|2
)1/2

.

These conditions may be strengthened in the case of t-independent coefficients.
Suppose that Q ⊂ Rn is a cube. If u satisfies divA∇u = 0 in 2Q×(t−`(Q), t+`(Q)),
and if A is t-independent, then by [3, Proposition 2.1], there is some p0 > 2 such
that if 1 ≤ p ≤ p0, then( 

Q

|∇u(x, t)|p dx
)1/p

≤ C
( 

2Q

 t+`(Q)/4

t−`(Q)/4

|∇u(x, s)|2 ds dx
)1/2

.(3.3)

We will show that a similar formula holds for solutions to fourth-order equations
in Lemma 4.8 below.

More generally, we have the following lemma.

Lemma 3.4. Suppose ~f ∈ L2(Rn 7→ Cn+1) is a vector-valued function, and that
divA∇u = 0 in 2Q× (t− `(Q), t+ `(Q)) for some t-independent elliptic matrix A.
Then  

Q

|∇u(x, t)− ~f(x)|2 dx ≤ C
 

2Q

 t+`(Q)/2

t−`(Q)/2

|∇u(x, s)− ~f(x)|2 ds dx.(3.5)

Proof. Let v(x, t) =
ffl t+`(Q)/4

t−`(Q)/4
u(x, s) ds. Then

 
Q

|∇u(x, t)− ~f(x)|2 dx ≤ 2

 
Q

|∇u(x, t)−∇v(x, t)|2 dx+2

 
Q

|∇v(x, t)− ~f(x)|2 dx.

Define D(r) = 2Q×(t−r`(Q), t+r`(Q)). If A is t-independent then divA∇(u−v) =
0 in D(3/4). Applying (3.3) to u− v, we have that 

Q

|∇u( · , t)−∇v( · , t)|2 ≤ C
 
D(1/4)

|∇u−∇v|2.

By definition of v,
 
Q

|∇v(x, t)− ~f(x)|2 dx =

 
Q

∣∣∣∣ t+`(Q)/4

t−`(Q)/4

∇u(x, s)− ~f(x) ds

∣∣∣∣2 dx.
Writing ∇u−∇v = (∇u− ~f) + (∇v− ~f), and again applying the definition of v

to bound ∇v(x, s)− ~f completes the proof. �

We also have the following theorems from [6]. Although we quote these theorems
for t-independent coefficients only, in fact they are valid for t-dependent coefficients
that satisfy a Carleson-measure condition.

Theorem 3.6. [6, Theorem 2.4(i)]. Suppose that A is t-independent and elliptic,
that divA∇u = 0 in Rn+1

+ , and that u satisfies the square-function estimateˆ ∞
0

ˆ
Rn

|∇u(x, t)|2 t dx dt <∞.
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Then there is a constant c and a function f ∈ L2(Rn) such that

lim
t→0+

‖u( · , t)− f − c‖L2(Rn) = 0

and such that

‖Ñ+(u− c)‖2L2(Rn) ≤ C
ˆ ∞

0

ˆ
Rn

|∇u(x, t)|2 t dx dt

where C depends only on the dimension n + 1 and the ellipticity constants λ, Λ

of A. If A satisfies the De Giorgi-Nash-Moser condition then we may replace Ñ+u
by N+u.

In the t-independent setting, (3.5) lets us state [6, Theorem 2.3(i)] as follows.

Theorem 3.7. Suppose that divA∇u = 0 in Rn+1
+ and that Ñ+(∇u) ∈ L2(Rn),

where A is elliptic and t-independent. Then there exists a function ~G : Rn 7→ Cn+1

with ‖~G‖L2(Rn) ≤ C‖Ñ+(∇u)‖L2(Rn) such that

lim
t→0+

‖∇u( · , t)− ~G‖2L2(Rn) = 0 = lim
t→∞
‖∇u( · , t)‖2L2(Rn).

By the divergence theorem, there is a standard weak formulation of the boundary
value ~e ·A∇u for any solution u to divA∇u = 0 with ∇u ∈ L2(Rn+1

+ ). Theorem 3.7
implies that if u is an appropriately bounded solution, then the boundary value
~e · A∇u|∂Rn+1

±
exists in the sense of L2 limits. By the following result, these two

formulations yield the same value.

Theorem 3.8 ([3, Lemma 4.3]). Suppose that A is elliptic, t-independent and
satisfies the De Giorgi-Nash-Moser condition. Suppose that divA∇u = 0 in Rn+1

+

and Ñ+(∇u) ∈ L2(Rn).
Then there is some function g ∈ L2(Rn) such that, if ϕ ∈ C∞0 (Rn+1), thenˆ

Rn+1
+

∇ϕ(x, t) ·A(x)∇u(x, t) dx dt =

ˆ
Rn

ϕ(x, 0) g(x) dx.

Furthermore, −~e ·A∇u( · , t)→ g as t→ 0+ in L2(Rn).

Given a function u that satisfies divA∇u = 0 in Rn+1
± , we will frequently analyze

the vertical derivative ∂n+1u. In order to make statements about u, given results
concerning ∂n+1u, we will need a uniqueness result.

Lemma 3.9. Let A be elliptic and t-independent. Suppose that divA∇u = 0 and
∂n+1u ≡ 0 in Rn+1

+ .
If there is some constant c > 0 and some t0 > 0 such that

(3.10)

 
B((x,t),t/2)

|∇u|2 ≤ ct−n

for all t > t0 and all x ∈ Rn, then u is constant in Rn+1
+ .

If Ñ+(∇u) ∈ L2(Rn) then (3.10) is valid for all t > 0. Thus in particular,
uniqueness of solutions to (D)A2 implies uniqueness of solutions to (N⊥)A2 .

Proof. Since ∂n+1u(x, t) = 0, we have that u(x, t) = v(x) for some function v :
Rn 7→ C. By letting t→∞ in (3.10) we have that ∇v ∈ L2(Rn).



18 ARIEL BARTON AND SVITLANA MAYBORODA

Choose some x ∈ Rn and some t > 0. Let τ > Ct, and let Y (τ) be the cylinder
∆(x, t)× (τ − τ/C, τ + τ/C). By Hölder’s inequality and Lemma 3.2, there is some
p > 2 such that

ˆ
∆(x,t)

|∇v|2 =
C

τ

ˆ
Y (τ)

|∇u|2 ≤ C

τ
(tnτ)1−2/p

(ˆ
B((x,τ),τ/C)

|∇u|p
)2/p

≤ Ctn(p−2)/pτ−n(p−2)/pτn
 
B((x,τ),2τ/C)

|∇u|2.

But if τ is large enough, then τn
ffl
B((x,τ),2τ/C)

|∇u|2 ≤ c. By letting τ →∞, we see

that ∇v ≡ 0 and so u(x, t) = v(x) is a constant. �

We will also need the following uniqueness result.

Lemma 3.11. Let A be elliptic, t-independent and satisfy the De Giorgi-Nash-
Moser condition. Suppose that u+ and u− are two functions that satisfy

divA∇u± = 0 in Rn+1
± , Ñ±(∇u±) ∈ L2(Rn), ∇u+|∂Rn+1

+
= ∇u−|∂Rn+1

+
.

Then u+ and u− are constant in Rn+1
± .

Proof. Let u = u+ in Rn+1
+ , u = u− + c in Rn+1

− , where c is such that u+ = u−
on Rn. We claim that divA∇u = 0 in the whole space Rn+1 in the weak sense
of (2.8). This is clearly true in each of the half-spaces Rn+1

± . Let ϕ ∈ C∞0 (Rn+1).
Then ˆ

Rn+1

∇ϕ ·A∇u =

ˆ
Rn+1

+

∇ϕ ·A∇u+

ˆ
Rn+1
−

∇ϕ ·A∇u.

Let ~G = ∇u|∂Rn+1
+

= ∇u|∂Rn+1
−

. By Theorem 3.8, we have that

ˆ
Rn+1
±

∇ϕ(x, t) ·A(x)∇u(x, t) dx dt = ∓
ˆ
Rn

ϕ(x, 0)~e ·A(x)~G(x) dx

and so
´
Rn+1 ∇ϕ ·A∇u = 0; thus, divA∇u = 0 in Rn+1.

We now show that u is constant in all of Rn+1. Fix some X, X ′ ∈ Rn+1. By the
De Giorgi-Nash-Moser estimate (2.16) and by the Poincaré inequality, if r is large
enough then

|u(X)− u(X ′)| ≤ Cr
(
|X −X ′|

r

)α( 
B(0,2r)

|∇u|2
)1/2

.

By definition of Ñ±(∇u) we have that

|u(X)− u(X ′)| ≤ Cr1−n/2
(
|X −X ′|

r

)α(ˆ
Rn

Ñ+(∇u)2 + Ñ−(∇u)2

)1/2

and so, taking the limit as r →∞, we have that u is constant in Rn+1, as desired.
�
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3.1. The fundamental solution. We now discuss the second-order fundamental
solution. Let 2∗ = 2(n + 1)/(n − 1), and let Y 1,2(Rn+1) be the space of functions
u ∈ L2∗(Rn+1) that have weak derivatives ∇u that lie in L2(Rn+1). From [37], we
have the following theorems (essentially their Theorems 3.1 and 3.2).

Theorem 3.12. Assume that A and A∗ are elliptic and satisfy the De Giorgi-
Nash-Moser condition. Assume that n+ 1 ≥ 3.

Then there is a unique fundamental solution ΓAY with the following properties.

• v(X,Y ) = ΓAY (X) is continuous in {(X,Y ) ∈ Rn+1 × Rn+1 : X 6= Y }.
• v(Y ) = ΓAY (X) is locally integrable in Rn+1 for any fixed X ∈ Rn+1.
• For all smooth, compactly supported functions f defined in Rn+1, the func-

tion u given by

u(X) :=

ˆ
Rn+1

ΓAY (X)f(Y ) dY

belongs to Y 1,2(Rn+1) and satisfies − divA∇u = f in the sense thatˆ
Rn+1

A∇u · ∇ϕ =

ˆ
Rn+1

fϕ

for all ϕ smooth and compactly supported in Rn+1.

Theorem 3.13. ΓA has the property

(3.14)

ˆ
Rn+1

A∇ΓAY · ∇ϕ = ϕ(Y )

for all Y ∈ Rn+1 and all ϕ smooth and compactly supported in Rn+1.
Furthermore, ΓA satisfies the following estimates:

|ΓAY (X)| ≤ C

|X − Y |n−1
(3.15)

‖∇ΓAY ‖L2(Rn+1\B(Y,r)) ≤ Cr(1−n)/2,(3.16)

‖∇ΓAY ‖Lp(B(Y,r)) ≤ Cr−n+(n+1)/p if 1 ≤ p < n+ 1

n
,(3.17)

for some C depending only on the dimension n + 1, the constants λ, Λ in (2.5),
and the constants H, α in the De Giorgi-Nash-Moser bounds.

Finally, if f ∈ L2(n+1)/(n+3)(Rn+1) ∩ Lploc(Rn+1) for some p > (n+ 1)/2, then

u(X) =

ˆ
Rn+1

ΓAY (X)f(Y ) dY

is continuous, lies in Y 1,2(Rn+1), and satisfiesˆ
Rn+1

A∇u · ∇ϕ =

ˆ
Rn+1

fϕ

for all ϕ smooth and compactly supported in Rn+1.

We will need some additional properties of the fundamental solution. First, by
uniqueness of the fundamental solution, we have that if A is t-independent then
ΓA(y,s)(x, t) = ΓA(y,s+r)(x, t+ r) for any x, y ∈ Rn and any r, s, t ∈ R. In particular,

this implies that

(3.18) ∂ksΓA(y,s)(x, t) = (−1)k∂kt ΓA(y,s)(x, t).
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Second, by the Caccioppoli inequality and the De Giorgi-Nash-Moser estimates,
we have the bounds

|∂kn+1ΓAY (X)| ≤ Ck
|X − Y |n+k−1

,(3.19)

|∂kn+1ΓAY (X)− ∂kn+1ΓAY (X ′)| ≤ Ck|X −X ′|α

|X − Y |n+k+α−1
(3.20)

for any k ≥ 0 and any X, X ′, Y ∈ Rn with |X −X ′| ≤ 1
2 |X − Y |.

Finally, it is straightforward to show that if X, Y ∈ Rn+1 with X 6= Y , then

(3.21) ΓAX(Y ) = ΓA
T

Y (X).

3.2. Layer potentials. Recall that if A and A∗ satisfy the De Giorgi-Nash-Moser
condition, then the double and single layer potentials are given by the formulas

DAf(X) = −
ˆ
Rn

f(y)~e ·AT (y)∇ΓA
T

X (y, 0) dy,

SAg(X) =

ˆ
Rn

g(y) ΓA
T

X (y, 0) dy.

Notice that by (3.21), divA∇DAf = 0 and divA∇∂kn+1SAg = 0 in Rn+1 \ Rn.
We will be most concerned with the case where f , g ∈ L2(Rn). If A is t-

independent, then by (3.3) and (3.16), the integral in the definition of DAf(X)
converges absolutely for all X ∈ Rn+1 \ Rn and all f ∈ L2(Rn). Similarly, by
(3.15), if t 6= 0 and if g ∈ Lp(Rn) for some 1 ≤ p < n then the integral in the
definition of SAg(x, t) converges absolutely. If n ≥ 3 this implies that SAg(x, t) is
well-defined for all g ∈ L2(Rn). If n = 2, so the ambient dimension n+ 1 = 3, then
SAg is well-defined up to an additive constant for g ∈ L2(R2). That is, if n = 2
and if g ∈ L2(R2), or more generally if g ∈ Lp(Rn) for some 1 ≤ p < n/(1 − α),
then by (3.20), the integral

SAg(X)− SAg(X0) =

ˆ
Rn

g(y) (ΓA(y,0)(X)− ΓA(y,0)(X0)) dy

converges absolutely for all X, X0 ∈ Rn+1 \Rn. We remark that by (3.19), if k ≥ 1
then ˆ

Rn

g(y) ∂kt ΓA(y,0)(x, t) dy

converges absolutely provided g ∈ Lp(Rn), 1 ≤ p < ∞, and if k ≥ 2 then the
integral also converges if g ∈ L∞(Rn). We will write

∂kt SAg(x, t) =

ˆ
Rn

g(y) ∂kt ΓA(y,0)(x, t) dy

for all such g, even if SAg does not converge absolutely.
By (3.19) we have a pointwise bound on ∂kt SAg(x, t). If 1 ≤ p ≤ ∞ then for all

integers k ≥ 2 we have that

(3.22) |∂kt SAg(x, t)| ≤ C(p)

(|t|+ dist(x, supp g))n/p+k−1
‖g‖Lp(Rn).

This also holds for k = 1 provided 1 ≤ p <∞ and for k = 0 provided 1 ≤ p < n.
We now establish that if (R)A2 and (R)A

∗

2 are well-posed, then certain properties
of the single layer potential follow. Recall from Lemma 2.24 that under these
conditions the square-function estimate (2.25) is valid. By [3, Formula (5.5)], if the
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square-function estimate (2.25) is valid then it may be strengthened to the following
estimate on the whole gradient:

9t∇∂tSAg92 =

ˆ
Rn+1

|∇∂tSAg(x, t)|2|t| dx dt ≤ C‖g‖2L2(Rn).(3.23)

Suppose that A is t-independent and has bounded layer potentials, meaning that

‖Ñ±(∇SAg)‖L2(Rn) ≤ C‖g‖L2(Rn). (This is Formula (2.26); recall that it follows

from (2.25).) By Theorem 3.7, the operators S⊥,±A and (∇SA)± are well-defined

and bounded on L2(Rn). Observe that S⊥,+A is a Calderón-Zygmund operator by

(3.19) and (3.20). Thus, by standard Calderón-Zygmund theory, S⊥,+A is bounded
on Lp(Rn) for any 1 < p <∞. By a standard argument (see [21, Proposition 4.3]),
we may strengthen this to a nontangential bound: if g ∈ Lp(Rn) for any 1 < p <∞,
then

‖N±(∂n+1SAg)‖Lp(Rn) ≤ C(p)‖g‖Lp(Rn).(3.24)

The following formulas come from [3]. Again suppose that A has bounded layer
potentials. If g ∈ L2(Rn), then by the proof of [3, Lemma 4.18] we have that

~e ·A(∇SA)+g − ~e ·A(∇SA)−g = −g,(3.25)

∇‖S+
Ag −∇‖S

−
A g = 0.(3.26)

In particular S+
A = S−A regarded as operators L2(Rn) 7→ Ẇ 2

1 (Rn).

We now establish invertibility of S+
A and S⊥,±A .

Theorem 3.27. Let A and A∗ be t-independent and satisfy the De Giorgi-Nash-
Moser condition. Suppose that A has bounded layer potentials in the sense that
(2.26) is valid.

If (R)A2 is well-posed in Rn+1
+ and Rn+1

− , then the operator S+
A is invertible

L2(Rn) 7→ Ẇ 2
1 (Rn).

If in addition (N⊥)A2 is well-posed in Rn+1
± , then S⊥,±A is invertible on L2(Rn).

Proof. The proof exploits extensively the jump relations for the single layer poten-
tial. By (3.25), (2.26) and Theorem 3.7, if g ∈ L2(Rn) then

‖g‖L2(Rn) = ‖e ·A(∇SA)+g − ~e ·A(∇SA)−g‖L2(Rn)

≤ C‖Ñ+(∇SAg)‖L2(Rn) + C‖Ñ−(∇SAg)‖L2(Rn).

But if (R)A2 is well-posed in Rn+1
± , then ‖Ñ±(∇SAg)‖L2(Rn) ≤ C‖∇‖S±A g‖L2(Rn).

By (3.26) we have that ∇‖S+
Ag = ∇‖S−A g and so

‖g‖L2(Rn) ≤ C‖∇‖S±A g‖L2(Rn).

We need only show that S+
A is surjective. Choose some f ∈ Ẇ 2

1 (Rn). Let u±
be the solutions to (R)A2 with boundary data f in Rn+1

± . By Theorem 3.7, the
functions g± = ~e ·A∇u±|∂Rn+1

±
exist and lie in L2(Rn).

Now, let v = SA(g+ − g−), and let v± = v|Rn+1
±

. By (2.26), Ñ±(∇v±) ∈ L2(Rn).

Consider w± = u± + v±. By definition of u± and by the continuity relation (3.26),
we have that

∇‖w+

∣∣
∂Rn+1

+

= ∇‖w−
∣∣
∂Rn+1
−

.
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Consider the conormal derivative. We have that

~e ·A∇w+

∣∣
∂Rn+1

+

= ~e ·A∇u+

∣∣
∂Rn+1

+

+~e ·A∇v+

∣∣
∂Rn+1

+

= g+ +~e ·A(∇SA)+(g+ − g−).

But by (3.25),

~e ·A∇w+

∣∣
∂Rn+1

+

= g+ + ~e ·A(∇SA)−(g+ − g−)− (g+ − g−)

= ~e ·A∇u−
∣∣
∂Rn+1
−

+ ~e ·A∇v−
∣∣
∂Rn+1
−

= ~e ·A∇w−
∣∣
∂Rn+1
−

.

Thus by Lemma 3.11, we have that w± is constant in Rn+1
± . In particular, S±A (g+−

g−) = f in Ẇ 2
1 (Rn), as desired.

If in addition (N⊥)A2 is well-posed in Rn+1
± , then

‖g‖L2(Rn) ≤ C‖∇‖S±A g‖L2(Rn) ≤ C‖Ñ±(∇SAg)‖L2(Rn) ≤ C‖S⊥,±A g‖L2(Rn)

and so we need only show that S⊥,±A is surjective on L2(Rn).

If (N⊥)A2 is well-posed in Rn+1
± , then for each g ∈ L2(Rn) there exists some

u with Ñ±(∇u) ∈ L2(Rn) and with ∂n+1u = g on ∂Rn+1
± . Let F = u|∂Rn+1

±
; by

Theorem 3.7 F exists and F ∈ Ẇ 2
1 (Rn). Because S±A is invertible, we have that

F = S±A f for some f ∈ L2(Rn); by uniqueness of regularity solutions, S⊥,±A f =
g. �

We will need some bounds on the double layer potential as well. Suppose that
(R)A2 and (R)A

∗

2 are both well-posed in Rn+1
± , so (2.25) is valid. By [3, Corol-

lary 4.28], if t > 0 then for all g ∈ C∞0 (Rn) we have that

(3.28) DA(S+
Ag)(x,±t) = ∓SA(~e ·A(∇SA)∓g)(x,±t).

We have the following consequences of (3.28). By Theorem 3.27, S+
A : L2(Rn) 7→

Ẇ 2
1 (Rn) is invertible. Let f ∈W 2

1 (Rn), and let g = (S+
A )−1f . By (2.26) and (3.23),

‖Ñ±(∇DAf)‖L2(Rn) ≤ C‖∇f‖L2(Rn),(3.29)

9t∇∂tDAf92 =

ˆ
Rn+1

|∇∂tDAf(x, t)|2|t| dx dt ≤ C‖∇f‖2L2(Rn).(3.30)

Combining (3.28) with the jump relations (3.25) and (3.26), we have that

~e ·A∇DAf
∣∣
∂Rn+1

+

− ~e ·A∇DAf
∣∣
∂Rn+1
−

= 0,(3.31)

∇‖D+
Af −∇‖D

−
Af = −∇‖f(3.32)

for all f ∈W 2
1 (Rn).

4. The Caccioppoli inequality and related results

The Caccioppoli inequality for second-order elliptic equations (Lemma 3.1) is
well known. In this section, we will prove a similar inequality for weak solutions to
the fourth-order equation L∗B(aLAu) = 0. We will also prove fourth-order analogs
to some other basic results of the second-order theory.



THE DIRICHLET PROBLEM FOR HIGHER ORDER EQUATIONS 23

Theorem 4.1. Suppose that L∗B(aLAu) = 0 in B(X, 2r) in the sense of Defini-
tion 2.9. Suppose that A and B are elliptic in the sense of (2.5) and that a is
accretive in the sense of (2.6). Thenˆ

B(X,r)

|LAu|2 +
1

r2

ˆ
B(X,r)

|∇u|2 ≤ C

r4

ˆ
B(X,2r)

|u|2

where C depends only on the constants λ, Λ in (2.5) and (2.6).

Proof. Let ϕ be a real smooth cutoff function, so that ϕ = 1 on B(X, r), ϕ is
supported in B(X, 2r), and |∇ϕ| ≤ C/r.

Then, for any constant c1, we have thatˆ
ϕ2|∇u|2 ≤ 1

λ
Re

ˆ
ϕ2∇ū ·A∇u

=
1

λ
Re

ˆ
ϕ2 ū LAu−

1

λ
Re

ˆ
2ūϕ∇ϕ ·A∇u

≤ Cc1
2r2

ˆ
B(X,2r)

|u|2 +
r2

2c1

ˆ
ϕ4|LAu|2 +

C

2

ˆ
|u|2|∇ϕ|2 +

1

2

ˆ
ϕ2|∇u|2

and so ˆ
ϕ2|∇u|2 ≤ C(c1 + 1)

2r2

ˆ
B(X,2r)

|u|2 +
r2

c1

ˆ
ϕ4|LAu|2.

Now, recall that aLAu = v for some v ∈W 2
1,loc(B(X, 2r)). Therefore,

|LAu|2 ≤
Re ā

λ
LAuLAu =

1

λ
Re(v̄ LAu),(4.2)

|v|2 ≤ 1

Re(1/a)
Re

(
v̄

1

a
v

)
≤ Λ2

λ
Re(v̄ LAu).(4.3)

Because ϕ is compactly supported, the weak definition of LAu implies thatˆ
ϕ4 v̄ LAu =

ˆ
∇(ϕ4v̄) ·A∇u =

ˆ
4ϕ3v̄∇ϕ ·A∇u+

ˆ
ϕ4∇v̄ ·A∇u

and so for any c2 > 0 we have that

Re

ˆ
ϕ4 v̄ LAu ≤

λ

2Λ2

ˆ
ϕ4|v|2 + C

ˆ
ϕ2|∇ϕ|2|∇u|2

+
r2

2c2

ˆ
ϕ6|∇v|2 +

Cc2
r2

ˆ
ϕ2|∇u|2

≤ 1

2
Re

ˆ
ϕ4v̄LAu+

r2

2c2

ˆ
ϕ6|∇v|2 +

C(1 + c2)

r2

ˆ
ϕ2|∇u|2.

This implies that

Re

ˆ
ϕ4 v̄ LAu ≤

C(1 + c2)

r2

ˆ
ϕ2|∇u|2 +

r2

c2

ˆ
ϕ6|∇v|2.

But divB∗∇v = 0 in the weak sense, so

0 =

ˆ
∇(ϕ6v̄) ·B∗∇v.

As in the proof of the second-order Caccioppoli inequality, and by (4.3),ˆ
ϕ6|∇v|2 ≤ C

ˆ
ϕ4|∇ϕ|2|v|2 ≤ C Re

ˆ
ϕ4|∇ϕ|2v̄ LAu.
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So

Re

ˆ
ϕ4 v̄ LAu ≤

C(1 + c2)

r2

ˆ
ϕ2|∇u|2 +

C

c2
Re

ˆ
ϕ4v̄LAu.

Choosing c2 large enough, we see thatˆ
ϕ4|LAu|2 ≤

1

λ
Re

ˆ
ϕ4 v̄ LAu ≤

C

r2

ˆ
ϕ2|∇u|2

and so ˆ
ϕ2|∇u|2 ≤ C(c1 + 1)

2r2

ˆ
B(X,2r)

|u|2 +
C

c1

ˆ
ϕ2|∇u|2.

Choosing c1 large enough lets us conclude thatˆ
ϕ4|LAu|2 ≤

C

r2

ˆ
ϕ2|∇u|2 ≤ C

r4

ˆ
B(X,2r)

|u|2

and so ˆ
B(X,r)

|LAu|2 +
1

r2

ˆ
B(X,r)

|∇u|2 ≤ C

r4

ˆ
B(X,2r)

|u|2

as desired. �

We now prove Hölder continuity of solutions under the assumption that A, A∗

and B∗ satisfy the De Giorgi-Nash-Moser condition. We begin with the following
De Giorgi-Nash estimate for solutions to inhomogeneous second-order problems.
This estimate is well known in the case of real coefficients; see, for example, [32,
Theorem 8.24]. Given the fundamental solution of [37] it is straightforward to
generalize to complex coefficients.

Theorem 4.4. Suppose that A, A∗ satisfy the De Giorgi-Nash-Moser condition.
Let (n+ 1)/2 < p ≤ ∞ and let β = min(α, 2− (n+ 1)/p).

Then if divA∇u = f in B(X0, 2r) for some f ∈ Lp(B(X0, 2r)), then

|u(X)− u(X ′)| ≤ C |X −X
′|β

rβ
r2−(n+1)/p‖f‖Lp(B(X0,2r))

+ C
|X −X ′|α

rα

( 
B(X0,2r)

|u|2
)1/2

for all X, X ′ ∈ B(X0, r).

Proof. Let

v(X) =

ˆ
B(X0,2r)

ΓAY (X) f(Y ) dY.

Let w(X) = u(X) − v(X). By Theorem 3.13, divA∇w = 0 in B(X0, 2r) and so
because A satisfies the De Giorgi-Nash-Moser condition,

|w(X)− w(X ′)| ≤ C |X −X
′|α

rα

( 
B(X0,2r)

|w|2
)1/2

≤ C |X −X
′|α

rα

( 
B(X0,2r)

|u|2 + |v|2
)1/2

.
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By (3.15), if X ∈ Rn then

|v(X)| ≤
ˆ
B(X0,2r)

|ΓAY (X)| |f(Y )| dY ≤ Cr2−(n+1)/p‖f‖Lp(B(X0,2r)),

and by applying (3.15) in B(X0, 2r) ∩ B(X, 2|X −X ′|) and (3.20) in B(X0, 2r) \
B(X, 2|X −X ′|), we see that if X, X ′ ∈ Rn+1 then

|v(X)− v(X ′)| ≤ C
(
|X −X ′|α

rα
r2−(n+1)/p + |X −X ′|2−(n+1)/p

)
‖f‖Lp(B(X0,2r)).

Summing these two bounds completes the proof. �

The following corollary follows immediately from Theorems 4.1 and 4.4.

Corollary 4.5. Suppose that L∗B(aLAu) = 0 in B(X0, 2r) in the sense of Defini-
tion 2.9, where a, A, B are as in Theorem 4.1, and where A, A∗ and B∗ satisfy
the De Giorgi-Nash-Moser condition. Then

(4.6) |u(X)− u(X ′)| ≤ C |X −X
′|α

rα

( 
B(X0,2r)

|u|2
)1/2

provided X, X ′ ∈ B(X0, r).

We now prove the following pointwise estimate for solutions u in terms of their L1

norms. (The bound (2.17) is essentially the same estimate in terms of the L2 norm.)
This estimate is known for solutions to second-order equations (see, for example,
[35, Theorem 4.1]) and may be proven for solutions to higher order equations using
the same techniques.

Corollary 4.7. Suppose that u is as in Corollary 4.5. Then

sup
B(X0,r)

|u| ≤ C
 
B(X0,2r)

|u|.

Proof. Let f(ρ) = ‖u‖L∞(B(X0,ρ)) for 0 < ρ < 2r. By Corollary 4.5, if 0 < ρ < ρ′ <
2r and if X ∈ B(X0, ρ), then

|u(X)| ≤ C

( 
B(X,ρ′−ρ)

|u|2
)1/2

≤
C‖u‖1/2L∞(B(X0,ρ′))

(ρ′ − ρ)(n+1)/2

(ˆ
B(X0,2r)

|u|

)1/2

and so

f(ρ) ≤ 1

2
f(ρ′) +

C

(ρ′ − ρ)n+1

ˆ
B(X0,2r)

|u|.

We eliminate the f(ρ′) as follows. Let ρ0 = r and let ρk+1 = ρk + 1
2r(1 − τ)τk,

where 1/2 < τn+1 < 1. Then by induction

sup
B(X0,r)

|u| = f(ρ0) ≤ 1

2k
f(ρk) +

k−1∑
j=0

C

(1− τ)n+1(2τn+1)j

 
B(X0,2r)

|u|.

Observe that limk→∞ ρk = 3
2r and so f(ρk) is bounded uniformly in k. Thus, we

may take the limit as k →∞; this completes the proof. �

We conclude this section with the higher order analogue of (3.3) and some similar
results from [3], that is, with Caccioppoli-type inequalities valid in horizontal slices.
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Lemma 4.8. Suppose that u, ∂n+1u, and ∂2
n+1u satisfy the Caccioppoli inequality

in Rn+1
+ , that is, that whenever B(X, 2r) ⊂ Rn+1

+ we have that 
B(X,r)

|∇∂kn+1u|2 ≤
C

r2

 
B(X,2r)

|∂kn+1u|2 for k = 0, 1, 2.

If Ñ+(∇u) ∈ L2(Rn) then

(4.9) sup
t>0
‖∇u( · , t)‖L2(Rn) ≤ C‖Ñ+(∇u)‖L2(Rn).

If t > 0 then

(4.10) ‖∇u( · , t)‖L2(Rn) ≤
C

t

 2t

t/2

‖u( · , s)‖2L2(Rn) ds

provided the right-hand side is finite.
Finally, if 0 < s < t < 2s, then

(4.11) ‖∇u( · , t)−∇u( · , s)‖L2(Rn) ≤ C
t− s
s

( 3s

s/2

‖∇u( · , r)‖2L2(Rn) dr

)1/2

provided the right-hand side is finite.

Proof. Let Q ⊂ Rn be a cube. Thenˆ
Q

|∇u(x, t)|2 dx ≤ C
ˆ
Q

∣∣∣∣∇u(x, t)−
 t+l(Q)/4

t

∇u(x, s) ds

∣∣∣∣2 dx
+

C

l(Q)

ˆ
Q

ˆ t+l(Q)/4

t

|∇u(x, s)|2 ds dx.

But we may bound |∇u(x, t)−∇u(x, s)| by
´ s
t
|∇∂ru(x, r)|dr. Applying the Cac-

cioppoli inequality to ∇∂ru(x, r) yields that

(4.12)

ˆ
Q

|∇u(x, t)|2 dx ≤ C

l(Q)

ˆ
(3/2)Q

ˆ t+l(Q)/3

t−l(Q)/3

|∇u(x, t)|2 dt dx.

Applying the Caccioppoli inequality to ∇u, this yields that

(4.13)

ˆ
Q

|∇u(x, t)|2 dx ≤ C

l(Q)3

ˆ
2Q

ˆ t+l(Q)/2

t−l(Q)/2

|u(x, t)|2 dt dx.

Note that (4.13) is valid with u replaced by ∂n+1u.
Dividing Rn into cubes of side-length t/2, we have that (4.10) follows from (4.13).

Suppose that t > 0. By definition of Ñ+,ˆ
Rn

ˆ 2t

t/2

|∇u(x, s)|2 dx ds ≤ Ct
ˆ
Rn

Ñ+(∇u)(x)2 dx

and applying (4.12) in cubes of side-length t completes the proof of (4.9).
Finally, let 0 < s < t < 2s and let Q be a cube of side-length t− s. Thenˆ

Q

|∇u(x, t)−∇u(x, s)|2 dx =

ˆ
Q

∣∣∣∣ˆ t

s

∇∂ru(x, r) dr

∣∣∣∣2 dx
≤ (t− s)

ˆ
Q

ˆ t

s

|∇∂ru(x, r)|2 dr dx.
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We have that 0 < t− s < s. Applying (4.13) yields that

ˆ
Rn

|∇u(x, t)−∇u(x, s)|2 dx ≤ C (t− s)2

s3

ˆ
Rn

ˆ 3s

s/2

|∂ru(x, r)|2 dr dx

and so (4.11) is valid. �

5. The potentials Eh and Fh

We will construct solutions to the fourth-order Dirichlet problem (2.12) using
layer potentials. Specifically, our solution u will be given by u = −DAf − SAg +
EB,a,Ah for appropriate functions f , g and h. The behavior of the second-order
potentials DAf and SAg is by now well understood (see Section 3 or the extensive
literature on the subject). It remains to investigate E = EB,a,A. Observe that
by the definition (2.28) of EB,a,A, when convenient we may instead investigate the
potential F = FB,a,A.

In this section, we will show that Fh (and thus Eh) are well-defined in Rn+1
+

for appropriate h and will establish a few useful preliminary bounds on Fh. We
will also investigate the behavior of E across the boundary; that is, we will prove
analogues to the jump relations (3.25) and (3.26). In Sections 6 and 7, we will
establish somewhat more delicate bounds on F (and E); specifically, our goal in

these three sections is to show that ‖Ñ±(∇Eh)‖L2(Rn) ≤ C‖h‖L2(Rn).

In Section 8, we will show that the map h 7→ ∂n+1Eh|∂Rn+1
±

is invertible L2(Rn) 7→
L2(Rn). We will need the assumptions that a is real-valued and A = B, or that
‖Im a‖L∞ and ‖A−B‖L∞ are small, only in Section 8; the bounds of Sections 5,
6 and 7 require only that a be accretive and that A and B∗ satisfy the single layer
potential requirements of Definition 2.27. We will conclude this paper by using
these boundedness and invertibility results to prove existence of solutions to the
fourth-order Dirichlet problem.

We begin by establishing conditions under which Fh exists. Like the single layer
potential SAg, in dimensions n + 1 ≥ 4, the integral in the definition of Fh(x, t)
converges absolutely whenever t 6= 0 and h ∈ L2(Rn); in dimension n+ 1 = 3, Fh
is only well-defined up to an additive constant if h ∈ L2(R2).

More precisely, we have the following.

Lemma 5.1. Suppose that a, A and B are t-independent, a is accretive, A and A∗

satisfy the De Giorgi-Nash-Moser condition, and SB∗ satisfies the square-function
estimate (3.24).

If h ∈ Lp(Rn) for some 1 < p < n, and if t 6= 0, then the integral in the definition
(2.29) of Fh(x, t) converges absolutely. Furthermore,

|Fh(x, t)| ≤ C|t|1−n/p‖h‖Lp(Rn).(5.2)

If h ∈ Lp(Rn) for some n ≤ p < n/(1−α), then Fh is well-defined in Rn+1
+ and

Rn+1
− up to an additive constant; that is, if we write

Fh(x, t)−Fh(x′, t′) =ˆ
Rn

ˆ ∞
0

(
∂sΓ

A
(y,s)(x

′, t′)− ∂sΓA(y,s)(x, t)
) 1

a(y)
∂sSB∗h(y, s) ds dy
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then the right-hand integral converges absolutely. If (x′, t′) ∈ B((x, t), |t|/4), or if
(x′, t′) = (x,−t), then

|Fh(x, t)−Fh(x′, t′)| ≤ C(p)|t|1−n/p‖h‖Lp(Rn).(5.3)

Proof. Recall that

Fh(x, t) = −
ˆ
Rn

ˆ ∞
0

∂sΓ
A
(y,s)(x, t)

1

a(y)
∂sSB∗h(y, s) ds dy.

Choose some (x, t) ∈ Rn+1 with t 6= 0. Let B = B((x, t), |t|/2), ∆ = ∆(x, |t|/2).
By (3.19), |∂tΓA(y,s)(x, t)| ≤ C/|(x, t)− (y, s)|n. If t > 0 and the aperture a in the

definition of nontangential maximal function is large enough, and if 1 ≤ p ≤ ∞,
then

(5.4)

ˆ
B

C

|(x, t)− (y, s)|n
|∂sSB∗h(y, s)| ds dy

≤ Ct
 

∆

N+(∂n+1SB∗h)(y) dy ≤ Ct1−n/p‖N+(∂n+1SB∗h)‖Lp(Rn).

Observe that

(5.5)

ˆ
Rn+1

+ \B

C

|(x, t)− (y, s)|m
|∂sSB∗h(y, s)| ds dy

≤
ˆ
Rn

N+(∂n+1SB∗h)(y)

ˆ ∞
0

C

|x− y|m + (s+ |t|)m
ds dy.

If m = n and 1 ≤ p < n, then these integrals converge and are at most

C(p)|t|1−n/p‖N+(∂n+1SB∗h)‖Lp(Rn).

By (3.24) we may bound ‖N+(∂n+1SB∗h)‖Lp(Rn) and (5.2) is proven.
To establish (5.3), recall that by (3.19) and (3.20), if |(x′, t′)− (x, t)| < |t|/4, or

if t > 0 and (x′, t′) = (x,−t), then for all (y, s) ∈ Rn+1
+ \B we have that

|∂tΓA(y,s)(x, t)− ∂tΓ
A
(y,s)(x

′, t′)| ≤ C|t|α

|(x, t)− (y, s)|n+α

Letting m = n + α, we see that if 1 < p < n/(1 − α) then the right-hand side of
(5.5) converges and is at most C(p)|t|1−n/p‖N+(∂n+1SB∗h)‖Lp(Rn). By (3.24), and
since (5.4) is valid for all 1 ≤ p ≤ ∞, this completes the proof of (5.3). �

Next, we consider ∇Fh and LAFh.

Lemma 5.6. Let a, A and B be as in Lemma 5.1. If h ∈ Lp(Rn) for some
1 < p < n/(1 − α), then ∇Fh ∈ L2

loc(R
n+1
± ), and in particular, divA∇Fh is a

well-defined element of W 2
−1,loc(R

n+1
± ).

Furthermore,

−a divA∇Fh = ∂2
n+1SB∗h in Rn+1

+ ,(5.7)

divA∇Fh = 0 in Rn+1
−(5.8)

in the weak sense.

As an immediate corollary, Eh is well-defined and also lies in W 2
1,loc(R

n+1
± ), and

divA∇Eh = divA∇Fh in Rn+1
± .



THE DIRICHLET PROBLEM FOR HIGHER ORDER EQUATIONS 29

Proof. Fix some (x0, t0) ∈ Rn+1 with t0 6= 0, and let Br = B((x0, t0), r). Let η be
a smooth cutoff function, supported in B|t0|/2 and identically equal to 1 in B|t0|/4,
with 0 ≤ η ≤ 1, |∇η| ≤ C/|t0|. For all (x, t) ∈ B|t0|/8, we have that by definition of
Fh and by (3.18),

Fh(x, t)−Fh(x0, t0)

=

ˆ
Rn+1

+

ΓA(y,s)(x, t)
1

a(y)
∂s
(
η(y, s)∂sSB∗h(y, s)

)
ds dy

−
ˆ
Rn+1

+

ΓA(y,s)(x0, t0)
1

a(y)
∂s
(
η(y, s)∂sSB∗h(y, s)

)
ds dy

−
ˆ
Rn+1

+

(
∂sΓ

A
(y,s)(x, t)− ∂sΓ

A
(y,s)(x0, t0)

) 1− η(y, s)

a(y)
∂sSB∗h(y, s) ds dy

= I(x, t)− I(x0, t0) + II(x, t).

If t0 < 0 then I ≡ 0. Otherwise, by (3.22), the function ∂n+1(η ∂n+1SB∗h) is
bounded and compactly supported, and so by Theorem 3.13, I ∈ Y 1,2(Rn+1) ⊂
W 2

1,loc(Rn+1). Furthermore, −divA∇I = (1/a)∂n+1(η ∂n+1SB∗h), and so

−a divA∇I = ∂2
n+1SB∗h in B|t0|/8.

We must show that ∇II ∈ L2(B|t0|/8) and that divA∇II = 0 in B|t0|/8. By
(3.20) and Lemma 3.1, we have that if (y, s) /∈ B|t0|/4 then

ˆ
B|t0|/8

|∇x,t∂sΓA(y,s)(x, t)| dx dt ≤
C|t0|n+α

|(x0, t0)− (y, s)|n+α
.

Thus by (5.5), if 1 < p < n/(1− α) then

ˆ
B|t0|/8

ˆ
Rn+1

+

|∇x,t∂sΓA(y,s)(x, t)|
1− η(y, s)

|a(y)|
|∂sSB∗h(y, s)| ds dy dx dt

≤ C(p)|t0|n−n/p‖N+(∂n+1SB∗h)‖Lp(Rn).

Thus by Fubini’s theorem,

(5.9) ∇II(x, t) =

ˆ
Rn+1

+

∇x,t∂sΓA(y,s)(x, t)
1− η(y, s)

a(y)
∂sSB∗h(y, s) ds dy.

If ϕ is a test function supported in B|t0|/8, then again by (3.20), (5.5) and the
Caccioppoli inequality,∣∣∣∣ˆ

Rn+1

ϕ(x, t)∇II(x, t) dx dt

∣∣∣∣
≤ C‖ϕ‖L2(Rn+1)|t0|1/2+n/2−n/p‖N+(∂n+1SB∗h)‖Lp(Rn)

and so ∇II(x, t) ∈ L2(B|t0|/8).
Finally, by the weak definition (2.8) of divA∇ and by the formula (5.9) for ∇II,

we have that divA∇II = 0 in B|t0|/8, as desired. �

We conclude this section by proving the continuity of ∇Eh across the boundary.
This property is analogous to the continuity relations (3.26) for the single layer
potential, and is the reason we will eventually prefer the operator E to F .
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Lemma 5.10. Suppose that a, A and B are t-independent, a is accretive, A satis-
fies the square-function estimate (2.26), and B∗ satisfies the single layer potential
requirements of Definition 2.27. Then there is a dense subset S ⊂ L2(Rn) such that
if h ∈ S, then

lim
t→0+

‖∇Eh( · , t)−∇Eh( · ,−t)‖L2(Rn) = 0.

Proof. We define the set S ⊂ L2(Rn) as follows. By assumption, S⊥,+B∗ is invertible.

Let S = (S⊥,+B∗ )−1(S′), where h ∈ S′ if h(x) = u(x, t) for some t > 0 and some u

with divB∗∇u = 0 in Rn+1
+ and N+u ∈ L2(Rn).

We first show that S is dense. It suffices to show that S′ is dense. Choose some
f ∈ L2(Rn). By well-posedness of (D)B

∗

2 , there is some u with divB∗∇u = 0 in
Rn+1

+ and u = f on ∂Rn+1
+ . Define fk ∈ L2(Rn) by fk(x) = u(x, 1/k); then fk ∈ S′.

By Theorem 3.7, fk → f in L2(Rn), and so S′ is dense in L2(Rn).

Suppose that h ∈ S. Then S⊥,+B∗ h(x) = u(x, τ) for some τ > 0 and some
solution u. Let v(x, t) = ∂tu(x, t + τ). By (3.24), and by uniqueness of solutions
to (D)B

∗

2 , we have that ∂tSh = v in Rn+1
+ . But by the Caccioppoli inequality

and the De Giorgi-Nash-Moser estimates, we have that N+(∂n+1v)(x) ≤ C
τ N+u(x)

(possibly at the cost of increasing the apertures of the nontangential cones).
So if h ∈ S, then

Ñ+(∂2
n+1SB∗h) ∈ L2(Rn).

Recall that by (2.28) and Lemma 5.1 if h ∈ L2(Rn) and n ≥ 3 then

Eh(x, t) = −
ˆ ∞

0

ˆ
Rn

∂sΓ
A
(y,s)(x, t)

1

a(y)
∂sSB∗h(y, s) dy ds− SA

(
1

a
S⊥,+B∗ h

)
(x, t).

If n = 2 then we must instead work with Eh(x, t)− Eh(x,−t).
If h ∈ S, so that N+(∂2

n+1SB∗h) ∈ L2(Rn), then we may integrate by parts in
the region 0 < s < τ for any fixed τ . Observe that the boundary term at s = 0

precisely cancels the term SA((1/a)S⊥,+B∗ h). We conclude that

Eh(x, t) =

ˆ τ

0

ˆ
Rn

ΓA(y,s)(x, t)
1

a(y)
∂2
sSB∗h(y, s) dy ds

−
ˆ
Rn

ΓA(y,τ)(x, t)
1

a(y)
∂n+1SB∗h(y, τ) dy

−
ˆ ∞
τ

ˆ
Rn

∂sΓ
A
(y,s)(x, t)

1

a(y)
∂sSB∗h(y, s) dy ds.

Applying (3.18) and the definition of SA, we see that

Eh(x, t) =

ˆ τ

0

SA
(

1

a
∂2
sSB∗h(s)

)
(x, t− s) ds− SA

(
1

a
∂τSB∗h(τ)

)
(x, t− τ)

−
ˆ ∞
τ

∂sSA
(

1

a
∂sSB∗h(s)

)
(x, t− s) ds.

Here we have adopted the notation that ∂sSB∗h(s)(y) = ∂sSB∗h(y, s).
Thus ∇Eh(x, t) − ∇Eh(x,−t) has three terms. Suppose that s ∈ R, s 6= 0. By

(3.24), ‖∂n+1SB∗h(s)‖L2(Rn) ≤ C‖h‖L2(Rn). Suppose that g ∈ L2(Rn). By (4.9)
and by (2.26),

‖∇SAg(s)‖L2(Rn) ≤ C‖Ñ±(∇SAg)‖L2(Rn) ≤ C‖g‖L2(Rn).
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Furthermore, if 0 < t < |s|/2, then by (4.11), (4.9) and (2.26),

‖∇SAg(s+ t)−∇SAg(s− t)‖L2(Rn) ≤ C
t

|s|
‖g‖L2(Rn).

Finally by (4.11), (4.9), (2.26) and applying the Caccioppoli inequality to ∂n+1SA,

‖∇∂sSAg(s+ t)−∇∂sSAg(s− t)‖L2(Rn) ≤ C
t

|s|2
‖h‖L2(Rn).

Thus, if t < τ , then

‖∇Eh(t)−∇Eh(−t)‖L2(Rn) ≤ C
ˆ τ

0

‖N+(∂2
sSB∗h)‖L2(Rn) ds

+ C
t

τ
‖h‖L2(Rn) + C

ˆ ∞
τ

t

s2
‖h‖L2(Rn) ds.

Choosing τ =
√
t and recalling that h ∈ S, we see that the right-hand side goes to

zero as t→ 0+, as desired. �

6. A square-function bound

Recall that we intend to construct solutions to the Dirichlet problem (2.12) by
letting u = u+ + Eh for some appropriately chosen function h ∈ L2(Rn). To

prove Theorems 2.19 and 2.20 we must have that the norms ‖Ñ+(∇Eh)‖L2(Rn) and
9t∇∂tEh9+ are appropriately bounded.

In this section, we will prove a preliminary square-function estimate; we will

prove the full estimate ‖Ñ+(∇Eh)‖L2(Rn) + 9t∇∂tEh9+ ≤ C‖h‖L2(Rn) in the next
section.

Theorem 6.1. Suppose that a, A and B are t-independent, a is accretive, A, A∗,
B and B∗ satisfy the De Giorgi-Nash-Moser condition, and SA, SB∗ satisfy the
square-function estimate (2.25).

Then for all h ∈ L2(Rn), we have the boundˆ ∞
−∞

ˆ
Rn

|∂2
tFh(x, t)|2 |t| dx dt ≤ C‖h‖2L2(Rn).

In the remainder of this section, let u = ∂n+1SB∗h. Observe that

∂2
tFh(x, t) = ∂2

t

ˆ
Rn+1

∂tΓ
AT

(x,t)(y, s)
1

a(y)
u(y, s) dy ds.

By (2.26) and (3.23) it suffices to prove that

(6.2) 9t ∂2
tFh9± ≤ C‖N+u‖L2(Rn) + C9t∇u9+.

This theorem is the technical core of the paper. The proof is inspired by the T (1)
theorems of [22] and [57]. We may think of ∂2

tFh(x, t) as Tu(x, t) for a singular

integral operator T with kernel (1/a(y)) ∂3
t ΓA

T

(x,t)(y, s). The T (1) theorem of Semmes

was proven by analyzing Tu− T (1)Ptu and T (1)Ptu for an averaging operator Pt.
We will use the same argument; our operator Pt will be averages over dyadic cubes.
Our bound on T (1)Ptu will follow from well-known Carleson-measure properties of
solutions to second-order equations. To bound Tu − T (1)Ptu in terms of ∇u, we
develop an argument ultimately allowing us to exploit the Poincaré inequality. It
bears some resemblance to the arguments of [3] (see, in particular, Lemma 3.5(i)),
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but the particular singular integral operator at hand is different from those in [3],
and new ideas are required.

For ease of notation we will prove (6.2) only in the upper half-space (that is,
only for 9t ∂2

tFh9+); the argument in the lower half-space is similar and simpler.
Let W be the grid of dyadic Whitney cubes in Rn+1

+ . That is,

W = {Q = Q̃× [`(Q̃), 2`(Q̃)) : Q̃ ⊂ Rn is a dyadic cube}.

Then Rn+1
+ = ∪Q∈WQ, and any two distinct cubes Q, R ∈W have disjoint interiors.

For any Q ∈ W we let F (Q) = {R ∈ W : dist(R,Q) > 0} be the set of cubes a
positive distance from Q and let N(Q) = ∪R∈W\F (Q)R be the union of cubes
adjacent to Q.

Observe that

9t ∂2
tFh9+ =

∑
Q∈W

ˆ
Q

∣∣∣∣∂2
t

ˆ
Rn+1

∂tΓ
AT

(x,t)(y, s)
1

a(y)
u(y, s) dy ds

∣∣∣∣2 t dx dt.
If R ∈W , let uR =

ffl
R
u. Define the four quantities

I =
∑
Q∈W

ˆ
Q

( ∑
R∈F (Q)

ˆ
R

∣∣∣∂3
t ΓA

T

(x,t)(y, s)
1

a(y)

(
u(y, s)− uR

)∣∣∣ dy ds)2

t dx dt,

II =
∑
Q∈W

ˆ
Q

( ∑
R∈F (Q)

|uR − uQ|
ˆ
R

∣∣∣∂3
t ΓA

T

(x,t)(y, s)
1

a(y)

∣∣∣ dy ds)2

t dx dt,

III =
∑
Q∈W

ˆ
Q

∣∣∣∣∂2
t

ˆ
N(Q)

∂tΓ
AT

(x,t)(y, s)
1

a(y)
(u(y, s)− uQ) dy ds

∣∣∣∣2t dx dt,
IV =

∑
Q∈W

|uQ|2
ˆ
Q

∣∣∣∣∂2
t

ˆ
N(Q)

∂tΓ
AT

(x,t)(y, s)
1

a(y)
dy ds

+

ˆ
Rn+1

+ \N(Q)

∂3
t ΓA

T

(x,t)(y, s)
1

a(y)
dy ds

∣∣∣∣2t dx dt.
We have that

9t ∂2
tFh9+ ≤ C(I + II + III + IV ).

We will bound each of the terms I, II, III and IV . We begin with term IV .

Lemma 6.3. If a and A are t-independent, A and A∗ satisfy the De Giorgi-Nash-
Moser condition and SA satisfies the square-function bound (3.23), then

IV ≤ C‖N+u‖2L2(Rn)‖1/a‖
2
L∞(Rn).

Proof. Recall that

IV =
∑
Q∈W

|uQ|2
ˆ
Q

∣∣∣∣∂2
t

ˆ
N(Q)

∂tΓ
AT

(x,t)(y, s)
1

a(y)
dy ds

+

ˆ
Rn+1

+ \N(Q)

∂3
t ΓA

T

(x,t)(y, s)
1

a(y)
dy ds

∣∣∣∣2t dx dt.
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By the decay estimate (3.19), both of the innermost integrals converge absolutely.

By (3.18), ∂tΓ
AT

(x,t)(y, s) = −∂sΓA
T

(x,t)(y, s), and so

∂2
t

ˆ
N(Q)

∂tΓ
AT

(x,t)(y, s)
1

a(y)
dy ds+

ˆ
Rn+1

+ \N(Q)

∂3
t ΓA

T

(x,t)(y, s)
1

a(y)
dy ds

=

ˆ
Rn

∂2
t ΓA

T

(x,t)(y, 0)
1

a(y)
dy = ∂2

t SA(1/a)(x, t).

We claim that because 1/a ∈ L∞(Rn), we have that

dµ(x, t) = |∂2
t SA (1/a) (x, t)|2 t dx dt

is a Carleson measure with Carleson norm ‖µ‖C at most C‖1/a‖2L∞(Rn). This

follows from the square-function bound (3.23) and the decay estimate (3.19) by a
simple argument due to Fefferman and Stein (see the proof of Theorem 3 in [27]).

Let R̃ ⊂ Rn be a cube; then

ˆ `(R̃)

0

ˆ
R̃

|∂2
t SA (1/a) (x, t)|2 t dx dt

≤ 2

ˆ `(R̃)

0

ˆ
R̃

|∂2
t SA

(
12R̃(1/a)

)
(x, t)|2 t dx dt

+ 2

ˆ `(R̃)

0

ˆ
R̃

|∂2
t SA

(
(1− 12R̃)(1/a)

)
(x, t)|2 t dx dt.

The first integral is at most C‖1/a‖2
L2(2R̃)

≤ C|R̃| ‖1/a‖2L∞(Rn) by (3.23), while the

second is at most C|R̃| ‖1/a‖2L∞(Rn) by (3.22).

Let uW (x, t) = uQ whenever Q ∈ W is a cube and (x, t) ∈ Q. Observe that
N+uW (x) ≤ N+u(x) (possibly at a cost of increasing the aperture of nontangential
cones). Then

IV =

ˆ
Rn+1

+

|uW (x, t)|2 |∂2
t SA(1/a)(x, t)|2 t dx dt.

Applying duality between Carleson measures and nontangentially bounded func-
tions, we see that

IV ≤ ‖N+((uW )2)‖L1(Rn)‖µ‖C ≤ C‖N+u‖2L2(Rn)‖1/a‖
2
L∞(Rn)

as desired. �

Next, we bound the term I.

Lemma 6.4. If a and A are t-independent, a is accretive, and A and A∗ satisfy
the De Giorgi-Nash-Moser condition, then

I ≤ C
ˆ
Rn+1

+

|∇u(y, s)|2 s dy ds.

Proof. Recall that

I =
∑
Q∈W

ˆ
Q

( ∑
R∈F (Q)

ˆ
R

∣∣∣∂3
t ΓA

T

(x,t)(y, s)
1

a(y)

(
u(y, s)− uR

)∣∣∣ dy ds)2

t dx dt.
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By the Poincaré inequality,ˆ
R

|u(y, s)− uR| dy ds ≤ C`(R)

ˆ
R

|∇u(y, s)| dy ds.

By (3.19), and because `(R) ≤ s ≤ 2`(R) for any (y, s) ∈ R, we have that

I ≤
∑
Q∈W

ˆ
Q

( ∑
R∈F (Q)

C`(R)‖1/a‖L∞(Rn)

dist(Q,R)n+2

ˆ
R

|∇u(y, s)| dy ds
)2

t dx dt

≤ C‖1/a‖2L∞(Rn)

ˆ
Rn+1

+

(ˆ
Rn+1

+

s

(s+ t+ |x− y|)n+2
|∇u(y, s)| dy ds

)2

t dx dt.

But by Hölder’s inequality,

(6.5)

ˆ
Rn+1

+

(ˆ
Rn+1

+

s

(s+ t+ |x− y|)n+2
|∇u(y, s)| dy ds

)2

t dx dt

≤
ˆ
Rn+1

+

ˆ
Rn+1

+

s2 |∇u(y, s)|2 dy ds
(s+ t+ |x− y|)n+2

ˆ
Rn+1

+

dy ds

(s+ t+ |x− y|)n+2
t dx dt

= C

ˆ
Rn+1

+

|∇u(y, s)|2s dy ds.

This completes the proof. �

We may bound III similarly.

Lemma 6.6. Suppose that a and A are as in Lemma 6.4. Suppose in addition
that B∗ is t-independent and satisfies the De Giorgi-Nash-Moser condition, and
divB∗∇u = 0 in Rn+1

+ . Then

III ≤ C
ˆ
Rn+1

+

|∇u(y, s)|2 s dy ds.

Proof. Recall that

III =
∑
Q∈W

ˆ
Q

∣∣∣∣∂2
t

ˆ
N(Q)

∂tΓ
AT

(x,t)(y, s)
1

a(y)
(u(y, s)− uQ) dy ds

∣∣∣∣2t dx dt.
Observe that 2Q ⊂ N(Q) ⊂ 5Q. Let

w(x, t) =

ˆ
N(Q)

ΓA
T

(x,t)(y, s)
1

a(y)
(u(y, s)− uQ) dy ds.

By (3.15), w satisfies |w(x, t)| ≤ C`(Q)2‖1/a‖L∞(Rn)‖u− uQ‖L∞(N(Q)).
By Theorem 3.13, aLAw = (u − uQ) in N(Q). If divB∗∇u = 0 in N(Q), then

L∗B(aLAw) = 0 in N(Q). Thus, we may use Theorem 4.1 and Corollary 4.5 twice
to show that

sup
(x,t)∈Q

|∂3
tw(x, t)| ≤ C

`(Q)
‖1/a‖L∞(Rn)‖u− uQ‖L∞(N(Q))

and so

III ≤
∑
Q∈W

ˆ
Q

(
C

`(Q)
‖1/a‖L∞(Rn)‖u− uQ‖L∞(N(Q))

)2

t dx dt.
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Let
π(Q) = {x : (x, t) ∈ Q for some t > 0}

be the projection of Q onto Rn. Notice that π(Q) is also a cube. Let U(Q) =
6π(Q) × (`(Q)/4, 5`(Q)). Observe that if X ∈ N(Q), then B(X, `(Q)/4) ⊂ U(Q).
If divB∗∇u = 0 in U(Q), then by the De Giorgi-Nash-Moser condition and the
Poincaré inequality,

sup
N(Q)

|u− uQ| ≤ C
( 

U(Q)

|u− uQ|2
)1/2

≤ C`(Q)

( 
U(Q)

|∇u|2
)1/2

.

So

III ≤ C‖1/a‖2L∞(Rn)

∑
Q∈W

ˆ
Q

 
U(Q)

|∇u(y, s)|2 dy ds t dx dt.

Because each (y, s) ∈ Rn+1 lies in U(Q) for at most C cubes Q ∈ W , this implies
that

III ≤ C‖1/a‖2L∞(Rn)

ˆ
Rn+1

+

|∇u(y, s)|2 s dy ds

as desired. �

Finally, we come to the term II.

Lemma 6.7. If a is accretive, and if A and A∗ are t-independent and satisfy the
De Giorgi-Nash-Moser condition, then

(6.8) II ≤ C
ˆ
Rn+1

+

(ˆ
Rn+1

+

s

(s+ t+ |x− y|)n+2
|∇u(y, s)| dy ds

)2

t dx dt.

Note that the estimate (6.8) together with (6.5) above imply that

II ≤ C
ˆ
Rn+1

+

|∇u(y, s)|2s dy ds.

Proof. Recall that

II =
∑
Q∈W

ˆ
Q

( ∑
R∈F (Q)

|uR − uQ|
ˆ
R

∣∣∣∂3
t ΓA

T

(x,t)(y, s)
1

a(y)

∣∣∣ dy ds)2

t dx dt.

To analyze the inner sum, we establish some notation. As in the proof of
Lemma 6.6, if R ∈ W is a cube, we let π(R) be the projection of R onto Rn.
We let P (R) denote the Whitney cube directly above R, so π(P (R)) is the dyadic
parent of π(R). Let δ(Q,R) = `(Q) + `(R) + dist(π(Q), π(R)). If (x, t) ∈ Q and
(y, s) ∈ R for some R ∈ F (Q), then

|(y, s)− (x, t)| ≈ |x− y|+ max(s, t) ≈ δ(Q,R).

Here U ≈ V if U ≤ CV and V ≤ CU . Applying (3.19), we see that

II ≤ C
∑
Q∈W

ˆ
Q

(∑
R∈W

|uR − uQ|
|R|

δ(Q,R)n+2

)2

t dx dt.

To analyze the sum over R ∈W , we will divide W into a “discretized cone” over
Q and a leftover region. Let G′(Q) be the discretized cone given by

G′(Q) = {R ∈W : `(R) > `(Q), `(R) > dist(π(R), π(Q))}.
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Let G(Q) be the larger discretized cone given by

G(Q) = {R ∈W : P (R) ∈ G′(Q).}

Let B(Q) = G(Q) \G′(Q) be the lower boundary of G(Q). If R is a cube, let T (R)
be the set of cubes below R, that is,

T (R) = {S ∈W : π(S) ( π(R)}.

Observe that if R, S ∈ B(Q) are distinct cubes then their projections π(R) and
π(S) are disjoint, and so if R ∈ B(Q) then T (R)∩G(Q) is empty. Furthermore, if S
is a Whitney cube, then either S ∈ G(Q) or S ∈ T (R) for a unique cube R ∈ B(Q).

Thus, we may write

II ≤ C
∑
Q∈W

ˆ
Q

( ∑
R∈G(Q)

|uR − uQ|
|R|

δ(Q,R)n+2

)2

t dx dt

+ C
∑
Q∈W

ˆ
Q

( ∑
R∈B(Q)

∑
S∈T (R)

|uS − uQ|
|S|

δ(Q,S)n+2

)2

t dx dt.

We may write |uS − uQ| ≤ |uS − uR|+ |uR − uQ| in the second sum. Observe that
if R ∈ B(Q) = G(Q) \ G′(Q), then R is not in G′(Q) but the cube P (R) above it
is, and so either `(R) ≈ `(Q) or `(R) ≈ dist(π(R), π(Q)). Thus if S ∈ T (R) then
δ(S,Q) ≈ `(R) ≈ δ(R,Q). So we may write

II ≤ C
∑
Q∈W

ˆ
Q

( ∑
R∈G(Q)

|uR − uQ|
|R|

δ(Q,R)n+2

)2

t dx dt

+ C
∑
Q∈W

ˆ
Q

( ∑
R∈B(Q)

∑
S∈T (R)

|uS − uR|
|S|

δ(Q,R)n+2

)2

t dx dt

= C(V + V I).

We begin by analyzing the term V I. Choose some R ∈ B(Q). Let L0 = {R},
and let Lj = {S ∈ T (R) : `(S) = 2−j`(R)}. Then∑

S∈T (R)

|uS − uR| |S| = |R|
∞∑
j=1

2−j(n+1)
∑
S∈Lj

|uS − uR|.

Let Uj =
∑
S∈Lj

|uS − uR|; observe that U0 = 0. Then for each j ≥ 1,

Uj =
∑
S∈Lj

|uS − uR| ≤
∑
S∈Lj

|uS − uP (S)|+
∑
S∈Lj

|uP (S) − uR|.

The second term is equal to 2nUj−1. To contend with the first term, we apply the
Poincaré inequality in the set S ∪ P (S). Then

|uS − uP (S)| ≤ |uS − uS∪P (S)|+ |uP (S) − uS∪P (S)|

=
1

|S|

ˆ
S

|u− uS∪P (S)|+
1

2n|S|

ˆ
P (S)

|u− uS∪P (S)|

≤ 1

|S|

ˆ
S∪P (S)

|u− uS∪P (S)| ≤ C
`(S)

|S|

ˆ
S∪P (S)

|∇u(y, s)| dy ds.
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Thus,

Uj ≤ 2nUj−1 +
∑
S∈Lj

C

`(S)n

ˆ
S

|∇u|+ 22n
∑

S∈Lj−1

C

`(S)n

ˆ
S

|∇u|.

Since U0 = 0, by induction

Uj ≤
j−1∑
k=0

(2n + 1)2n(j−k)
∑
S∈Lk

C

`(S)n

ˆ
S

|∇u|+
∑
S∈Lj

C

`(S)n

ˆ
S

|∇u|

which may be simplified to

Uj ≤ C
j∑

k=0

2n(j−k)
∑
S∈Lk

1

`(S)n

ˆ
S

|∇u|.

Thus∑
S∈T (R)

|uS − uR| |S| = |R|
∞∑
j=1

2−j(n+1)Uj

≤ |R|
∞∑
j=1

2−j(n+1)

j∑
k=0

2n(j−k)
∑
S∈Lk

C

`(S)n

ˆ
S

|∇u(y, s)| dy ds

= |R|
∞∑
k=0

2−k−nk
∑
S∈Lk

C

`(S)n

ˆ
S

|∇u(y, s)| dy ds

≤ C
∑

S∈T (R)∪{R}

`(S)

ˆ
S

|∇u(y, s)| dy ds.

So

V I =
∑
Q∈W

ˆ
Q

( ∑
R∈B(Q)

1

δ(Q,R)n+2

∑
S∈T (R)

|uS − uR| |S|
)2

t dx dt

≤ C
∑
Q∈W

ˆ
Q

( ∑
R∈B(Q)

1

δ(Q,R)n+2

∑
S∈T (R)∪{R}

`(S)

ˆ
S

|∇u(y, s)| dy ds
)2

t dx dt

≤ C
ˆ
Rn+1

+

(ˆ
Rn+1

+

s

(t+ s+ |x− y|)n+2
|∇u(y, s)| dy ds

)2

t dx dt

because δ(Q,R) ≈ δ(Q,S) ≈ t+ s+ |x− y| for any S ∈ T (R), any R ∈ B(Q) and
any (x, t) ∈ Q and (y, s) ∈ S.

Now, recall that

V =
∑
Q∈W

ˆ
Q

( ∑
R∈G(Q)

|uR − uQ|
|R|

δ(Q,R)n+2

)2

t dx dt.

Observe that if R ∈ G(Q) then dist(π(R), π(Q)) ≤ C`(R) and so δ(R,Q) ≈ `(R);
thus

V ≤ C
∑
Q∈W

ˆ
Q

( ∑
R∈G(Q)

|uR − uQ|
1

`(R)

)2

t dx dt.

Let Gj(Q) = {R ∈ G(Q) : `(R) = 2j`(Q)}. Let xQ be the midpoint of the cube
π(Q). There is some constant c depending only on dimension such that ifR ∈ Gj(Q)
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then R is contained in the cylinder Cj(Q) = ∆(xQ, c 2j`(Q))× (2j`(Q), 2j+1`(Q)).
Therefore,∑

R∈Gj(Q)

|uR − uQ| =
1

2j(n+1)|Q|
∑

R∈Gj(Q)

ˆ
R

|u(y, s)− uQ| dy ds

≤ C
 
Cj(Q)

|u(y, s)− uCj(Q)| dy ds+ C|uCj(Q) − uQ|.

If j ≥ 1, then

|uCj(Q) − uQ| ≤ |uC0(Q) − uQ|+
j∑

k=1

|uCk(Q) − uCk−1(Q)|.

Applying the Poincaré inequality in Ck(Q) ∪ Ck−1(Q), we see that

|uCk(Q) − uCk−1(Q)| ≤
C

2kn`(Q)n

ˆ
Ck(Q)∪Ck−1(Q)

|∇u(y, s)| dy ds.

Observe that Q ⊂ C0(Q), and so by the Poincaré inequality,

|uC0(Q) − uQ| ≤ C `(Q)

 
C0(Q)

|∇u(y, s)| dy ds.

Finally,
ffl
Cj(Q)

|u(y, s)− uCj(Q)| dy ds ≤ C2j`(Q)
ffl
Cj(Q)

|∇u(y, s)| dy ds. So

∑
R∈Gj(Q)

|uR − uQ| ≤
j∑

k=0

C

2kn`(Q)n

ˆ
Ck(Q)

|∇u(y, s)| dy ds.

Thus, ∑
R∈G(Q)

1

`(R)
|uR − uQ| =

∞∑
j=0

1

2j`(Q)

∑
R∈Gj(Q)

|uR − uQ|

≤
∞∑
j=0

1

2j`(Q)

j∑
k=0

C

2kn`(Q)n

ˆ
Ck(Q)

|∇u(y, s)| dy ds

= C

∞∑
k=0

2k`(Q)

2k(n+2)`(Q)n+2

ˆ
Ck(Q)

|∇u(y, s)| dy ds.

But if (y, s) ∈ Ck(Q) and (x, t) ∈ Q, then |x− y| + t ≤ C2k`(Q) and s ≈ 2k`(Q).
Thus,

V ≤ C
∑
Q∈W

ˆ
Q

( ∑
R∈G(Q)

|uR − uQ|
1

`(R)

)2

t dx dt

≤ C
∑
Q∈W

ˆ
Q

( ∞∑
k=0

2k`(Q)

2k(n+2)`(Q)n+2

ˆ
Ck(Q)

|∇u(y, s)| dy ds
)2

t dx dt

≤ C
ˆ
Rn+1

+

(ˆ
Rn+1

+

s

(|x− y|+ t+ s)n+2
|∇u(y, s)| dy ds

)2

t dx dt.

This completes the proof. �
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7. A nontangential bound

We have established that, if h ∈ L2(Rn), then under appropriate assumptions
on a, A and B,

(7.1)

ˆ
Rn

ˆ ∞
0

|∂2
tFh(x,±t)|2t dt dx ≤ C‖h‖2L2(Rn).

In this section we will prove that, if h ∈ L2(Rn), then under appropriate as-
sumptions on a, A and B,

9t∇∂tEh9+ + ‖Ñ+(∇Eh)‖L2(Rn) ≤ C‖h‖2L2(Rn).

Recall that Eh = Fh − SA
(

1
aS
⊥,+
B∗ h

)
; thus by (2.26) and (3.23), the difference

Eh−Fh satisfies square-function estimates and nontangential estimates, and so we
may work with E or F , whichever is more convenient.

This proof will require several steps.

Lemma 7.2. Suppose that v ∈W 2
1,loc(R

n+1
± ) satisfies the conditions of Lemma 4.8,

that is, that v, ∂n+1v and ∂2
n+1v satisfy the Caccioppoli inequality in Rn+1

± .
Suppose furthermore that there is a constant C1 such that

(7.3) ‖∇v( · , t)‖L2(Rn) ≤ C1|t|−1.

Then there is some constant C, depending only on the constants in the Caccioppoli
inequality, such that

ˆ ∞
0

ˆ
Rn

|∇v(x,±t)|2 t dx dt ≤ C
ˆ ∞

0

ˆ
Rn

|∂tv(x,±t)|2 t dx dt+ C2
1 .

We will immediately apply this lemma to ∂tFh in the lower half-space. Later in
Corollary 7.12, we will apply this lemma to ∂tEh in the upper half-space as well.
The bound (7.3) is simpler to establish in the lower half-space because Fh(x, t)
is defined in terms of an integral over Rn+1

+ , and certain direct bounds can be
computed if (x, t) does not lie in the integrand.

Proof. This parallels the proof of [3, Formula (5.5)], where a similar inequality was
proven for the single layer potential.

Define um(t) =
´
Rn |∇∂mt v(x,±t)|2 dx. Observe that by assumption u0(t) ≤

C2
1 t
−2, and by the Caccioppoli inequality,
ˆ ∞

0

t3 u1(t) dt =

ˆ
Rn+1

+

|∇∂tv(x,±t)|2 t3 dx dt ≤ C
ˆ
Rn+1

+

|∂tv(x,±t)|2 t dx dt.

We wish to bound
´∞

0
t u0(t) dt.

Suppose t > 0. By (4.11), u0 is locally Lipschitz continuous. Thus if 0 < ε <
S <∞, then

ˆ S

ε

t u0(t) dt =

ˆ S

ε

t u0(S) dt−
ˆ S

ε

t

ˆ S

t

u′0(s) ds dt

≤ C2
1

2
+

1

2

ˆ S

ε

s2 |u′0(s)| ds.



40 ARIEL BARTON AND SVITLANA MAYBORODA

But |u′0(s)| ≤ 2
√
u0(s)u1(s) and so

ˆ S

ε

t u0(t) dt ≤ C2
1

2
+

ˆ S

ε

s2
√
u0(s)u1(s) ds

≤ C2
1

2
+

1

2

ˆ S

ε

s u0(s) ds+
1

2

ˆ S

ε

s3 u1(s) ds.

Rearranging terms, we have thatˆ S

ε

t u0(t) dt ≤ C2
1 +

ˆ S

ε

s3 u1(s) ds.

Taking the limit as ε→ 0+ and S →∞, we have thatˆ ∞
0

ˆ
Rn

|∇v(x,±t)|2 t dx dt =

ˆ ∞
0

t u0(t) dt ≤ C2
1 +

ˆ ∞
0

t3 u1(t) dt

≤ C2
1 + C

ˆ ∞
0

ˆ
Rn

|∂tv(x,±t)|2 t dx dt

as desired. �

We now proceed to nontangential estimates in the lower half-space.

Lemma 7.4. Suppose that a, A and B are t-independent, a is accretive, A satisfies
the single layer potential requirements of Definition 2.27, B and B∗ satisfy the De
Giorgi-Nash-Moser condition and SB∗ satisfies the square-function estimate (2.25).

Then for every h ∈ L2(Rn), we have that

‖Ñ−(∇Eh)‖L2(Rn) ≤ C‖h‖L2(Rn)(7.5)

and the boundary value ∇Eh
∣∣
∂Rn+1
−

exists in the sense of (2.10).

Proof. By the definitions (2.29) and (2.23) of F and SA,

(7.6) ∇∂tFh(x,−t) = −
ˆ ∞

0

∇∂2
t SA

(
1

a
∂sSB∗h(s)

)
(x,−t− s) ds

where as in the proof of Lemma 5.10 we let SB∗h(s)(y) = SB∗h(y, s). Because A
and B∗ are t-independent and have bounded layer potentials, if t > 0, then by (3.3),
(3.24) and the Caccioppoli inequality, ‖∇∂tFh( · ,−t)‖L2(Rn) ≤ Ct−1‖h‖2L2(Rn).

Thus by Lemma 7.2,ˆ ∞
0

ˆ
Rn

|∇∂tFh(x,−t)|2 t dx dt ≤ C
ˆ ∞

0

ˆ
Rn

|∂2
tFh(x,−t)|2 t dx dt+ C‖h‖2L2(Rn).

By Theorem 6.1 this is at most C‖h‖2L2(Rn).

Since divA∇(∂tFh) = 0 in Rn+1
− , we may apply Theorem 3.6 in the lower half-

space. Thus

(7.7) ‖N−(∂tFh)‖2L2(Rn) ≤
ˆ
Rn+1

+

|∇∂tFh(x,−t)|2 t dx dt ≤ C‖h‖2L2(Rn)

and the boundary value

F⊥,−h = ∂n+1Fh
∣∣
∂Rn+1
−

exists in the sense of L2 functions.
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Because A satisfies the single layer potential requirements, S⊥,−A is invertible

L2(Rn) 7→ L2(Rn), and so there is some g ∈ L2(Rn) with S⊥,−A g = F⊥,−h. Fur-
thermore, ‖g‖L2(Rn) ≤ C‖h‖L2(Rn).

By (3.24), if u = ∂n+1SAg, then ‖N−u‖L2(Rn) < ∞. By (7.7) the same is

true of u = ∂n+1Fh, and so by uniqueness of solutions to (D)A2 , we have that
∂n+1SAg = ∂n+1Fh in Rn+1

− . By (2.26), and by (5.3) and Theorem 4.1, we have
that u = SAg − Fh satisfies the conditions of Lemma 3.9, and so SAg = Fh in
Rn+1
− up to an additive constant.
In particular, by (2.26) we have that

‖Ñ−(∇Fh)‖L2(Rn) ≤ C‖h‖L2(Rn).

By definition of Eh and by (2.26), (7.5) is valid. By Theorem 3.7, and because
divA∇(Eh) = 0 in Rn+1

− , we have that ∇Eh|∂Rn+1
−

exists and lies in L2(Rn). �

Lemma 7.8. Suppose that a, A and B are as in Lemma 5.1. Let h ∈ L2(Rn).
Then

‖N+(∂tEh)‖L2(Rn) ≤ C‖N−(∂tEh)‖L2(Rn) + C‖h‖L2 .

Proof. This is essentially the analogue to Cotlar’s inequality for singular integral
operators (see, for example, [33, estimate (8.2.2)]) reformulated to apply to our
potential E . We prove it using similar arguments.

Let x∗ ∈ Rn and let (x, t) ∈ γ+(x∗) for some t > 0, where γ+ is the nontangential
cone given by (2.2). There is some constant j0, depending on the aperture a of the
nontangential cones, such that x ∈ ∆(x∗, 2j0t). Let A0 = ∆0 = ∆(x∗, 2j0+1t), and
for each j ≥ 1, let Aj be the annulus ∆(x∗, 2j0+j+1t)\∆(x∗, 2j0+jt). Let hj = h1Aj

,

so h =
∑∞
j=0 hj . Then

|∂n+1Eh(x, t)| ≤ |∂n+1Eh(x,−t)|+
∞∑
j=0

|∂n+1Ehj(x, t)− ∂n+1Ehj(x,−t)|.

Observe that |∂tEh(x,−t)| ≤ N−(∂n+1Eh)(x∗). By (5.2) and Corollary 4.5, if
1 < p < n then

|∂tFhj(x, t)|+ |∂tFhj(x,−t)| ≤
C

tn/p
‖hj‖Lp(Rn) ≤ C2jn/pM(|h|p)(x∗)1/p

where M denotes the Hardy-Littlewood maximal function. Recall that

Ehj(x, τ) = Fhj(x, τ)− SA
(

1

a
S⊥,+B∗ hj

)
(x, τ)

= −
ˆ
Rn+1

+

∂sΓ
A
(y,s)(x, τ)

1

a(y)
∂sSB∗hj(y, s) ds dy − SA

(
1

a
S⊥,+B∗ hj

)
(x, τ).

Applying (3.22) to SA and (3.24) to S⊥,+B∗ , we see that the same is true of ∂tEhj .
We will apply this bound only for j = 0 and j = 1; we seek a better bound for
j ≥ 2.

Suppose j ≥ 2. Let Ãj = Aj−1 ∪ Aj ∪ Aj+1. We divide Rn+1
+ into three pieces:

I = Ãj × (0, 2jt), II = Ãj × (2jt,∞) and III = (Rn \ Ãj)× (0,∞). We integrate
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by parts in s in II and III. Recalling the definition of SA, we have that

∂τEhj(x, τ) =

ˆ
I

∂2
sΓA(y,s)(x, τ)

1

a(y)
∂sSB∗hj(y, s) ds dy

−
ˆ
II∪III

∂sΓ
A
(y,s)(x, τ)

1

a(y)
∂2
sSB∗hj(y, s) ds dy

+

ˆ
Ãj

∂τΓA(y,2jt)(x, τ)
1

a(y)
∂n+1SB∗hj(y, 2jt) dy

− ∂τSA
(

1Ãj

1

a
S⊥,+B∗ hj

)
(x, τ).

Thus ∂n+1Ehj(x, t)− ∂n+1Ehj(x,−t) may be written as a sum of four terms. Ap-
plying the bound (3.24) on SB∗ , the bound (3.22) and Hölder continuity to SA and
SB∗ , and the bounds (3.19) and (3.20) on ΓA(y,s)(x, τ), we may show that each term

is at most C2−jαM(|h|p)(x∗)1/p.
Thus, if 1 < p < n then

|∂tEh(x, t)| ≤ N−(∂n+1Eh)(x∗) +

∞∑
j=0

C2−jαM(|h|p)(x∗)1/p.

Choosing 1 < p < 2 and recalling that M is bounded Lp 7→ Lp for any 1 < p <∞,
we have that

‖N+(∂n+1Eh)‖L2(Rn) ≤ ‖N−(∂n+1Eh)‖L2(Rn) + C‖h‖L2(Rn)

as desired. �

Lemma 7.9. Suppose that a, A and B are t-independent, that a is accretive, and
that A and B∗ satisfy the single layer potential requirements of Definition 2.27.
Then for all h ∈ L2(Rn),

(7.10) ‖Ñ+(∇Eh)2‖L2(Rn) ≤ C‖h‖L2(Rn)

and ∇Eh|∂Rn+1
+

exists and satisfies

(7.11) ∇Eh
∣∣
∂Rn+1

+

= ∇Eh
∣∣
∂Rn+1
−

.

Proof. First, assume that h ∈ S where S is as in Lemma 5.10. By Lemmas 5.10
and 7.4, the formula (7.11) is valid, and so we may define E±h = Eh|∂Rn+1

±
.

Let x∗ ∈ Rn and let (x, t) ∈ γ(x∗). By Theorem 4.1 and Corollary 4.7, we have
that

 
B((x,t),t/2)

|∇Eh|2 ≤ C

r2

 
B((x,t),5t/8)

|Eh− E|2 ≤ C

r2

( 
B((x,t),3t/4)

|Eh− E|

)2

for any constant E.
If (y, s) ∈ Rn+1

+ , then

|Eh(y, s)− E| ≤ |Eh(y, s)− E+h(y)|+ |E+h(y)− E|
≤ sN+(∂n+1Eh)(y) + |E+h(y)− E|.
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Let ∆ = ∆(x∗, Ct) where C is large enough that ∆(x, t) ⊂ ∆(x∗, Ct). Then 
B((x,t),t/2)

|∇Eh|2 ≤ C

t2

( 
∆

tN+(∂n+1Eh)(y) + |E+h(y)− E| dy
)2

≤ C
( 

∆

N+(∂n+1Eh)(y) dy

)2

+
C

r2

( 
∆

|E+h(x)− E| dx
)2

.

Choose E =
ffl

∆
Eh(x, 0) dx and apply the Poincaré inequality. We conclude that

Ñ+(∇Eh)(x∗)2 = sup
(x,t)∈γ(x∗)

 
B((x,t),t/2)

|∇Eh|2

≤ CM(N+(∂tEh))(x∗)2 + CM(∇‖E+h)(x∗)2.

By Lemma 7.4 and Lemma 7.8, and by the L2-boundedness of the Hardy-Littlewood
maximal operator, we have that (7.10) is valid for all h ∈ S.

We now must pass to arbitrary h ∈ L2(Rn). Define

Ñδ,RF (x) = sup

{( 
B((y,s),s/2)

|F |2
)1/2

: (y, s) ∈ γ+(x), δ < s < R, |y| < R

}
.

By (5.2), (3.22) and Theorem 4.1, for any fixed δ > 0, R < ∞ the map h 7→
Ñδ,R(∇Eh) is continuous on L2(Rn). Thus because S is dense in L2(Rn), we have
that for any h ∈ L2(Rn),

‖Ñδ,R(∇Eh)‖L2(Rn) ≤ C‖h‖L2(Rn)

uniformly in δ, R. Letting δ → 0 and R→∞ establishes (7.10). Recall that (7.11)
is valid for all h ∈ S. By (7.10) and Lemma 4.8, we may extend (7.11) to all of
L2(Rn). �

Corollary 7.12. Suppose that a, A and B are as in Lemma 7.9. If h ∈ L2(Rn),
then ˆ ∞

0

ˆ
Rn

|∇∂tEh(x, t)|2 t dx dt ≤ C‖h‖2L2(Rn).

Proof. By Theorem 6.1, (2.25) and the L2-boundedness of S⊥,+B∗ , we have thatˆ ∞
0

ˆ
Rn

|∂2
t Eh(x, t)|2 t dx dt ≤ C‖h‖2L2(Rn).

By Lemmas 4.8 and 7.9, we have that

‖∇∂tEh( · , t)‖L2(Rn) ≤
C

t
‖Ñ+(∇Eh)‖L2(Rn) ≤

C

t
‖h‖L2(Rn)

and so the conclusion follows from Lemma 7.2. �

8. The proof of the main theorem

In this section, we will first prove an invertibility result for the potential E =
EB,a,A. We will use this invertibility result to prove existence of solutions to the
fourth-order Dirichlet problem. Finally, we will conclude this paper by proving
uniqueness of solutions and establishing a Fatou-type theorem.

We remark that the invertibility argument and the construction of solutions
in this section closely parallels the construction of solutions for the biharmonic
Dirichlet problem of [19] and [53].

The invertibility result we will prove is the following.
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Lemma 8.1. Suppose that a, A and B are t-independent, that a is accretive and
that A and A∗ satisfy the single layer potential requirements of Definition 2.27.
Then there is some ε > 0 and some C > 0, depending only on the parameters listed
in Theorem 2.19, such that if

‖Im a‖L∞(Rn) + ‖A−B‖L∞(Rn) < ε

then the mapping h 7→ ∂n+1EB,a,Ah|∂Rn+1
±

is invertible on L2(Rn), and its inverse

has norm at most C.

Proof. Define E⊥B,a,Ah = ∂n+1EB,a,Ah|∂Rn+1
−

. We begin by showing that E⊥A,a,A is

invertible for a real; it is for this reason that we require that both A and A∗ satisfy
the single layer potential requirements.

Choose some h ∈ S, where S ⊂ L2(Rn) is as in Lemma 5.10. By definition of
the single layer potential,ˆ

Rn

g(x) ∂tFA,a,Ah(x,−t) dx =

ˆ
Rn

ˆ ∞
0

∂2
t SAT g(y, s+ t)

1

a(y)
∂sSA∗h(y, s) ds dy.

Integrating by parts and applying the dominated convergence theorem yields thatˆ
Rn

g(x) E⊥A,a,Af(x) dx = − lim
t→0−

ˆ
Rn

ˆ ∞
0

∂sSAT g(y, s− t) 1

a(y)
∂2
sSA∗f(y, s) ds dy

=

ˆ
Rn

S⊥,+
AT g(y)

1

a(y)
S⊥,+A∗ f(y) dy −

ˆ
Rn

f(x) E⊥
A,a,A

g(x) dx.

By density of S and by the L2-boundedness of E⊥A,a,A and E⊥
A,a,A

, we have that for

any h ∈ L2(Rn),ˆ
Rn

h̄ E⊥A,a,Ah+

ˆ
Rn

h E⊥
A,a,A

h̄ =

ˆ
Rn

1

a(y)
S⊥,+
AT h(y)S⊥,+A∗ h(y) dy.

Observe that EA,a,Ah(x, t) = EA,a,Ah̄(x, t). Thus, if a is real, then

ˆ
Rn

h E⊥
A,a,A

h̄ dσ =

ˆ
Rn

h̄ E⊥A,a,Ah dσ

and so

Re

ˆ
Rn

h̄ E⊥A,a,Ah dσ =
1

2

ˆ
Rn

1

a(Y )
|S⊥,+A∗ h(y)|2 dσ(Y ) ≥ 1

C
‖S⊥,+A∗ h‖2L2(Rn).

Thus because A∗ satisfies the single layer potential requirements,∣∣∣∣ˆ
Rn

h̄ E⊥A,a,Ah dσ
∣∣∣∣ ≥ 1

C
‖h‖2L2(Rn)

and so E⊥A,a,A must be one-to-one. But the adjoint (E⊥A,a,A)∗ must also be one-to-one,

and so E⊥A,a,A must be invertible. Furthermore, (E⊥A,a,A)−1 is bounded L2(Rn) 7→
L2(Rn), as desired.

We prove invertibility for ‖Im a‖L∞ or ‖A−B‖L∞ small using standard analyt-
icity arguments. Specifically, the mapping a 7→ E⊥A,a,A is analytic in the sense that

if z 7→ az is analytic D 7→ L∞(Rn) for some D ⊂ C, then z 7→ E⊥A,az,Ah is analytic

D 7→ L2(Rn) for any h ∈ L2(Rn). Furthermore, under our assumptions, if a0 is
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real and accretive then ‖E⊥A,a,Ah‖L2(Rn) is bounded for all t-independent a in an

L∞ neighborhood of a0; thus if ‖a− a0‖L∞ is small enough, then

‖E⊥A,a,A − E⊥A,a0,A‖L2(Rn)7→L2(Rn) ≤ C‖a− a0‖L∞(Rn).

Thus, if ‖Im a‖L∞(Rn) is small enough then E⊥A,a,A is invertible on L2(Rn). Similarly,

invertibility of E⊥B,a,A for ‖A−B‖L∞(Rn) small enough follows from analyticity of

the map B 7→ ΓBX . �

We now use this invertibility result to prove existence of solutions to the fourth-
order Dirichlet problem.

Theorem 8.2. Suppose that a, A and B satisfy the conditions of Lemma 8.1. Let
f ∈W 2

1 (Rn) and let g ∈ L2(Rn).
Then there exist a constant c and an h ∈ L2(Rn), with

‖h‖L2(Rn) ≤ C‖∇f‖L2(Rn) + C‖g‖L2(Rn),

such that

u(X) = −DAf(X)− SAg(X) + EB,a,Ah(X) + c

satisfies 
L∗B(aLAu) = 0 in Rn+1

+ ,

u = f on ∂Rn+1
+ ,

~e ·A∇u = g on ∂Rn+1
+

where L∗B(aLAu) = 0 in the sense of Definition 2.9 and where u = f , ~e ·A∇u = g
in the sense that

lim
t→0+

‖u( · , t)− f‖W 2
1 (Rn) + ‖~e ·A∇u( · , t)− g‖L2(Rn) = 0.

Furthermore,

‖Ñ+(∇u)‖L2(Rn) + 9t LAu9+ + 9t∇∂tu9+ ≤ C‖∇f‖L2(Rn) + C‖g‖L2(Rn).(8.3)

Proof. Let v(X) = −DAf(X) − SAg(X), so that divA∇v = 0 in Rn+1 \ Rn. By
(3.29) and (2.26), and by (3.30) and (3.23), we have that

(8.4) ‖Ñ±(∇v)‖L2(Rn) + 9t∇∂tv9 ≤ C‖∇f‖L2(Rn) + C‖g‖L2(Rn).

By Theorem 3.7, ∂n+1v|∂Rn+1
−

exists and lies in L2(Rn). Let h ∈ L2(Rn) be such

that

∂n+1EB,a,Ah
∣∣
∂Rn+1
−

= −∂n+1v|∂Rn+1
−

.

By Lemma 8.1, h exists and satisfies ‖h‖L2(Rn) ≤ C‖∇f‖L2(Rn) +C‖g‖L2(Rn). Thus
by Lemma 7.9 and Corollary 7.12,

(8.5) ‖Ñ±(∇EB,a,Ah)‖L2(Rn) + 9t∇∂tEB,a,Ah9 ≤ C‖∇f‖L2(Rn) + C‖g‖L2(Rn).

By (5.7), LAEB,a,Ah = (1/a)∂2
n+1SB∗h and so by (2.25),

9t LAEB,a,Ah9+ ≤ C‖h‖L2(Rn) ≤ C‖∇f‖L2(Rn) + C‖g‖L2(Rn).

Let w = v+ EB,a,Ah = −DAf −SAg+ EB,a,Ah. Then w satisfies (8.3). By (5.7),

L∗B(aLAw) = 0 in Rn+1
+ in the sense of Definition 2.9. We need only show that for

some constant c, u = w + c has the correct boundary values.
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By our choice of h, ∂n+1w = 0 on ∂Rn+1
− . By (8.4) and (8.5), ∂n+1w is a (D)A2 -

solution in Rn+1
− , and so ∂n+1w = 0 in Rn+1

− . Again by (8.4) and (8.5), w satisfies

the conditions of Lemma 3.9, and so w is constant in Rn+1
− .

By (3.25), (3.26), (3.31), and (3.32),

lim
t→0+

∇‖v( · , t)−∇‖v( · ,−t) = ∇f, lim
t→0+

~e ·A∇v( · , t)− ~e ·A∇v( · ,−t) = g

in L2(Rn), and by (7.11) the same is true of w. Since w is constant in Rn+1
− , this

yields that ~e · A∇w|∂Rn+1
+

= g and that ∇‖w|∂Rn+1
+

= ∇f . As in Remark 2.18 we

have that w → f−c, for some constant c, pointwise nontangentially and in L2(Rn).
Letting u = w + c completes the proof. �

We conclude this paper by proving a Fatou-type theorem and uniqueness of
solutions.

Theorem 8.6. Suppose that a, A and B are t-independent, that a is accretive, and
that A and B∗ satisfy the single layer potential requirements of Definition 2.27. We
do not require that ‖Im a‖L∞ or ‖A−B‖L∞ be small.

Suppose that u satisfies{
L∗B(aLAu) = 0 in Rn+1

+ ,

‖Ñ+(∇u)‖L2(Rn) + 9t LAu9+ <∞.

Then ~G = ∇u|∂Rn+1
+

exists in the sense of (2.10) and satisfies

(8.7) ‖~G‖L2(Rn) ≤ C‖Ñ+(∇u)‖L2(Rn) + C9t LAu9+.

Furthermore, there exist functions uA ∈ W 2
1,loc(R

n+1
+ ) and h ∈ L2(Rn) that

satisfy the estimate

‖Ñ+(∇uA)‖L2(Rn) + ‖h‖L2(Rn) ≤ C‖Ñ+(∇u)‖L2(Rn) + C9t LAu9+

and such that

u = uA + EB,a,Ah and divA∇uA = 0 in Rn+1
+ .

Proof. If L∗B(aLAu) = 0 in the sense of Definition 2.9, then there is some w ∈
W 2

1,loc(R
n+1
+ ) such that w = aLAu in the weak sense. Furthermore, divB∗∇w = 0

in Rn+1
+ .

Now, observe that by the De Giorgi-Nash-Moser condition, Theorem 4.1 and the

Poincaré inequality, and the definition of Ñ+,

|w(x, t)| ≤ C

( 
B((x,t),t/4)

|w|2
)1/2

≤ C

t

( 
B((x,t),t/2)

|∇u|2
)1/2

≤ C

t
inf

|x−y|<t/C
Ñ+(∇u)(y) ≤ C

t

( 
∆(x,t/C)

Ñ+(∇u)2

)1/2

≤ Ct−1−n/2‖Ñ+(∇u)‖L2(Rn).

We define

v(x, t) =

ˆ ∞
t

w(x, s) ds =

ˆ ∞
0

w(x, t+ s) ds.
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Observe that the integral converges absolutely for all t > 0. Furthermore, v ∈
W 2

1,loc(R
n+1
+ ) and LB∗v = 0. Using Lemma 4.8, we may bound ∇v as follows:

‖∇v( · , t)‖L2(Rn) ≤ C
ˆ ∞
t

‖∇w( · , s)‖L2(Rn) ds ≤
ˆ ∞
t

C

s
‖w( · , s)‖L2(Rn) ds

≤
ˆ ∞
t

C

s2
‖Ñ+(∇u)‖L2(Rn) ds ≤

C

t
‖Ñ+(∇u)‖L2(Rn).

Thus, by Lemma 7.2,ˆ
Rn+1

+

|∇v(x, t)|2 t dx dt ≤ C
ˆ
Rn+1

+

|∂tv(x, t)|2 t dx dt+ C‖Ñ+(∇u)‖2L2(Rn).

But since ∂n+1v = −w = −aLAu, the right-hand side is at most

C‖Ñ+(∇u)‖2L2(Rn) + C9t LAu92
+.

Thus, by Theorem 3.6,

‖N+v‖L2(Rn) ≤ C‖Ñ+(∇u)‖L2(Rn) + C9t LAu9+.

By invertibility of S⊥,+B∗ and by uniqueness of solutions to (D)B
∗

2 , we have that
v = −∂n+1SB∗h for some h ∈ L2(Rn). So aLAu = w = ∂2

n+1SB∗h.

Let uA = u−EB,a,Ah. By Lemma 5.6, divA∇uA = 0 in Rn+1
+ . Furthermore, by

Lemma 7.9

‖Ñ+(∇uA)‖L2(Rn) ≤ ‖Ñ+(∇u)‖L2(Rn) + C‖h‖L2(Rn)

as desired.
The existence of ~G = ∇u|∂Rn+1

+
and the bound (8.7) follow immediately from

Theorem 3.7 and Lemma 7.9. �

Finally, we prove uniqueness of solutions.

Corollary 8.8. Let a, A, and B be as in Theorem 8.6. Assume in addition that
E⊥B,a,A is one-to-one, where E⊥B,a,Ah = ∂n+1EB,a,Ah|∂Rn+1

±
.

If u satisfies 
L∗B(aLAu) = 0 in Rn+1

+ ,

∇u = 0 on ∂Rn+1
+ ,

‖Ñ+(∇u)‖L2(Rn) + 9t LAu9+ <∞

then u is constant in Rn+1
+ .

Proof. By Theorem 8.6 we have that u = uA + EB,a,Ah for some h ∈ L2(Rn) and

some uA with divA∇uA = 0 in Rn+1
+ .

Let u+ = uA, and let u− = −EB,a,Ah in Rn+1
− . Observe that divA∇u± = 0 in

Rn+1
± . By Lemma 7.9, and because ∇u = 0 on ∂Rn+1

+ , we have that

∇u−
∣∣
∂Rn+1
−

= −∇EB,a,Ah
∣∣
∂Rn+1
−

= −∇EB,a,Ah
∣∣
∂Rn+1

+

= ∇u+

∣∣
∂Rn+1

+

.

Thus by Lemma 3.11, u+ = uA and u− = −EB,a,Ah are constant in Rn+1
± . In

particular, if E⊥B,a,A is one-to-one, then h = 0, and so u = uA + EB,a,Ah is constant

in Rn+1
+ , as desired. �
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regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25–43. MR 0093649

(20 #172)

24. Martin Dindos, Stefanie Petermichl, and Jill Pipher, The Lp Dirichlet problem for second
order elliptic operators and a p-adapted square function, J. Funct. Anal. 249 (2007), no. 2,

372–392. MR 2345337 (2008f:35108)

25. Martin Dindos and David J. Rule, Elliptic equations in the plane satisfying a Carleson mea-
sure condition, Rev. Mat. Iberoam. 26 (2010), no. 3, 1013–1034. MR 2789374

26. Eugene B. Fabes, David S. Jerison, and Carlos E. Kenig, Necessary and sufficient conditions
for absolute continuity of elliptic-harmonic measure, Ann. of Math. (2) 119 (1984), no. 1,

121–141. MR 736563 (85h:35069)

27. C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), no. 3-4,
137–193. MR MR0447953 (56 #6263)

28. R. Fefferman, A criterion for the absolute continuity of the harmonic measure associated with

an elliptic operator, J. Amer. Math. Soc. 2 (1989), no. 1, 127–135. MR 955604 (90b:35068)
29. R. A. Fefferman, C. E. Kenig, and J. Pipher, The theory of weights and the Dirichlet prob-

lem for elliptic equations, Ann. of Math. (2) 134 (1991), no. 1, 65–124. MR MR1114608

(93h:31010)
30. Robert A. Fefferman, Large perturbations of elliptic operators and the solvability of the Lp

Dirichlet problem, J. Funct. Anal. 118 (1993), no. 2, 477–510. MR 1250271 (94k:35082)

31. Jens Frehse, An irregular complex valued solution to a scalar uniformly elliptic equation, Calc.
Var. Partial Differential Equations 33 (2008), no. 3, 263–266. MR 2429531 (2009h:35084)

32. David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second or-

der, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition.
MR 1814364 (2001k:35004)

33. Loukas Grafakos, Modern Fourier analysis, second ed., Graduate Texts in Mathematics, vol.
250, Springer, New York, 2009. MR MR2463316

34. Ana Grau de la Herran, Local Tb Theorems for Square functions and generalizations, Ph.D.

thesis, University of Missouri, Columbia, Missouri, 2012.
35. Qing Han and Fanghua Lin, Elliptic partial differential equations, Courant Lecture Notes in

Mathematics, vol. 1, New York University Courant Institute of Mathematical Sciences, New

York, 1997. MR 1669352 (2001d:35035)
36. Steve Hofmann, Carlos Kenig, Svitlana Mayboroda, and Jill Pipher, Square function/non-

tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic

operators, ArXiv e-prints (2012).
37. Steve Hofmann and Seick Kim, The Green function estimates for strongly elliptic systems of

second order, Manuscripta Math. 124 (2007), no. 2, 139–172. MR MR2341783 (2008k:35110)



50 ARIEL BARTON AND SVITLANA MAYBORODA

38. Steve Hofmann, Svitlana Mayboroda, and Mihalis Mourgoglou, Lp and endpoint solvabil-

ity results for divergence form elliptic equations with complex L∞ coefficients, Unpublished

results.
39. David S. Jerison and Carlos E. Kenig, The Dirichlet problem in nonsmooth domains, Ann. of

Math. (2) 113 (1981), no. 2, 367–382. MR MR607897 (84j:35076)

40. C. Kenig, H. Koch, J. Pipher, and T. Toro, A new approach to absolute continuity of elliptic
measure, with applications to non-symmetric equations, Adv. Math. 153 (2000), no. 2, 231–

298. MR MR1770930 (2002f:35071)

41. Carlos E. Kenig, Harmonic analysis techniques for second order elliptic boundary value prob-
lems, CBMS Regional Conference Series in Mathematics, vol. 83, Published for the Conference

Board of the Mathematical Sciences, Washington, DC, 1994. MR MR1282720 (96a:35040)

42. Carlos E. Kenig and Jill Pipher, The Neumann problem for elliptic equations with nonsmooth
coefficients, Invent. Math. 113 (1993), no. 3, 447–509. MR MR1231834 (95b:35046)

43. , The Neumann problem for elliptic equations with nonsmooth coefficients. II, Duke
Math. J. 81 (1995), no. 1, 227–250 (1996), A celebration of John F. Nash, Jr. MR 1381976

(97j:35021)

44. , The Dirichlet problem for elliptic equations with drift terms, Publ. Mat. 45 (2001),
no. 1, 199–217. MR 1829584 (2002e:35017)

45. Carlos E. Kenig and David J. Rule, The regularity and Neumann problem for non-symmetric

elliptic operators, Trans. Amer. Math. Soc. 361 (2009), no. 1, 125–160. MR MR2439401
(2009k:35050)

46. Joel Kilty and Zhongwei Shen, A bilinear estimate for biharmonic functions in Lipschitz

domains, Math. Ann. 349 (2011), no. 2, 367–394. MR 2753826
47. Svitlana Mayboroda, The connections between Dirichlet, regularity and Neumann problems

for second order elliptic operators with complex bounded measurable coefficients, Adv. Math.

225 (2010), no. 4, 1786–1819. MR 2680190
48. V. Maz’ya, M. Mitrea, and T. Shaposhnikova, The Dirichlet problem in Lipschitz domains

for higher order elliptic systems with rough coefficients, J. Anal. Math. 110 (2010), 167–239.
MR 2753293 (2011m:35088)

49. Norman G. Meyers, An Lpe-estimate for the gradient of solutions of second order elliptic

divergence equations, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 189–206. MR 0159110 (28
#2328)

50. I. Mitrea, M. Mitrea, and M. Wright, Optimal estimates for the inhomogeneous problem for

the bi-laplacian in three-dimensional Lipschitz domains, J. Math. Sci. 172 (2011), no. 1,
24–134.

51. Charles B. Morrey, Jr., Multiple integrals in the calculus of variations, Die Grundlehren der

mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966.
MR 0202511 (34 #2380)

52. J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958),

931–954. MR 0100158 (20 #6592)
53. Jill Pipher and Gregory Verchota, The Dirichlet problem in Lp for the biharmonic equation

on Lipschitz domains, Amer. J. Math. 114 (1992), no. 5, 923–972. MR 1183527 (94g:35069)
54. Jill Pipher and Gregory C. Verchota, Dilation invariant estimates and the boundary G̊arding

inequality for higher order elliptic operators, Ann. of Math. (2) 142 (1995), no. 1, 1–38.

MR 1338674 (96g:35052)
55. David J. Rule, Non-symmetric elliptic operators on bounded Lipschitz domains in the plane,

Electron. J. Differential Equations (2007), No. 144, 8. MR MR2366037 (2008m:35070)

56. Renata Selvaggi and Irene Sisto, An existence theorem for the Dirichlet problem with respect
to the operator ∆2 in certain domains of class C1, Boll. Un. Mat. Ital. B (5) 18 (1981), no. 2,

473–483. MR 629418 (84f:35044)

57. Stephen Semmes, Square function estimates and the T (b) theorem, Proc. Amer. Math. Soc.
110 (1990), no. 3, 721–726. MR 1028049 (91h:42018)

58. Zhongwei Shen, The Lp Dirichlet problem for elliptic systems on Lipschitz domains, Math.

Res. Lett. 13 (2006), no. 1, 143–159. MR 2200052 (2007f:35067)
59. , Necessary and sufficient conditions for the solvability of the Lp Dirichlet problem on

Lipschitz domains, Math. Ann. 336 (2006), no. 3, 697–725. MR 2249765 (2008e:35059)
60. , On estimates of biharmonic functions on Lipschitz and convex domains, J. Geom.

Anal. 16 (2006), no. 4, 721–734. MR 2271951 (2008a:35062)



THE DIRICHLET PROBLEM FOR HIGHER ORDER EQUATIONS 51

61. , The Lp boundary value problems on Lipschitz domains, Adv. Math. 216 (2007),

no. 1, 212–254. MR 2353255 (2009a:35064)

62. Gregory Verchota, The Dirichlet problem for the biharmonic equation in C1 domains, Indiana
Univ. Math. J. 36 (1987), no. 4, 867–895. MR 916748 (88m:35051)

63. , The Dirichlet problem for the polyharmonic equation in Lipschitz domains, Indiana

Univ. Math. J. 39 (1990), no. 3, 671–702. MR 1078734 (91k:35073)
64. Gregory C. Verchota, Potentials for the Dirichlet problem in Lipschitz domains, Poten-

tial theory—ICPT 94 (Kouty, 1994), de Gruyter, Berlin, 1996, pp. 167–187. MR 1404706

(97f:35041)
65. , The biharmonic Neumann problem in Lipschitz domains, Acta Math. 194 (2005),

no. 2, 217–279. MR 2231342 (2007d:35058)

Ariel Barton, School of Mathematics, University of Minnesota, 127 Vincent Hall,
206 Church St. SE, Minneapolis, Minnesota 55455

E-mail address: abarton@math.umn.edu

Svitlana Mayboroda, School of Mathematics, University of Minnesota, 127 Vincent
Hall, 206 Church St. SE, Minneapolis, Minnesota 55455

E-mail address: svitlana@math.umn.edu


	1. Introduction
	2. Notation and the main theorems
	2.1. Elliptic equations and boundary-value problems
	2.2. The main theorems
	2.3. Second-order boundary-value problems and layer potentials
	2.4. Layer potentials for fourth-order differential equations
	2.5. Lipschitz domains

	3. Preliminaries: the second-order theory
	3.1. The fundamental solution
	3.2. Layer potentials

	4. The Caccioppoli inequality and related results
	5. The potentials Eh and Fh
	6. A square-function bound
	7. A nontangential bound
	8. The proof of the main theorem
	Acknowledgements
	References

