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Abstract. We show that if u is a solution to a linear elliptic differential

equation of order 2m ≥ 2 in the half-space with t-independent coefficients, and
if u satisfies certain area integral estimates, then the Dirichlet and Neumann

boundary values of u exist and lie in a Lebesgue space Lp(Rn) or Sobolev space

Ẇ p
±1(Rn). Even in the case where u is a solution to a second order equation,

our results are new for certain values of p.
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1. Introduction

This paper is part of an ongoing study of elliptic differential operators of the
form

(1.1) Lu = (−1)m
∑

|α|=|β|=m

∂α(Aαβ∂
βu)

for m ≥ 1, with general bounded measurable coefficients.
Specifically, we consider boundary value problems for such operators. One such

problem is the Dirichlet problem

(1.2) Lu = 0 in Ω, ∇m−1u = ḟ on ∂Ω

for a specified domain Ω and array ḟ of boundary functions.
We are also interested in the corresponding higher order Neumann problem,

defined as follows. We say that Lu = 0 in Ω in the weak sense if∑
|α|=|β|=m

ˆ
Ω

∂αϕAαβ ∂
βu = 0

for all smooth functions ϕ whose support is compactly contained in Ω. If ϕ is
smooth and compactly supported in Rn+1 ) Ω, then the above integral is no longer
zero; however, it depends only on u and the behavior of ϕ near the boundary, not
the values of ϕ in the interior of Ω. The Neumann problem with boundary data ġ
is then the problem of finding a function u such that

(1.3)
∑

|α|=|β|=m

ˆ
Ω

∂αϕAαβ ∂
βu =

∑
|γ|=m−1

ˆ
∂Ω

∂γϕgγ dσ for all ϕ ∈ C∞0 (Rn+1).

In the second-order case (m = 1), if A and ∇u are continuous up to the boundary,
then integrating by parts reveals that g = ν · A∇u, where ν is the unit outward
normal vector, and so this notion of Neumann problem coincides with the more
familiar Neumann problem in the second order case.

In the higher order case, the Neumann boundary values ġ of u are a linear
operator on {∇m−1ϕ

∣∣
∂Ω

: ϕ ∈ C∞0 (Rn+1)}. Given a bound on the above integral in

terms of, for example, ‖∇m−1ϕ|∂Ω‖Lp′ (∂Ω), we may extend ġ by density to a linear

operator on a closed subspace of Lp
′
(∂Ω); however, gradients of smooth functions

are not dense in Lp
′
(∂Ω), and so ġ lies not in the dual space Lp(∂Ω) but in a

quotient space of Lp(∂Ω). We refer the interested reader to [BM16a, BHM17] for
further discussion of the nature of higher order Neumann boundary values.

In this paper we will focus on trace results. That is, for a specific class of
coefficients A, given a solution u to Lu = 0 in the upper half-space, and given that
a certain norm of u is finite, we will show that the Dirichlet and Neumann boundary
values exist, and will produce estimates on the Dirichlet and Neumann boundary
values ḟ and ġ in formulas (1.2) or (1.3); specifically, we will find norms of u that

force ḟ and ġ to lie in Lebesgue spaces Lp(∂Rn+1
+ ) or Sobolev spaces Ẇ p

±1(∂Rn+1
+ ).

These results may be viewed as a converse to the well posedness results central
to the theory; that is, well posedness results begin with the boundary values ḟ or
ġ and attempt to construct functions u that satisfy the problems (1.2) or (1.3).

We now turn to the specifics of our results.
We will consider solutions u to Lu = 0 in the upper half-space Rn+1

+ , where L is
an operator of the form (1.1), with coefficients that are t-independent in the sense
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that

(1.4) A(x, t) = A(x, s) = A(x) for all x ∈ Rn and all s, t ∈ R.

At least in the case of well posedness results, it has long been known (see
[CFK81, MM81]) that some regularity of the coefficients A in formula (1.1)
is needed. Many important results in the second order theory have been
proven in the case of t-independent coefficients in the half-space; see, for ex-
ample, [KKPT00, KR09, AAA+11, AAH08, AAM10, Bar13, AM14, HKMP15b,
HKMP15a, HMM15b, BM16b, AS16]. The t-independent case may also be
used as a starting point for certain t-dependent perturbations; see, for example,
[KP93, AA11, HMM15a]. In the higher order case, well posedness of the Dirichlet
problem for certain fourth-order differential operators (of a strange form, that is,
not of the form (1.1)) with t-independent coefficients was established in [BM13a].
The theory of boundary value problems for t-independent operators of the form
(1.1) is still in its infancy; the authors of the present paper have begun its study in
the papers [BHM17, BHMa] and intend to continue its study in the present paper,
in [BHM18, BHMb], and in future work.

We will be interested in solutions that satisfy bounds in terms of the Lusin area
integral A+

2 given by

(1.5) A+
2 H(x) =

(ˆ ∞
0

ˆ
|x−y|<t

|H(y, t)|2 dy dt
tn+1

)1/2

for x ∈ Rn.

Our main results may be stated as follows.

Theorem 1.6. Suppose that L is an operator of the form (1.1) of order 2m, asso-
ciated with coefficients A that are t-independent in the sense of formula (1.4) and
satisfy the ellipticity conditions (2.1) and (2.2).

If Lu = 0 in Rn+1
+ , n ≥ 1, let the Dirichlet and Neumann boundary values

Ṫr+
m−1 u and Ṁ+

A u of u be given by formulas (2.6) and (2.13).
There exist some constants ε1 > 0 and ε2 > 0, depending only on the dimension

n+ 1 and the constants λ and Λ in the bounds (2.1) and (2.2), such that the
following statements are valid. (If n+ 1 = 2 or n+ 1 = 3 then ε1 =∞.)

Let v and w be functions defined in Rn+1
+ such that Lv = Lw = 0 in Rn+1

+ .

Suppose that A+
2 (t∇mv) ∈ Lp(Rn) and A+

2 (t∇m∂tw) ∈ Lp(Rn) for some 1 < p <
∞. If p > 2, assume in addition that ∇mv ∈ L2(Rn × (σ,∞)) and ∇m∂n+1w ∈
L2(Rn × (σ,∞)) for all σ > 0. (It is acceptable if the L2 norm approaches infinity
as σ → 0+.)

If p lies in the ranges indicated below, then there exists a constant array ċ and
a function w̃, with Lw̃ = 0 and ∇m∂n+1w̃ = ∇m∂n+1w in Rn+1

+ , such that the
Dirichlet and Neumann boundary values of v and w̃ exist in the sense of formulas
(2.6) and (2.13) and satisfy the bounds

‖Ṫr+
m−1 v − ċ‖Lp(Rn) ≤ Cp‖A+

2 (t∇mv)‖Lp(Rn), 1 < p ≤ 2 + ε1,(1.7)

‖Ṁ+
A v‖Ẇp

−1(Rn) ≤ Cp‖A
+
2 (t∇mv)‖Lp(Rn), 1 < p <∞,(1.8)

‖Ṫr+
m−1 w̃‖Ẇp

1 (Rn) ≤ Cp‖A
+
2 (t∇m∂tw)‖Lp(Rn), 1 < p ≤ 2 + ε2,(1.9)

‖Ṁ+
A w̃‖Lp(Rn) ≤ Cp‖A+

2 (t∇m∂tw)‖Lp(Rn), 1 < p ≤ 2 + ε2.(1.10)
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Define

(1.11) Wp,q(τ) =

(ˆ
Rn

( 
B((x,τ),τ/2)

|∇mw|q
)p/q

dx

)1/p

.

If for some q > 0 and some τ > 0 we have that Wp,q(τ) < ∞, then the bounds
(1.9) and (1.10) are valid with w̃ = w.

If Wp,q(τ) is bounded uniformly in τ > 0 for some fixed q > 0, then

(1.12) ‖Ṁ+
A w‖Lp(Rn) ≤ Cp‖A+

2 (t∇m∂tw)‖Lp(Rn) + Cp,q sup
τ>0

Wp,q(τ)

for all p with 1 < p <∞.

Here the Lp and Ẇ p
−1 norms of the Neumann boundary values are meant in the

sense of operators on (not necessarily dense) subspaces of Lp
′

and Ẇ p′

1 , that is, in
the sense that

‖Ṁ+
A v‖Ẇp

−1(Rn) = sup
ϕ∈C∞0 (Rn+1)

|〈∇m−1ϕ( · , 0), ṀA v〉Rn |
‖∇m−1ϕ( · , 0)‖

Ẇp′
1 (Rn)

,

‖Ṁ+
A w‖Lp(Rn) = sup

ϕ∈C∞0 (Rn+1)

|〈∇m−1ϕ( · , 0), ṀA w̃〉Rn |
‖∇m−1ϕ( · , 0)‖Lp′ (Rn)

.

These results are new in the higher order case. In the second order case, the
bounds (1.7)–(1.10) are known in some cases (in particular, the case p = 2), but
are new for certain other values of p.

Specifically, if n+ 1 ≥ 3, then the bounds (1.7) and (1.8) are new even for second
order operators in the case 1 < p < 2 − ε. Here ε is a positive number depending
on L. The bounds (1.7) and (1.8) for 2− ε < p < 2n/(n− 2) + ε, and the bounds
(1.9) and (1.10) for 2n/(n+2)−ε < p < 2+ε, are known. If n+ 1 ≥ 4, then the case
2n/(n − 2) + ε < p < ∞ of the bound (1.8), and the case 1 < p < 2n/(n + 2) − ε
of the bounds (1.9) and (1.10), are known if L is a second order t-independent
operator that satisfies a De Giorgi-Nash-Moser type condition (see [AS16] for the
details), but are new for general second order t-independent operators.

Remark 1.13. Let ÑH(x) = sup{
(ffl
B((y,t),t/2)

|H|2
)1/2

: |x− y| < t} be the

modified nontangential maximal function introduced in [KP93]. Estimates of

the form ‖Ñ(∇m−1u)‖Lp(Rn) ≈ ‖A+
2 (t∇mu)‖Lp(Rn), for a solution u to Lu = 0,

have played an important role in the theory of boundary value problems. See
[Dah80, DJK84, PV91, DKPV97, KKPT00, KP01, DPP07, HKMP15b, DPR17]
for some proofs of this equivalence and related equivalences under various assump-
tions on L.

This equivalence can be used to solve boundary value problems. In [KP01,
HKMP15b] (and [KKPT00]), this equivalence was used, together with the method
of ε-approximability of [KKPT00], to establish well posedness of the Dirichlet prob-
lem with Lp boundary data for certain second order operators and for p large
enough. The operators of [KP01] were further studied in [DPP07, DPR17], again
using equivalences between nontangential and square function estimates. In the
higher order case, this equivalence was used by Shen in [She06] to prove well posed-
ness of the Lp-Dirichlet problem for constant coefficient systems and for appropri-
ate p, by Kilty and Shen in [KS11] to prove well posedness of the Ẇ q

1 -Dirichlet
problems for ∆2 and for appropriate q, and by Verchota in [Ver96] to prove a
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maximum principle in three-dimensional Lipschitz domains for constant coefficient
elliptic systems.

The results of the present paper constitute a major first step towards prov-

ing the estimate ‖Ñ(∇m−1u)‖Lp(Rn) ≤ C‖A+
2 (t∇mu)‖Lp(Rn) for higher order op-

erators with t-independent coefficients. Specifically, if Lu = 0 in Rn+1
+ and

∇mu ∈ L2(Rn+1
+ ), then we will see (formula (2.21) below) that

∇mu = −∇mDA(Ṫr+
m−1 u) +∇mSL(Ṁ+

A u)

where DA and SL denote the double and single layer potentials. This Green’s for-
mula will be extended to solutions u that satisfy A+

2 (t∇mu) ∈ L2(Rn) in [BHM18].
In [BHMb], we will show that the double and single layer potentials satisfy non-
tangential estimates, and in a forthcoming paper, we intend to extend the Green’s
formula to solutions u with A+

2 (t∇mu) ∈ Lp(Rn) for a broader range of p; com-

bined with Theorem 1.6, this implies the desired estimate ‖Ñ(∇m−1u)‖Lp(Rn) ≤
C‖A+

2 (t∇mu)‖Lp(Rn).

We mention some refinements to Theorem 1.6.
The definition (2.13) below of Neumann boundary values is somewhat delicate; a

more robust formulation of Ṁ+
A w is stated in Theorem 6.2. (The delicate formula-

tion is necessary to contend with v in the full generality of Theorem 1.6; however, if
v satisfies some additional regularity assumptions, such as ∇mv ∈ L2(Rn+1

+ ), then
the formulation of Neumann boundary values of formula (2.13) coincides with more
robust formulations. See Section 2.3.2.)

There is some polynomial P of degree m − 1 such that ∇m−1P = ċ. Then
ṽ = v − P is also a solution to Lṽ = 0 in Rn+1

+ , ∇mṽ = ∇mv and so ṽ satisfies the
same estimates as v, and furthermore ṀA ṽ = ṀA v.

Some additional bounds on w̃ and v are stated in Theorems 5.1 and 5.3. In
particular, we have the bounds

sup
t>0
‖∇m−1v( · , t)− ċ‖Lp(Rn) ≤ Cp‖A+

2 (t∇mv)‖Lp(Rn),

sup
t>0
‖∇mw̃( · , t)‖Lp(Rn) ≤ Cp‖A+

2 (t∇m∂tw)‖Lp(Rn)

and the limits

lim
T→∞

‖∇m−1v( · , T )− ċ‖Lp(Rn) + lim
t→0+

‖∇m−1v( · , t)− Ṫr+
m−1 v‖Lp(Rn) = 0,

lim
T→∞

‖∇mw̃( · , T )‖Lp(Rn) + lim
t→0+

‖∇mw̃( · , t)− Ṫr+
m w̃‖Lp(Rn) = 0.

Notice that an Lp bound on ∇mw̃( · , t) is stronger than a Ẇ p
1 bound on

∇m−1w̃( · , t), as the former involves estimates on all derivatives of order m while
the latter involves only derivatives at least one component of which is tangential to
the boundary.

It is clear that Wp,p(τ) ≤ C supt>0‖∇mw( · , t)‖Lp(Rn). In addition, we remark

that Wp,2(τ) ≤ ‖Ñ(∇mw)‖pLp(Rn), where Ñ is the modified nontangential maximal

function introduced in [KP93] and mentioned in Remark 1.13.
We now review the history of such results. The theory of boundary values

of harmonic functions may be said to begin with Fatou’s celebrated result [Fat06]
that, if a function u is bounded and harmonic in the unit disk in the plane, then the
Dirichlet boundary values of u exist almost everywhere in the sense of nontangential
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limits. We remark that if u ∈ L∞(Ω), then its boundary values necessarily lie
in L∞(∂Ω).

In [Pri23], Privaloff considered general domains Ω ⊂ R2 bounded by rectifiable
curves and relaxed the requirement that u be bounded uniformly in Ω. That is, let
Nu be given by

Nu(X) = sup
Γ(X)

|u(Y )| for X ∈ ∂Ω

where Γ(X) is a triangle (or, in higher dimensions, a truncated cone) contained
in Ω and with a vertex at X. Privaloff showed that if Nu is bounded in some set
E ⊂ ∂Ω, then u has a nontangential limit at almost every point in E. This result
was extended to the half space Rn+1

+ for n ≥ 1 by Calderón in [Cal50] (see also
[Car62]), and to Lipschitz domains by Hunt and Wheeden in [HW68, HW70].

Observe that in particular, if Nu ∈ Lp(∂Ω), then Nu(X) <∞ for almost every
X ∈ ∂Ω, and so u has a nontangential limit almost everywhere in ∂Ω; necessarily
|u(X)| ≤ Nu(X) and so the boundary values are also in Lp(∂Ω).

In [Dah80], Dahlberg showed that if u is harmonic in a bounded Lipschitz domain
Ω ⊂ Rn+1, then if u is normalized appropriately we have that

(1.14) ‖AΩ
2 (δ∇u)‖Lp(∂Ω) ≈ ‖Nu‖Lp(∂Ω), 0 < p <∞

where AΩ
2 is a variant on the Lusin area integral of formula (1.5) appropriate to

the domain Ω. Thus, Dahlberg’s results imply the analogue to the bound (1.7) (for
0 < p < ∞) in Lipschitz domains for harmonic functions v. Because the gradient
of a harmonic function is harmonic, Dahlberg’s results also imply the Lipschitz
analogue to the bounds (1.9) and (1.10) (with Neumann boundary values ν · ∇w)
for harmonic functions.

Turning to more general second order operators, in [CFMS81] the results de-
scribed above, for nontangentially bounded harmonic functions in Lipschitz do-
mains, were generalized to the case of nontangentially bounded solutions u to
divA∇u = 0, where A is a real-valued matrix for which the L-harmonic mea-
sure associated to L = divA∇ is mutually absolutely continuous with respect to
surface measure. The equivalence (1.14) was established in [DJK84] for such u,
provided that the Dirichlet problem with boundary data in Lp(∂Ω) is well posed
for at least one p with 1 < p <∞. (Well posedness implies mutual absolute conti-
nuity of L-harmonic and surface measure.) Thus, for such coefficients the analogue
to the bound (1.7), in Lipschitz domains, and for 1 < p <∞, is valid.

In [KP93, Section 3] it was shown that if divA∇w = 0 in the unit ball, where A

is real, and if Ñ(∇w) ∈ Lp(∂Ω) for 1 < p <∞, where Ñ is the modified nontangen-
tial maximal function introduced therein and mentioned above, then the Dirichlet
boundary values w

∣∣
∂Ω

lie in the boundary Sobolev space Ẇ p
1 (∂Ω) and the Neumann

boundary values MΩ
Aw = ν · A∇w lie in Lp(∂Ω). With some modifications, the

requirement that A be real-valued may be dropped (and indeed the same argu-
ment, at least for Dirichlet boundary values, is valid for higher order operators).
These results are the analogues to the bounds (1.9) and (1.10) with nontangential
estimates in place of area integral estimates.

Turning to the case of complex coefficients, or the case where well posedness of
the Dirichlet problem is not assumed, in [AA11, Theorem 2.3], the equivalence

(1.15) ‖A+
2 (t∇∂tw)‖L2(Rn) ≈ ‖Ñ(∇w)‖L2(Rn)
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for solutions w to elliptic equations with t-independent coefficients was established;
combined with the arguments of [KP93], this yields the bounds (1.9) and (1.10)
for p = 2 and m = 1. (Under some further assumptions, this equivalence was
established in [AAA+11].) Furthermore, in [AA11, Theorem 2.4] the bound (1.7)
was established for general t-independent coefficients, again for p = 2 and m =
1. These results extend to t-dependent operators that satisfy a small (or finite)
Carleson norm condition.

The result (1.8), and indeed the Neumann problem with boundary data in neg-
ative smoothness spaces, has received little attention to date; most of the known
results involve the Neumann problem for inhomogeneous differential equations and
the related theory of Neumann boundary value problems with data in fractional
smoothness spaces [FMM98, Zan00, Agr07, Agr09, MM13a, MM13b, BM16b, Bar].
However, the Neumann problem with boundary data in the negative Sobolev space
Ẇ p
−1(∂Rn+1

+ ) was investigated in [Ver05, Sections 4 and 22] in the case of har-
monic and biharmonic functions, and in [AM14, Section 11] in the case of sec-
ond order operators with t-independent coefficients. Furthermore, as a conse-
quence of [AS16, Theorems 1.1–1.2], we have the bound (1.8) with m = 1 and
2 − ε < p < 2n/(n − 2) + ε (or 2 − ε < p < ∞, if n+ 1 = 2 or n+ 1 = 3), where
ε > 0 depends on L.

[AS16, Theorems 1.1–1.2] also yield improved ranges of p for the bounds (1.7),
(1.9) and (1.10) with m = 1. Specifically, the bound (1.7) was also established for
2− ε < p < 2n/(n− 2) + ε or 2− ε < p <∞, and the bounds (1.9) and (1.10) were
established for 2n/(n + 2) − ε < p < 2 + ε. If L satisfies a De Giorgi-Nash-Moser
type condition, the bounds (1.7) and (1.8) were established for 2− ε < p <∞, and
the bounds (1.9) and (1.10) were established for 1− ε < p < 2 + ε under a suitable
modification in the case p ≤ 1.

We remark that Fatou’s theorem, our Theorem 1.6, and many of the other results
discussed above, are valid only for solutions to elliptic equations. An arbitrary
function that satisfies square function estimates or nontangential bounds need not
have a limit at the boundary in any sense. Many of the trace results applied in
the higher order theory have been proven in much higher generality. It is well
known that if u is any function in the Sobolev space Ẇ p

m(Ω), where Ω is a bounded
Lipschitz domain, 1 < p <∞ and m ≥ 1 is an integer, then the Dirichlet boundary
values ṪrΩ

m−1 u lie in the Besov space Ḃp,p1−1/p(∂Ω). Similar results are true if u lies

in a Besov or Triebel-Lizorkin space (see [Jaw77, JW84]) or a weighted Sobolev
space (see [Liz60, Kim07, MMS10, BM13b, Bar18]). These results all yield that the

boundary values ṪrΩ
m−1 u lie in a boundary Besov space Ḃp,ps (∂Ω), with smoothness

parameter s satisfying 0 < s < 1.
Such results, and their converses (i.e., extension results), have been used to pass

between the Dirichlet problem for a homogeneous differential equation and the
Dirichlet problem with homogeneous boundary data, that is, between the problems

Lu = H in Ω, ∇m−1u = 0 on ∂Ω, ‖u‖X ≤ C‖H‖Y,(1.16)

Lu = 0 in Ω, ∇m−1u = ḟ on ∂Ω, ‖u‖X ≤ C‖ḟ‖Ḃp,ps (∂Ω)(1.17)

for some appropriate spaces X and Y. See, for example, [AP98, Agr07, MMS10,
MMW11, MM13a, MM13b, BMMM14, BM16b, Bar].

We are interested in the case where the boundary data lies in a Lebesgue space
or Sobolev space, that is, where the smoothness parameter is an integer. In this
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case the natural associated inhomogeneous problem is ill-posed, even in very nice
cases (for example, for harmonic functions in the half-space) and so the arguments
involving the inhomogeneous problem (1.16) are not available. Furthermore, in this
case it generally is necessary to exploit the fact that u is a solution to an elliptic
equation, and so the method of proof of Theorem 1.6 is completely different.

The outline of this paper is as follows. In Section 2 we will define the terminol-
ogy we will use throughout the paper. In Section 3 we will summarize some known
results of the theory of higher order elliptic equations. In Section 4 we will prove
a few results that will be of use in both Sections 5 and 6. In particular, we will
prove Lemma 4.4, the technical core of our paper. Finally, we will prove our results
concerning Dirichlet boundary values in Section 5, and our results concerning Neu-
mann boundary values in Section 6; these results will be stated as Theorems 5.1,
5.3, 6.1 and 6.2. We mention that many of the ideas in the present paper come
from the proof of the main estimate (3.9) of [HKMP15a]. The results of the present
paper allow for a slightly different approach to proving the results of [HKMP15a];
see [BHM18, Remark 7.6].

Acknowledgements. We would like to thank the American Institute of Math-
ematics for hosting the SQuaRE workshop on “Singular integral operators and
solvability of boundary problems for elliptic equations with rough coefficients,” and
the Mathematical Sciences Research Institute for hosting a Program on Harmonic
Analysis, at which many of the results and techniques of this paper were discussed.

2. Definitions

In this section, we will provide precise definitions of the notation and concepts
used throughout this paper.

We mention that throughout this paper, we will work with elliptic operators L of
order 2m in the divergence form (1.1) acting on functions defined on Rn+1, n ≥ 1.
As usual, we let B(X, r) denote the ball in Rn of radius r and center X. We let Rn+1

+

and Rn+1
− denote the upper and lower half-spaces Rn × (0,∞) and Rn × (−∞, 0);

we will identify Rn with ∂Rn+1
± .

If Q ⊂ Rn is a cube, we let `(Q) be its side-length, and we let cQ be the con-
centric cube of side-length c`(Q). If E is a measurable set, we let 1E denote the
characteristic function of E; we will use 1+ and 1− as shorthand for the charac-
teristic functions of the upper and lower half-spaces, respectively. If E is a set of
finite measure, we let

ffl
E
f(x) dx = 1

|E|
´
E
f(x) dx.

2.1. Multiindices and arrays of functions. We will reserve the letters α, β,
γ, ζ and ξ to denote multiindices in (N0)n+1. (Here N0 denotes the nonnegative
integers.) If ζ = (ζ1, . . . , ζn+1) is a multiindex, then we define |ζ|, ∂ζ and ζ! in

the usual ways, as |ζ| = ζ1 + ζ2 + · · · + ζn+1, ∂ζ = ∂ζ1x1
∂ζ2x2
· · · ∂ζn+1

xn+1 , and ζ! =
ζ1! ζ2! · · · ζn+1!.

We will routinely deal with arrays Ḟ =
(
Fζ
)

of numbers or functions indexed by
multiindices ζ with |ζ| = k for some k ≥ 0. In particular, if ϕ is a function with
weak derivatives of order up to k, then we view ∇kϕ as such an array.

The inner product of two such arrays of numbers Ḟ and Ġ is given by〈
Ḟ , Ġ

〉
=
∑
|ζ|=k

Fζ Gζ .
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If Ḟ and Ġ are two arrays of functions defined in a set Ω in Euclidean space, then
the inner product of Ḟ and Ġ is given by〈

Ḟ , Ġ
〉

Ω
=
∑
|ζ|=k

ˆ
Ω

Fζ(X)Gζ(X) dX.

We let ~ej be the unit vector in Rn+1 in the jth direction; notice that ~ej is
a multiindex with |~ej | = 1. We let ėζ be the unit array corresponding to the

multiindex ζ; thus, 〈ėζ , Ḟ 〉 = Fζ .
We will let ∇‖ denote either the gradient in Rn, or the n horizontal components

of the full gradient ∇ in Rn+1. (Because we identify Rn with ∂Rn+1
± ⊂ Rn+1, the

two uses are equivalent.) If ζ is a multiindex with ζn+1 = 0, we will occasionally

use the terminology ∂ζ‖ to emphasize that the derivatives are taken purely in the

horizontal directions.

2.2. Elliptic differential operators. Let A =
(
Aαβ

)
be a matrix of measurable

coefficients defined on Rn+1, indexed by multtiindices α, β with |α| = |β| = m. If

Ḟ is an array, then AḞ is the array given by

(AḞ )α =
∑
|β|=m

AαβFβ .

We will consider coefficients that satisfy the G̊arding inequality

Re
〈
∇mϕ,A∇mϕ

〉
Rn+1 ≥ λ‖∇mϕ‖2L2(Rn+1) for all ϕ ∈ Ẇ 2

m(Rn+1)(2.1)

and the bound

‖A‖L∞(Rn+1) ≤ Λ(2.2)

for some Λ > λ > 0. In this paper we will focus exclusively on coefficients that are
t-independent, that is, that satisfy formula (1.4).

We let L be the 2mth-order divergence form operator associated with A. That
is, we say that Lu = 0 in Ω in the weak sense if, for every ϕ smooth and compactly
supported in Ω, we have that

(2.3)
〈
∇mϕ,A∇mu

〉
Ω

=
∑

|α|=|β|=m

ˆ
Ω

∂αϕ̄ Aαβ ∂
βu = 0.

Throughout the paper we will let C denote a constant whose value may change
from line to line, but which depends only on the dimension n+ 1, the ellipticity
constants λ and Λ in the bounds (2.1) and (2.2), and the order 2m of our elliptic
operators. Any other dependencies will be indicated explicitly.

We let A∗ be the adjoint matrix; that is, we let A∗αβ = Aβα. We let L∗ be the
associated elliptic operator.

2.3. Function spaces and boundary data. Let Ω ⊆ Rn or Ω ⊆ Rn+1 be a
measurable set in Euclidean space. We will let Lp(Ω) denote the usual Lebesgue
space with respect to Lebesgue measure with norm given by

‖f‖Lp(Ω) =

(ˆ
Ω

|f(x)|p dx
)1/p

.

If Ω is a connected open set, then we let the homogeneous Sobolev space Ẇ p
m(Ω)

be the space of equivalence classes of functions u that are locally integrable in Ω and
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have weak derivatives in Ω of order up to m in the distributional sense, and whose
mth gradient ∇mu lies in Lp(Ω). Two functions are equivalent if their difference is
a polynomial of order at most m− 1. We impose the norm

‖u‖Ẇp
m(Ω) = ‖∇mu‖Lp(Ω).

Then u is equal to a polynomial of order at most m − 1 (and thus equivalent to

zero) if and only if its Ẇ p
m(Ω)-norm is zero. We let Lploc(Ω) and Ẇ p

k,loc(Ω) denote

functions that lie in Lp(U) (or whose gradients lie in Lp(U)) for any bounded open
set U with U ⊂ Ω.

We will need a number of more specialized function spaces.
We will consider functions u defined in Rn+1

± that lie in tent spaces. If x ∈ Rn
and a ∈ R with a 6= 0, then let Γa(x) = {(y, t) : y ∈ Rn, t ∈ R, |x− y| < at}.
Notice that Γa(x) ⊂ Rn+1

+ if a > 0 and Γa(x) ⊂ Rn+1
− if a < 0. Let

(2.4) Aa2H(x) =

(ˆ
Γa(x)

|H(y, t)|2 dy dt
|t|n+1

)1/2

.

We will employ the shorthand A−2 = A−1
2 and A+

2 = A1
2. If the letter t appears in

the argument of Aa2 , then it denotes the coordinate function in the t-direction.
The case p = 2 will be of great importance to us; we remark that if p = 2, then

(2.5) ‖A+
2 H‖L2(Rn) =

(
ωn

ˆ ∞
0

ˆ
Rn
|H(y, t)|2 dy dt

t

)1/2

where ωn is the volume of the unit disk in Rn.

2.3.1. Dirichlet boundary data and spaces. If u is defined in Rn+1
+ , we let its

Dirichelt boundary values be, loosely, the boundary values of the gradient ∇m−1u.
More precisely, we let the Dirichlet boundary values be the array of functions
Ṫrm−1 u = Ṫr+

m−1 u, indexed by multiindices γ with |γ| = m− 1, and given by

(2.6)
(
Ṫr+

m−1 u
)
γ

= f if lim
t→0+

‖∂γu( · , t)− f‖L1(K) = 0

for all compact sets K ⊂ Rn. If u is defined in Rn+1
− , we define Ṫr−m−1 u simi-

larly. We remark that if ∇mu ∈ L1(K × (0, σ)) for any such K and some σ > 0,
then Ṫr+

m−1 u exists, and furthermore
(
Ṫr+

m−1 u
)
γ

= Tr ∂γu where Tr denotes the

traditional trace in the sense of Sobolev spaces.
We will be concerned with boundary values in Lebesgue or Sobolev spaces. How-

ever, observe that the different components of Ṫrm−1 u arise as derivatives of a
common function, and thus must satisfy certain compatibility conditions. We will
define the Whitney spaces of arrays of functions that satisfy these compatibility
conditions and have certain smoothness properties as follows.

Definition 2.7. Let

D = {Ṫrm−1 ϕ : ϕ smooth and compactly supported in Rn+1}.

We let ẆApm−1,0(Rn) be the completion of the set D under the Lp norm.

We let ẆApm−1,1(Rn) be the completion of D under the Ẇ p
1 (Rn) norm, that is,

under the norm ‖ḟ‖ẆApm−1,1(Rn) = ‖∇‖ḟ‖Lp(Rn).
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Finally, we let ẆA2
m−1,1/2(Rn) be the completion of D under the norm

(2.8) ‖ḟ‖ẆA2
m−1,1/2

(Rn) =

( ∑
|γ|=m−1

ˆ
Rn
|f̂γ(ξ)|2 |ξ| dξ

)1/2

where f̂ denotes the Fourier transform of f .

The goal of Section 5 is to show that if u is a solution to the differential equation
(2.3) in Rn+1

+ , and if A+
2 (t∇mu) ∈ Lp(Rn) or A+

2 (t∇m∂tu) ∈ Lp(Rn) for some 1 <

p < 2+ε, then up to a certain additive normalization, Ṫrm−1 u lies in ẆApm−1,0(Rn)

or ẆApm−1,1(Rn).

The space ẆA2
m−1,1/2(Rn) is of interest in connection with the theory of solu-

tions to boundary value problems in Ẇ 2
m(Rn+1

+ ), as will be seen in the following
lemma. Such boundary value problems may be investigated using the Lax-Milgram
lemma, and many useful results may be obtained therefrom. In particular, we will
define layer potentials (Section 2.4), establish duality results for layer potentials
(Lemma 4.1), and prove the Green’s formula (2.21), in terms of such solutions.

Lemma 2.9. If u ∈ Ẇ 2
m(Rn+1

+ ) then Ṫr+
m−1 u ∈ ẆA2

m−1,1/2(Rn), and furthermore

‖Ṫr+
m−1 u‖ẆA2

m−1,1/2
(Rn) ≤ C‖∇

mu‖L2(Rn+1
+ ).

Conversely, if ḟ ∈ ẆA2
m−1,1/2(Rn), then there is some F ∈ Ẇ 2

m(Rn+1
+ ) such that

Ṫr+
m−1 F = ḟ and such that

‖∇mF‖L2(Rn+1
+ ) ≤ C‖ḟ‖ẆA2

m−1,1/2
(Rn).

If Ẇ 2
m(Rn+1

+ ) and ẆA2
m−1,1/2(Rn) are replaced by their inhomogeneous coun-

terparts, then this lemma is a special case of the main result of [Liz60]. For the
homogeneous spaces that we consider, the m = 1 case of this lemma is a special
case of the results in [Jaw77, Section 5]. The trace result for m ≥ 2 follows from
the trace result for m = 1; extensions may easily be constructed using the Fourier
transform.

Remark 2.10. This notion of Dirichlet boundary values may require some expla-
nation. Most known results (see, for example, [Ver90, PV95, MM13b]) establish
well posedness of the Dirichlet problem for an elliptic differential operator of or-
der 2m in the case where the Dirichlet boundary values of u are taken to include
lower order derivatives, that is, to be {∂γu|∂Ω}|γ|≤m−1 or {∂kνu|∂Ω}m−1

k=0 , or some
combination thereof, where ∂ν denotes derivatives taken in the direction normal to
the boundary. (Indeed the analogue to our Lemma 2.9 in [Liz60] is stated in this
fashion.)

If ∂Ω is connected, then up to adding polynomials, it is equivalent to specify
∇m−1u on the boundary. We prefer to specify only the highest derivatives for
reasons of homogeneousness. That is, we often expect all components of ∇m−1u
to exhibit the same degree of smoothness. In this case, all components of Ṫrm−1 u
lie in the same smoothness space, but the lower-order derivatives {∂γu|∂Ω}|γ|≤m−2

or {∂kνu|∂Ω}m−2
k=0 lie in higher smoothness spaces. This is notationally awkward in

Rn+1
+ ; furthermore, we hope in future to generalize to Lipschitz domains, in which

case higher order smoothness spaces on the boundary are extremely problematic.
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2.3.2. Neumann boundary data. It is by now standard to define Neumann boundary
values in a variational sense.

That is, suppose that u ∈ Ẇ 2
m(Rn+1

+ ) and that Lu = 0 in Rn+1
+ . By the defini-

tion (2.3) of Lu, if ϕ is smooth and supported in Rn+1
+ , then 〈∇mϕ,A∇mu〉Rn+1

+
= 0.

By density of smooth functions and boundedness of the trace map, we have that
〈∇mϕ,A∇mu〉Rn+1

+
= 0 for any ϕ ∈ Ẇ 2

m(Rn+1
+ ) with Ṫr+

m−1 ϕ = 0. Thus, if

Ψ ∈ Ẇ 2
m(Rn+1

+ ), then the quantity 〈∇mΨ,A∇mu〉Rn+1
+

depends only on Ṫr+
m−1 Ψ.

Thus, for solutions u to Lu = 0 with u ∈ Ẇ 2
m(Rn+1

+ ), we may define the Neumann

boundary values Ṁ+
A u by the formula

(2.11) 〈Ṫr+
m−1 Ψ, Ṁ+

A u〉Rn = 〈∇mΨ,A∇mu〉Rn+1
+

for all Ψ ∈ Ẇ 2
m(Rn+1

+ ).

See [BM16a, BHM17] for a much more extensive discussion of higher order Neumann
boundary values.

We are interested in the Neumann boundary values of a solution u to Lu = 0
that satisfies A+

2 (t∇mu) ∈ Lp(Rn) or A+
2 (t∇m∂tu) ∈ Lp(Rn). For such functions

the inner product on the right hand side of formula (2.11) does not converge for

arbitrary Ψ ∈ Ẇ 2
m(Rn+1

+ ).

If A+
2 (t∇mu) ∈ L2(Rn), then ∇mu is not even locally integrable near the bound-

ary (see formula (2.5)), and so the inner product (2.11) will not in general converge
even for smooth functions Ψ that are compactly supported in Rn+1. However, we
will see (Section 6) that for any ψ̇ in the dense subspace D of Definition 2.7, there

is some extension Ψ of ψ̇ such that the inner product (2.11) converges (albeit pos-
sibly not absolutely). We will thus define Neumann boundary values in terms of a
distinguished extension.

Define the operator Qmt by

Qmt = e−(−t2∆‖)
m

.

Notice that if f ∈ C∞0 (Rn), then ∂kt Qmt f(x)
∣∣
t=0

= 0 whenever 1 ≤ k ≤ 2m−1, and

that Qm0 f(x) = f(x).
Suppose that ϕ is smooth and compactly supported in Rn+1. Let ϕk(x) =

∂kn+1ϕ(x, 0). If t ∈ R, let

(2.12) Eϕ(x, t) = E(Ṫrm−1 ϕ)(x, t) =

m−1∑
k=0

1

k!
tkQmt ϕk(x).

Observe that Eϕ is also smooth on Rn+1
+ up to the boundary, albeit is not compactly

supported, and that Ṫr+
m−1 Eϕ = Ṫr−m−1 Eϕ = Ṫrm−1 ϕ.

We define the Neumann boundary values ṀA u = Ṁ+
A u of u by

(2.13) 〈Ṫrm−1 ϕ, Ṁ
+
A u〉Rn = lim

T→∞
ε→0+

ˆ T

ε

〈∇mEϕ( · , t),A∇mu( · , t)〉Rn dt.

We define Ṁ−
A u similarly, as an appropriate integral from −∞ to zero. Notice that

ṀA u is an operator on the subspace D appearing in Definition 2.7; given certain
bounds on u, we will prove boundedness results (see Section 6) that allow us to

extend ṀA u to an operator on ẆApm−1,0(Rn) or ẆApm−1,1(Rn) for various values
of p.
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As mentioned in the introduction, if A+
2 (t∇mu) ∈ Lp(Rn) then the right-hand

side of formula (2.11) does not represent an absolutely convergent integral even for
Ψ = E Ṫr+

m−1 Ψ, and so the order of integration in formula (2.13) is important.
The two formulas (2.11) and (2.13) for the Neumann boundary values of a solu-

tion in Ẇ 2
m(Rn+1

+ ) coincide, as seen in the next lemma.

Lemma 2.14. Let L be an operator of the form (1.1) of order 2m associated to
bounded coefficients A. Suppose that ∇mu ∈ L2(Rn+1

+ ) and that Lu = 0 in Rn+1
+ .

Let ϕ be smooth and compactly supported in Rn+1. Then

〈∇mϕ,A∇mu〉Rn+1
+

= 〈∇mEϕ,A∇mu〉Rn+1
+

and so formulas (2.11) and (2.13) agree on the value of 〈Ṫrm−1 ϕ, Ṁ
+
A u〉Rn .

The operator Ṁ+
A u as given by formula (2.11) is a bounded operator on the space

ẆA2
m−1,1/2(Rn), and Ṁ+

A u as given by formula (2.13) extends by density to the

same operator on ẆA2
m−1,1/2(Rn).

Proof. By an elementary argument involving the Fourier transform,

(2.15) ‖∇mE(Ṫrm−1 ϕ)‖L2(Rn+1
± ) ≤ C‖Ṫrm−1 ϕ‖Ḃ2,2

1/2
(Rn).

Thus, Eϕ is an extension of Ṫrm−1 ϕ in Ẇ 2
m(Rn+1

+ ), and so

〈∇mΨ,A∇mu〉Rn+1
+

= 〈∇mEϕ,A∇mu〉Rn+1
+

for any other extension Ψ of Ṫrm−1 ϕ in Ẇ 2
m(Rn+1

+ ), in particular, for Ψ = ϕ.

Boundedness of Ṁ+
A u on ẆA2

m−1,1/2(Rn) follows from Lemma 2.9, and the lemma

follows from density of the subspace D of Definition 2.7 in ẆA2
m−1,1/2(Rn). �

2.4. Potential operators. Two very important tools in the theory of second order
elliptic boundary value problems are the double and single layer potentials. These
potential operators are also very useful in the higher order theory. In this section we
define our formulations of higher order layer potentials; this is the formulation used
in [BHM17, BHMa] and is related to that used in [Agm57, CG83, CG85, Ver05,
MM13a, MM13b].

For any Ḣ ∈ L2(Rn+1), by the Lax-Milgram lemma there is a unique function

u ∈ Ẇ 2
m(Rn+1) that satisfies

(2.16) 〈∇mϕ,A∇mu〉Rn+1 = 〈∇mϕ, Ḣ〉Rn+1

for all ϕ ∈ Ẇ 2
m(Rn+1). Let ΠLḢ = u. We refer to ΠL as the Newton potential

operator for L. See [Bar16] for a further discussion of the operator ΠL.

We will need the following duality relation (see [Bar16, Lemma 42]): if Ḟ ∈
L2(Rn+1) and Ġ ∈ L2(Rn+1), then

〈Ḟ ,∇mΠLĠ〉Rn+1 = 〈∇mΠL∗Ḟ , Ġ〉Rn+1 .(2.17)

We may define the double and single layer potentials in terms of the Newton
potential. Suppose that ḟ ∈ ẆA2

m−1,1/2(Rn). By Lemma 2.9, there is some F ∈
Ẇ 2
m(Rn+1

+ ) that satisfies ḟ = Ṫr+
m−1 F . We define the double layer potential of ḟ

as

DAḟ = −1+F + ΠL(1+A∇mF )(2.18)
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where 1+ is the characteristic function of the upper half-space Rn+1
+ . DAḟ is well-

defined, that is, does not depend on the choice of F ; see [BHM17, Section 2.4]. We
remark that by [BHM17, formula (2.27)], if 1− is the characteristic function of the
lower half space, then

DAḟ = 1−F −ΠL(1−A∇mF ) if Ṫr−m−1 F = ḟ .(2.19)

Similarly, let ġ be a bounded operator on ẆA2
m−1,1/2(Rn). There is some Ġ ∈

L2(Rn+1
+ ) such that 〈Ġ,∇mϕ〉Rn+1

+
= 〈ġ, Ṫr+

m−1 ϕ〉∂Rn+1
+

for all ϕ ∈ Ẇ 2
m(Rn+1

+ ); see

[BHM17, Section 2.4]. Let 1+Ġ denote the extension of Ġ by zero to Rn+1. We
define

SLġ = ΠL(1+Ġ).(2.20)

Again, as shown in [BHM17, Section 2.4], SLġ does not depend on the choice of

extension Ġ.
It was shown in [BHM17, BHMa] that the operators DA and SL, originally de-

fined on ẆA2
m−1,1/2(Rn) and its dual space, extend by density to operators defined

on ẆA2
m−1,0(Rn) and ẆA2

m−1,1(Rn) or their respective dual spaces.
A benefit of these formulations of layer potentials is the easy proof of the Green’s

formula. By taking F = u and Ġ = A∇mu, we immediately have that

(2.21) 1+∇mu = −∇mDA(Ṫr+
m−1 u) +∇mSL(Ṁ+

A u)

for all u ∈ Ẇ 2
m(Rn+1

+ ) that satisfy Lu = 0 in Rn+1
+ .

In the second-order case, a variant SL∇ of the single layer potential is often
used; see, for example, [AAA+11, HMM15a, HMM15b]. We will define an analogous
operator in the higher order case. Let α be a multiindex with |α| = m. If αn+1 > 0,
let

(2.22) SL∇(hėα)(x, t) = −∂tSL(hėγ)(x, t) where α = γ + ~en+1.

If αn+1 < |α| = m, then there is some j with 1 ≤ j ≤ n such that ~ej ≤ α. If h is
smooth and compactly supported, let

(2.23) SL∇(hėα)(x, t) = −SL(∂xjhėγ)(x, t) where α = γ + ~ej .

If 1 ≤ αn+1 ≤ m−1, then the two formulas (2.22) and (2.23) coincide; furthermore,
if αn+1 ≤ m−1 then the choice of distinguished direction xj in formula (2.23) does
not matter. See [BHMa, Section 2.5].

3. Known results

To prove our main results, we will need to use a number of known results from
the theory of higher order differential equations. We gather these results in this
section.

3.1. Regularity of solutions to elliptic equations. The first such result we list
is the higher order analogue to the Caccioppoli inequality; it was proven in full
generality in [Bar16] and some important preliminary versions were established in
[Cam80, AQ00].
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Lemma 3.1 (The Caccioppoli inequality). Suppose that L is an operator of the
form (1.1) of order 2m associated to coefficients A satisfying the ellipticity condi-

tions (2.1) and (2.2). Let u ∈ Ẇ 2
m(B(X, 2r)) with Lu = 0 in B(X, 2r).

Then we have the bound 
B(X,r)

|∇ju(x, s)|2 dx ds ≤ C

r2

 
B(X,2r)

|∇j−1u(x, s)|2 dx ds

for any j with 1 ≤ j ≤ m.

Next, we state the higher order generalization of Meyers’s reverse Hölder inequal-
ity for gradients. The following theorem follows from the Caccioppoli inequality of
[Cam80, AQ00, Bar16], and was stated in some form in all three works. (The
version given below comes most directly from [Bar16].)

Theorem 3.2. Suppose that L is an operator of the form (1.1) of order 2m asso-
ciated to coefficients A satisfying the ellipticity conditions (2.1) and (2.2). Then
there is some number p+ = p+

0 = p+
L > 2 depending only on the standard constants

such that the following statement is true.
Let X0 ∈ Rn+1 and let r > 0. Let u ∈ Ẇ 2

m,loc(B(X0, 2r)) and suppose that

Lu = 0 or L∗u = 0 in B(X0, 2r). Suppose that 0 < p < q < p+. Then( 
B(X0,r)

|∇mu|q
)1/q

≤ C(p, q)

( 
B(X0,2r)

|∇mu|p
)1/p

(3.3)

for some constant C(p, q) depending only on p, q and the standard parameters.
We may also bound the lower-order derivatives. Let 1 ≤ k ≤ m. There is some

extended real number p+
k , with p+

k ≥ p
+
L (n+ 1)/(n+ 1− k p+

L) if n+ 1 > k p+
L and

with p+
k = ∞ if n+ 1 ≤ k p+

L , such that if 0 < p < q < p+
k , and if Lu = 0 or

L∗u = 0 in B(X0, 2r), then( 
B(X0,r)

|∇m−ku|q
)1/q

≤ C(k, p, q)

( 
B(X0,2r)

|∇m−ku|p
)1/p

(3.4)

for some constant C(k, p, q) depending only on k, p, q and the standard parameters.

We remark that if n+ 1 = 2 then p+
1 =∞. If n+ 1 = 3 and A is t-independent,

then again p+
1 =∞; the argument presented in [AAA+11, Appendix B] in the case

m = 1 is valid in the higher order case.
Finally, if A is t-independent, then we have additional regularity. The following

lemma was proven in the case m = 1 in [AAA+11, Proposition 2.1] and generalized
to the case m ≥ 2, p = 2 in [BHM17, Lemma 3.2] and the case m ≥ 2, p arbitrary
in [BHMa, Lemma 3.20].

Lemma 3.5. Suppose that L is an operator of the form (1.1) of order 2m, asso-
ciated with coefficients A that satisfy the ellipticity conditions (2.1) and (2.2) and
are t-independent in the sense of formula (1.4).

Let t be a constant, and let Q ⊂ Rn be a cube. If Lu = 0 in the (n+ 1)-dimen-
sional cube 2Q× (t− `(Q), t+ `(Q)), thenˆ

Q

|∇m−j∂kt u(x, t)|p dx ≤ C(j, p)

`(Q)

ˆ
2Q

ˆ t+`(Q)

t−`(Q)

|∇m−j∂ksu(x, s)|p ds dx

for any 0 ≤ j ≤ m, any 0 < p < p+
j , and any integer k ≥ 0, where p+

j is as in
Theorem 3.2.
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3.2. Estimates on layer potentials. We will make use of the following estimates
on layer potentials from [BHMa], in particular the technical estimates (3.8), (3.9)
and (3.10). (Indeed their applicability to this paper is the main reason the bounds
(3.9) and (3.10) were proven in [BHMa].)

Theorem 3.6. ([BHMa, Theorems 5.1 and 1.13]) Suppose that L is an operator of
the form (1.1) of order 2m, associated with coefficients A that are t-independent in
the sense of formula (1.4) and satisfy the ellipticity conditions (2.1) and (2.2).

Then the operator SL∇ extends by density to an operator that satisfies
ˆ
Rn

ˆ ∞
−∞
|∇mSL∇ḣ(x, t)|2 |t| dt dx ≤ C‖ḣ‖2L2(Rn)(3.7)

for all ḣ ∈ L2(Rn).
If k is large enough (depending on m and n), then the following statements are

true.
First, there is some ε > 0 such that the area integral estimates

‖A±2 (|t|k∇m∂kt SLġ)‖Lp(Rn) ≤ C(k, p)‖ġ‖Lp(Rn),(3.8)

‖A±2 (|t|k+1∇m∂kt SL∇ḣ)‖Lp(Rn) ≤ C(k, p)‖ḣ‖Lp(Rn)(3.9)

are valid whenever 2 − ε < p < ∞. If n+ 1 = 2 or n+ 1 = 3 then the estimate
(3.8) is valid for 1 < p <∞.

Second, let η be a Schwartz function defined on Rn with
´
η = 1. Let Qt denote

convolution with ηt = t−nη( · /t). Let ḃ be any array of bounded functions. Then
for any p with 1 < p <∞, we have that

(3.10) ‖A±2 (|t|k+1∂k+m
t SL∇(ḃQ|t|h))‖Lp(Rn) ≤ C(k, p)‖ḃ‖L∞(Rn)‖h‖Lp(Rn)

where the constants C(k, p) depends only on p, k, the Schwartz constants of η, and
on the standard parameters n, m, λ, and Λ.

4. Preliminaries

In this section we will prove some preliminary results that will be of use both in
Section 5 (that is, in bounding the Dirichlet traces of solutions) and in Section 6
(that is, in bounding the Neumann traces of solutions).

4.1. Duality results. We will need the following duality results for layer poten-
tials.

Lemma 4.1. Suppose that L is an operator of the form (1.1) of order 2m, asso-
ciated with coefficients A that are t-independent in the sense of formula (1.4) and
satisfy the ellipticity conditions (2.1) and (2.2).

Let ḟ ∈ ẆA2
m−1,1/2(Rn), let ġ lie in the dual space (ẆA2

m−1,1/2(Rn))∗, and let

ψ̇ ∈ L2(Rn). Let τ > 0 and let j ≥ 0 be an integer. Then

〈ψ̇,∇m∂jτDAḟ( · , τ)〉Rn = (−1)j+1〈Ṁ−
A∗(∂

j
n+1(SL

∗

∇ ψ̇)−τ ), ḟ〉Rn ,(4.2)

〈ψ̇,∇m∂jτSLġ( · , τ)〉Rn = (−1)j〈∇m−1∂jn+1SL
∗

∇ ψ̇( · ,−τ), ġ〉Rn(4.3)

where (SL∗∇ ψ̇)−τ (x, s) = SL∗∇ ψ̇(x, s− τ).



BOUNDARY VALUES OF SOLUTIONS 17

The proof will be based on the adjoint relation (2.17) for the Newton potential;
we remark that the result may also be proven by writing layer potentials in terms of
the fundamental solution (see [BHM17, BHMa]) and using the symmetry properties
thereof.

Proof of Lemma 4.1. We begin with formula (4.2).
Let q̇ be smooth, compactly supported and integrate to zero. By Lemma 3.5,

〈q̇,∇m−1∂jτDAḟ( · , τ)〉Rn = ∂jτ 〈q̇,∇m−1DAḟ( · , τ)〉Rn .

Let F ∈ Ẇ 2
m(Rn+1

− ) with Ṫr−m−1 F = ḟ ; by Lemma 2.9, such an F must exist. By
formula (2.19) for the double layer potential,

〈q̇,∇m−1∂jτDAḟ( · , τ)〉Rn = −∂jτ 〈q̇,∇m−1ΠL(1−A∇mF )( · , τ)〉Rn .

For the remainder of this proof, let subscripts denote translation in the vertical
direction. That is, if ϕ is a function (or array of functions) and s ∈ R, let ϕs(x, t) =
ϕ(x, t+ s). Notice that 〈ϕ,ψs〉Rn+1 = 〈ϕ−s, ψ〉Rn+1 . Then

〈q̇,∇m−1∂jτDAḟ( · , τ)〉Rn = −∂jτ 〈q̇, Ṫr+
m−1(ΠL(1−A∇mF ))τ 〉Rn

Recall the definition (2.20) of the single layer potential and let Q̇ be an array of

functions supported in Rn+1
+ such that SL∗ q̇ = ΠL∗Q̇. Then

〈q̇,∇m−1∂jτDAḟ( · , τ)〉Rn = −∂jτ 〈1+Q̇,∇m(ΠL(1−A∇mF ))τ 〉Rn+1

and by the adjoint relation (2.17),

〈q̇,∇m−1∂jτDAḟ( · , τ)〉Rn = −∂jτ 〈A
∗∇mΠL∗((1+Q̇)−τ ),∇mF 〉Rn+1

−
.

Recall that if Ḣ ∈ L2(Rn+1) then u = ΠLḢ is the unique function in Ẇ 2
m(Rn+1)

that satisfies formula (2.16). If ϕ ∈ Ẇ 2
m(Rn+1), then

〈∇mϕ,A∗∇m(ΠL∗(1+Q̇))−τ 〉Rn+1 = 〈∇mϕτ ,A∗τ∇mΠL∗(1+Q̇)〉Rn+1 .

But if A is t-independent, then A∗ = A∗τ , and so

〈∇mϕ,A∗∇m(ΠL∗(1+Q̇))−τ 〉Rn+1 = 〈∇mϕτ ,A∗∇mΠL∗(1+Q̇)〉Rn+1

= 〈∇mϕτ ,1+Q̇〉Rn+1 = 〈∇mϕ, (1+Q̇)−τ 〉Rn+1 .

Thus, u = (ΠL∗(1+Q̇))−τ satisfies formula (2.16) with H = (1+Q̇)−τ , and so we
must have

∇mΠL∗((1+Q̇)−τ ) = ∇m(ΠL∗(1+Q̇))−τ = ∇m(SL
∗
q̇)−τ

as L2(Rn+1)-functions.
Thus,

〈q̇,∇m−1∂jτDAḟ( · , τ)〉Rn = (−1)j+1〈A∗∇m(∂jn+1SL
∗
q̇)−τ ,∇mF 〉Rn+1

−
.

By formulas (2.22) and (2.23), if ψ̇ is smooth, compactly supported and integrates
to zero, then

〈ψ̇,∇m∂jτDAḟ( · , τ)〉Rn = (−1)j+1〈A∗∇m(∂jn+1SL
∗

∇ ψ̇)−τ ,∇mF 〉Rn+1
−

.
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By the bound (3.7) and the Caccioppoli inequality, we may extend this relation to

all ψ̇ ∈ L2(Rn). Recalling formula (2.11) for Neumann boundary values, we have
that

〈ψ̇,∇m∂jτDAḟ( · , τ)〉Rn = (−1)j+1〈Ṁ−
A∗(∂

j
n+1SL

∗

∇ ψ̇)−τ , ḟ〉Rn
as desired.

We now turn to formula (4.3). With q̇ and Q̇ as above, and with SLġ = ΠLĠ,

〈q̇,∇m−1∂jτSLġ( · , τ)〉Rn = ∂jτ 〈q̇,∇m−1ΠL(1+Ġ)( · , τ)〉Rn

= ∂jτ 〈(1+Q̇)−τ ,∇mΠL(1+Ġ)〉Rn+1

and by formula (2.17) as before,

〈q̇,∇m−1∂jτSLġ( · , τ)〉Rn = ∂jτ 〈∇mΠL∗((1+Q̇)−τ ), Ġ〉Rn+1
+

= ∂jτ 〈∇m(SL
∗
q̇)−τ , Ġ〉Rn+1

+
.

By definition of Ġ, we have that

〈q̇,∇m−1∂jτSLġ( · , τ)〉Rn = ∂jτ 〈Ṫr+
m−1(SL

∗
q̇)−τ , ġ〉Rn

= ∂jτ 〈∇m−1SL
∗
q̇( · ,−τ), ġ〉Rn

= (−1)j〈∇m−1∂jn+1SL
∗
q̇( · ,−τ), ġ〉Rn .

Applying formulas (2.22) and (2.23), we see that

〈ψ̇,∇m∂jτSLġ( · , τ)〉Rn = (−1)j〈∇m−1∂jn+1SL
∗

∇ ψ̇( · ,−τ), ġ〉Rn
as desired. �

4.2. Estimates in terms of area integral norms of solutions. The main goal
of this paper is to show that, if Lu = 0 in Rn+1

+ and u satisfies certain area integral

estimates, then the Dirichlet and Neumann boundary values Ṫr+
m−1 u and Ṁ+

A u
exist and are bounded.

Recall from formula (2.13) that Ṁ+
A u is given by

〈ψ̇, Ṁ+
A u〉Rn =

ˆ ∞
0

〈A∗∇mEψ̇( · , s),∇mu( · , s)〉Rn ds.

If u decays fast enough, then we have the following formula for Ṫr+
m−1 u:

〈ψ̇, Ṫr+
m−1 u〉Rn = −

ˆ ∞
0

〈ψ̇,∇m−1∂su( · , s)〉Rn ds =

ˆ ∞
0

〈−O+ψ̇,∇mu( · , s)〉Rn ds

for some constant matrix O+. Thus, we wish to bound terms of the formˆ ∞
0

〈ψ̇s,∇mu( · , s)〉Rn ds

for some arrays ψ̇s.
We will prove the following technical lemma; passing from Lemma 4.4 to our

main results is the main work of Sections 5 and 6.

Lemma 4.4. Suppose that L is an operator of the form (1.1) of order 2m, asso-
ciated with coefficients A that are t-independent in the sense of formula (1.4) and
satisfy the ellipticity conditions (2.1) and (2.2).

Suppose that Lu = 0 in Rn+1
+ . Suppose further that ∇mu ∈ L2(Rn × (σ,∞)) for

any σ > 0, albeit with L2 norm that may approach ∞ as σ → 0+.
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Let j ≥ m be an integer. Let ω be a nonnegative real-valued function, and for
each s > 0, let ψ̇s ∈ L2(Rn). Then

ˆ ∞
0

s2jω(s)|〈ψ̇s,∇m∂2j
s u( · , s)〉Rn | ds

≤ Cj
ˆ 4

4/3

ˆ
Rn
A−2 (|t|j−2m+1∂j−mn+1 SL

∗

∇ ψ̇|t|r)(x)A+
2 (Ω(t) t∇mu)(x) dx dr

where Ω(t) = sup{ω(s) : 4t/3 ≤ s ≤ 4t}, provided the right-hand side is finite.

Proof. Let uτ (x, t) = u(x, t+ τ); by assumption, if τ > 0 then ∇muτ ∈ L2(Rn+1
+ ).

By the Caccioppoli inequality, if τ > 0 and j ≥ 0 is an integer, then ∂jn+1uτ ∈
Ẇ 2
m(Rn+1

+ ), and because A is t-independent we have that L(∂jn+1uτ ) = 0 in Rn+1
+ .

Let s = 2τ , so u(x, s) = uτ (x, τ). We will apply the Green’s formula (2.21)

to ∂jn+1uτ . Notice that by Lemma 3.5 and the Caccioppoli inequality, the map

σ 7→ ∇m∂jn+1uτ ( · , σ) is continuous (0,∞) 7→ L2(Rn). The Green’s formula is thus

valid on horizontal slices Rn × {τ}, and not only in Rn+1
+ . Thus,

〈ψ̇2τ ,∇m∂
2j
n+1uτ ( · , τ)〉Rn = −〈ψ̇2τ ,∇m∂

j
n+1DA(Ṫr+

m−1 ∂
j
n+1uτ )( · , τ)〉Rn(4.5)

+ 〈ψ̇2τ ,∇m∂
j
n+1SL(Ṁ+

A ∂
j
n+1uτ )( · , τ)〉Rn .

By Lemma 4.1, we have that

〈ψ̇2τ ,∇m∂
2j
n+1uτ ( · , τ)〉Rn = (−1)j〈Ṁ−

A∗(∂
j
n+1(SL

∗

∇ ψ̇2τ )−τ ), Ṫr+
m−1 ∂

j
n+1uτ 〉Rn

(4.6)

+ (−1)j〈∇m−1∂jn+1SL
∗

∇ ψ̇2τ ( · ,−τ), Ṁ+
A ∂

j
n+1uτ 〉Rn .

Recall formula (2.11) for the Neumann boundary values of Ẇ 2
m(Rn+1

± )-functions.
Let 0 < ε� 1 be a small fixed absolute constant, to be chosen later. Let ητ (z, r) =
ητ (r) = η(r/ετ), where η : R 7→ R is a smooth function with |η(r)| = 1 if |r| < 1/2
and |η(r)| = 0 if |r| > 1. Thus,

(4.7) 〈ψ̇2τ ,∇m∂
2j
n+1uτ ( · , τ)〉Rn

= (−1)j
ˆ
Rn×(−ετ,0)

〈A∗∇m∂jn+1(SL
∗

∇ ψ̇2τ )−τ ,∇m(ητ ∂
j
n+1uτ )〉

+ (−1)j
ˆ
Rn×(0,ετ)

〈∇m(ητ∂
j
n+1(SL

∗

∇ ψ̇2τ )−τ ),A∇m∂jn+1uτ 〉.

Remark 4.8. The preceding arguments, that is, the application of the Green’s
formula to derive formula (4.5), the use of Lemma 4.1 to derive formula (4.6), and
the use of formula (2.11) to derive formula (4.7), are the only times in the proof

of this lemma that we use the fact that uσ ∈ Ẇ 2
m(Rn+1

+ ). We will also assume

vσ ∈ Ẇ 2
m(Rn+1

+ ) and wσ ∈ Ẇ 2
m(Rn+1

+ ) in Theorems 5.1, 5.3, 6.1 and 6.2; again,
that assumption is necessary only in order to apply the present Lemma 4.4, and so
only necessary to ensure validity of formulas (4.5–4.7).
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Observe that |∇kητ | ≤ Ck,ετ−k, and so if j ≥ m, then

|〈ψ̇2τ ,∇m∂
2j
n+1uτ ( · , τ)〉Rn |

≤ Cj,ε
j∑

k=j−m

ˆ
Rn×(−ετ,0)

|∇m∂jn+1(SL
∗

∇ ψ̇2τ )−τ | τk−j |∇m∂kn+1uτ |

+ Cj,ε

j∑
`=j−m

ˆ
Rn×(0,ετ)

τ `−j |∇m∂`n+1(SL
∗

∇ ψ̇2τ )−τ | |∇m∂jn+1uτ |.

Thus, recalling the definitions of (SL∗∇ ψ̇2τ )−τ and uτ ,

ˆ ∞
0

s2jω(s)|〈ψ̇s,∇m∂2j
s u( · , s)〉Rn | ds

≤ Cj,ε
ˆ ∞

0

ω(2τ)
∑
k,`

ˆ ετ

−ετ

ˆ
Rn
τ `+k|∇m∂`n+1SL

∗

∇ ψ̇2τ (z,−(τ − r))|

× |∇m∂kn+1u(z, r + τ)| dz dr dτ.

Making the change of variables r = θτ , we have that

ˆ ∞
0

s2jω(s)|〈ψ̇s,∇m∂2j
s u( · , s)〉Rn | ds

≤ Cj,ε
ˆ ∞

0

ω(2τ)
∑
k,`

ˆ ε

−ε

ˆ
Rn
τ `+k+1|∇m∂`n+1SL

∗

∇ ψ̇2τ (z,−(1− θ)τ)|

× |∇m∂kn+1u(z, (1 + θ)τ)| dz dθ dτ

and changing the order of integration we see that

ˆ ∞
0

s2jω(s)|〈ψ̇s,∇m∂2j
s u( · , s)〉Rn | ds

≤ Cj,ε
∑
k,`

ˆ ε

−ε

ˆ ∞
0

ˆ
Rn
τ `+k+1|∇m∂`n+1SL

∗

∇ ψ̇2τ (z,−(1− θ)τ)|

× ω(2τ)|∇m∂kn+1u(z, (1 + θ)τ)| dz dτ dθ.

Now, observe that if F is a nonnegative function and a > 0, then for some Cn
depending only on the dimension,

(4.9)

ˆ
Rn

ˆ ∞
0

F (z, τ) dτ dz =
Cn
an

ˆ
Rn

ˆ ∞
0

ˆ
|z−x|<aτ

F (z, τ)
1

τn
dz dτ dx.

Thus,

ˆ ∞
0

s2jω(s)|〈ψ̇s,∇m∂2j
s u( · , s)〉Rn | ds

≤ Cj,ε
∑
k,`

ˆ ε

−ε

ˆ
Rn

ˆ ∞
0

ˆ
|z−x|<ετ

|∇m∂`n+1SL
∗

∇ ψ̇2τ (z,−(1− θ)τ)|

× τ `+k+1−nω(2τ)|∇m∂kn+1u(z, (1 + θ)τ)| dz dτ dx dθ.
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By Hölder’s inequality,

ˆ ∞
0

s2jω(s)|〈ψ̇s,∇m∂2j
s u( · , s)〉Rn | ds

≤ Cj,ε
∑
k,`

ˆ ε

−ε

ˆ
Rn

ˆ ∞
0

(ˆ
|z−x|<ετ

|∇m∂`n+1SL
∗

∇ ψ̇2τ (z,−(1− θ)τ)|2 dz
)1/2

×
(ˆ
|z−x|<ετ

|∇m∂kn+1u(z, (1 + θ)τ)|2 dz
)1/2

τ `+k+1−nω(2τ) dτ dx dθ.

By Lemma 3.5, and recalling that |θ| ≤ ε, we have that

ˆ
|z−x|<ετ

|∇m∂kn+1u(z, (1 + θ)τ)|2 dz ≤ Cε
τ

ˆ (1+2ε)τ

(1−2ε)τ

ˆ
|z−x|<2ετ

|∇m∂kr u(z, r)|2 dz dr.

By the Caccioppoli inequality,
ˆ
|z−x|<ετ

|∇m∂kn+1u(z, (1 + θ)τ)|2 dz ≤ Ck,ε
τ1+2k

ˆ (1+3ε)τ

(1−3ε)τ

ˆ
|z−x|<3ετ

|∇mu(z, r)|2 dz dr.

By Theorem 3.2, we have that(ˆ
|z−x|<ετ

|∇m∂kn+1u(z, (1 + θ)τ)|2 dz
)1/2

≤ Ck,ε
τk+n/2+1

ˆ (1+4ε)τ

(1−4ε)τ

ˆ
|z−x|<4ετ

|∇mu(z, r)| dz dr.

Letting r = µτ , we have that(ˆ
|z−x|<ετ

|∇m∂kn+1u(z, (1 + θ)τ)|2 dz
)1/2

≤ Ck,ε
τk+n/2

ˆ 1+4ε

1−4ε

ˆ
|z−x|<4ετ

|∇mu(z, µτ)| dz dµ.

By an identical argument,(ˆ
|z−x|<ετ

|∇m∂`n+1SL
∗

∇ ψ̇2τ (z,−(1− θ)τ)|2 dz
)1/2

≤ Cj,ε
τ2m+`−j+n/2

ˆ −1+4ε

−1−4ε

ˆ
|z−x|<4ετ

|∂j−mn+1 SL
∗

∇ ψ̇2τ (z, κτ)| dz dκ.

Thus,

ˆ ∞
0

s2jω(s)|〈ψ̇s,∇m∂2j
s u( · , s)〉Rn | ds

≤ Cj,ε
ˆ 1+4ε

1−4ε

ˆ −1+4ε

−1−4ε

ˆ
Rn

ˆ ∞
0

ˆ
|z−x|<4ετ

|∇mu(z, µτ)|ω(2τ) dz

× τ1+j−2n−2m

ˆ
|z−x|<4ετ

|∂j−mn+1 SL
∗

∇ ψ̇2τ (z, κτ)| dz dτ dx dκ dµ.
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Applying Hölder’s inequality, we see that

ˆ ∞
0

s2jω(s)|〈ψ̇s,∇m∂2j
s u( · , s)〉Rn | ds

≤ Cj,ε
ˆ 1+4ε

1−4ε

ˆ −1+4ε

−1−4ε

ˆ
Rn

(ˆ ∞
0

ˆ
|z−x|<4ετ

ω(2τ)2τ1−n|∇mu(z, µτ)|2 dz dτ
)1/2

×
(ˆ ∞

0

ˆ
|z−x|<4ετ

|∂j−mn+1 SL
∗

∇ ψ̇2τ (z, κτ)|2τ2j−4m−n+1 dz dτ

)1/2

dx dκ dµ.

Apply the change of variables t = µτ in the first integral and t = κτ in the second
integral. We then have that

ˆ ∞
0

s2jω(s)|〈ψ̇s,∇m∂2j
s u( · , s)〉Rn | ds

≤ Cj,ε
ˆ 1+4ε

1−4ε

ˆ −1+4ε

−1−4ε

ˆ
Rn

(ˆ ∞
0

ˆ
|z−x|<4εt/µ

ω(2t/µ)2t1−n|∇mu(z, t)|2 dz dt
)1/2

×
(ˆ 0

−∞

ˆ
|z−x|<4εt/κ

|∂j−mn+1 SL
∗

∇ ψ̇2t/κ(z, t)|2|t|2j−4m+1−n dz dt

)1/2

dx dκ dµ.

Let ε = 1/8. Because µ ≥ 1 − 4ε = 1/2, we have that 4ε/µ ≤ 1. Similarly,
4ε/|κ| ≤ 1. Recall Ω(t) = sup{ω(s) : 4t/3 ≤ s ≤ 4t}; then ω(2t/µ) ≤ Ω(t). So

ˆ ∞
0

s2jω(s)|〈ψ̇s,∇m∂2j
s u( · , s)〉Rn | ds

≤ Cj
ˆ −1/2

−3/2

ˆ
Rn

(ˆ ∞
0

ˆ
|z−x|<t

Ω(t)2t1−n|∇mu(z, t)|2 dz dt
)1/2

×
(ˆ 0

−∞

ˆ
|z−x|<|t|

|∂j−mn+1 SL
∗

∇ ψ̇2t/κ(z, t)|2|t|2j−4m+1−n dz dt

)1/2

dx dκ.

Recalling the definition (2.4) of A±2 , we see that

ˆ ∞
0

s2jω(s)|〈ψ̇s,∇m∂2j
s u( · , s)〉Rn | ds

≤ Cj
ˆ −1/2

−3/2

ˆ
Rn
A+

2 (Ω(t) t∇mu)(x)A−2 (|t|j−2m+1∂j−mn+1 SL
∗

∇ ψ̇2t/κ)(x) dx dκ.

Making the change of variables r = −2/κ completes the proof. �

5. The Dirichlet boundary values of a solution

In this section we will prove results pertaining to Dirichlet boundary values.
Specifically, we will prove the following two theorems.

Theorem 5.1. Suppose that L is an operator of the form (1.1) of order 2m, asso-
ciated with coefficients A that are t-independent in the sense of formula (1.4) and

satisfy the ellipticity conditions (2.1) and (2.2). Let v ∈ Ẇ 2
m,loc(R

n+1
+ ) and suppose

that Lv = 0 in Rn+1
+ .
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Suppose that ‖A+
2 (t∇mv)‖Lp(Rn) <∞ for some p with 1 < p < p+

1 , where p+
1 is

as in Theorem 3.2, and where for some k ≥ 1 and c(k, p′) > 0 the bound

‖A−2 (tk ∂m+k
t SL

∗
ġ)‖Lp′ (Rn) ≤ c(k, p

′)‖ġ‖Lp′ (Rn)(5.2)

is valid for all ġ ∈ Lp′(Rn). Here 1/p + 1/p′ = 1. Suppose in addition that, for
all σ > 0, we have that ∇mv ∈ L2(Rn × (σ,∞)), albeit possibly with a norm that
approaches ∞ as σ → 0+.

Then there is some function P defined in Rn+1
+ with ∇mP = 0 (that is, a poly-

nomial of degree at most m− 1) such that

sup
t>0
‖∇m−1v( · , t)−∇m−1P‖Lp(Rn) ≤ C‖A+

2 (t∇mv)‖Lp(Rn),

lim
t→∞
‖∇m−1v( · , t)−∇m−1P‖Lp(Rn) = 0

where C depends only on p, k, c(k, p′) and the standard constants. Furthermore,

there is some array of functions ḟ ∈ L1
loc(Rn) such that

‖∇m−1v( · , t)− ḟ‖Lp(Rn) → 0 as t→ 0+,

and such that

‖ḟ −∇m−1P‖Lp(Rn) ≤ C‖A+
2 (t∇mv)‖Lp(Rn).

Theorem 5.3. Suppose that L is an operator of the form (1.1) of order 2m, as-
sociated with coefficients A that are t-independent in the sense of formula (1.4)

and satisfy the ellipticity conditions (2.1) and (2.2). Let w ∈ Ẇ 2
m,loc(R

n+1
+ ) and

suppose that Lw = 0 in Rn+1
+ .

Suppose that ‖A+
2 (t∇m∂tw)‖Lp(Rn) < ∞ for some p with 1 < p < p+

0 , where

p+
0 = p+

L is as in Theorem 3.2, and where for some k ≥ 1 and c(k, p′) > 0 the
bound

‖A−2 (tk ∂m+k−1
t SL

∗

∇ ḣ)‖Lp′ (Rn) ≤ c(k, p
′)‖ḣ‖Lp′ (Rn)(5.4)

is valid for all ḣ ∈ Lp′(Rn). Suppose in addition that ∇m∂n+1w ∈ L2(Rn× (σ,∞))
for all σ > 0.

Then there is some array ṗ of functions defined on Rn such that

sup
t>0
‖∇mw( · , t)− ṗ‖Lp(Rn) ≤ C‖A+

2 (t∇m∂tw)‖Lp(Rn),

lim
t→∞
‖∇mw( · , t)− ṗ‖Lp(Rn) = 0

for some C depending only on p, k, c(k, p′) and the standard constants. Further-

more, there is some array of functions ḟ ∈ L1
loc(Rn) such that

‖∇mw( · , t)− ḟ‖Lp(Rn) → 0 as t→ 0+,

and such that

‖ḟ − ṗ‖Lp(Rn) ≤ C‖A+
2 (t∇m∂tw)‖Lp(Rn).

If ∇mw( · , t) ∈ Lp(Rn) for some t > 0, then ṗ = 0. Otherwise, the array ṗ

satisfies ṗ(x) = ∇mP (x, t), for some function P ∈ Ẇ 2
m,loc(R

n+1
+ ) such that

• P (x, t) = P1(x, t) + P2(x),
• P1(x, t) is a polynomial of degree at most m (and so ∇mP1 is constant),

• P2 ∈ Ẇ 2
m,loc(Rn),
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• LP = 0 and so

(5.5)
∑

|α|=|β|=m
αn+1=βn+1=0

∂α‖ (Aαβ(x)∂β‖P2(x)) = −
∑

|α|=|β|=m
αn+1=0

∂α‖ (Aαβ(x)∂βP1).

Remark 5.6. We comment on the passage from Theorems 5.1 and 5.3 to Theo-
rem 1.6.

If 1 < p < 2 + ε, then by Theorem 3.6 the bounds (5.2) and (5.4) are valid
whenever k is large enough.

If Wp,q is as in formula (1.11), then by Theorem 3.2 and Lemma 3.5, we have
that

‖∇mw( · , t)‖Lp(Rn) ≤ Cp,qWp,q(t)

and so as in Theorem 1.6, finiteness of Wp,q(t) implies that ∇mP = 0.
Finally, we claim that if A+

2 (t∇mv) ∈ Lp(Rn) or A+
2 (t∇m∂tw) ∈ Lp(Rn) for

some p ≤ 2, then ∇mv ∈ L2(Rn × (σ,∞)) or ∇m∂n+1w ∈ L2(Rn × (σ,∞)) for all
σ > 0.

To verify this, let u = v or u = ∂n+1w. Let c ≥ 1 and let K be a large integer
such that c2−K < σ. Thenˆ

Rn

ˆ ∞
σ

|∇mu(x, t)|2 dt dx ≤
∞∑

j=−K

∑
Q∈Gj

ˆ
Q

ˆ 2c`(Q)

c`(Q)

|∇mu(x, t)|2 dt dx

where Gj is a grid of pairwise-disjoint cubes in Rn of side-length 2j . But if c is large
enough, then for any y ∈ Q,

ˆ
Q

ˆ 2c`(Q)

c`(Q)

|∇mu(x, t)|2 dt dx ≤ C`(Q)n−1

ˆ ∞
0

ˆ
|x−y|<s

|∇mu(x, t)|2 dt dx
tn−1

and so by the definition (2.4) of A+
2 ,

ˆ
Rn

ˆ ∞
σ

|∇mu(x, t)|2 dt dx ≤
∞∑

j=−K

∑
Q∈Gj

C`(Q)n−1

( 
Q

A+
2 (t∇mu)p

)2/p

≤
∞∑

j=−K

C

2j(2n/p+1−n)

∑
Q∈Gj

(ˆ
Q

A+
2 (t∇mu)p

)2/p

.

If p ≤ 2 then ∑
Q∈Gj

(ˆ
Q

A+
2 (t∇mu)p

)2/p

≤
(ˆ

Rn
A+

2 (t∇mu)p
)2/p

and also n− 1− 2n/p ≤ −1, and so we may choose K such thatˆ
Rn

ˆ ∞
σ

|∇mu(x, t)|2 dt dx ≤ C

σ2n/p+1−n ‖A
+
2 (t∇mu)‖2Lp(Rn).

Thus, u ∈ Ẇ 2
m(Rn× (σ,∞)), albeit with norm that increases to infinity as σ → 0+.

In a forthcoming paper, we hope to establish the bounds (5.2) and (5.4) for at
least some values of p′ < 2.

The remainder of this section will be devoted to a proof of Theorems 5.1 and 5.3.
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Fix σ > 0 and let Gσ be a grid of pairwise-disjoint cubes in Rn of side-length σ/c
for some large constant c. By Lemma 3.5, if p < p+

1 then
ˆ
Rn
|∇m−1∂σv(x, σ)|p dx =

∑
Q∈Gσ

ˆ
Q

|∇m−1∂σv(x, σ)|p dx

≤ Cσ−1
∑
Q∈Gσ

ˆ
2Q

ˆ σ+σ/4c

σ−σ/4c
|∇m−1∂σv(x, t)|p dx dt.

By Hölder’s inequality or Theorem 3.2,

ˆ
Rn
|∇m−1∂σv(x, σ)|p dx

≤ Cσn−p
∑
Q∈Gσ

(ˆ
4Q

ˆ σ+σ/2c

σ−σ/2c
|∇m−1∂σv(x, t)|2 1

σn−1
dx dt

)p/2
and by the definition (2.4) of A+

2 , if c is large enough then
ˆ
Rn
|∇m−1∂σv(x, σ)|p dx ≤ Cσn−p

∑
Q∈Gσ

 
Q

A+
2 (t1(σ/2,3σ/2)(t)∇mv( · , t))p

= Cσ−p
ˆ
Rn
A+

2 (t1(σ/2,3σ/2)(t)∇mv)p.

Later in this proof we will use the fact that if p < p+
0 , then by the same argument,

ˆ
Rn
|∇mv(x, σ)|p dx ≤ Cσ−p

ˆ
Rn
A+

2 (t1(σ/2,3σ/2)(t)∇mv)p.(5.7)

So by the dominated convergence theorem, σ∇m−1∂σv( · , σ) → 0 as σ → ∞
strongly in Lp(Rn). By the Caccioppoli inequality and Theorem 3.2, if k ≥ 1 is
an integer then σk∇m−1∂kσv( · , σ)→ 0 (and in particular is bounded) in Lp(Rn) as
σ → ∞. Similarly, if p < p+

0 and k is large enough then σk∇m∂kσw( · , σ) → 0 in
Lp(Rn) as σ →∞.

Let ġ ∈ Lp′(Rn) and ḣ ∈ Lp′(Rn) be bounded and compactly supported. Choose
some T > τ > 0. We wish to bound the quantities

〈ġ,∇m−1v( · , T )−∇m−1v( · , τ)〉Rn and 〈ḣ,∇mw( · , T )−∇mw( · , τ)〉Rn

in terms of τ , T and ‖ġ‖Lp′ (Rn) or ‖ḣ‖Lp′ (Rn). Doing so will allow us to control

∇m−1v( · , T )−∇m−1v( · , τ) or ∇mw( · , T )−∇mw( · , τ); in particular, we will show
that these quantities go to zero as τ →∞ or T → 0+, and so we will see that∇m−1v
or ∇mw approaches a limit at ∞ and at zero.

Let f(s) = 〈ġ,∇m−1v( · , s)〉Rn ; observe that the jth derivative f (j)(s) of f(s)
satisfies f (j)(s) = 〈ġ,∇m−1∂jsv( · , s)〉Rn . Let ω0(s) = 1 if τ < s < T and let
ω0(s) = 0 if 0 < s < τ or s > T . Thus,

〈ġ,∇m−1v( · , T )−∇m−1v( · , τ)〉Rn =

ˆ ∞
0

ω0(s)f ′(s) ds.

Integrating from 0 to ∞ will be somewhat simpler than integrating from 0 to T .
We wish to integrate by parts so that the right-hand side involves higher derivatives
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of f(s). Let ωj(s) =
´ s

0
ωj−1. Using induction, it is straightforward to establish

that if j ≥ 1, then

ωj(s) ≤


0, 0 < s < τ,
1
j! (s− τ)j , τ < s < T,

1
(j−1)! (s− τ)j−1(T − τ), T < s.

By our bound on ωj and by definition of f(s),

ωj(s)|f (j)(s)| ≤ C(j) sj ‖ġ‖Lp′ (Rn)‖∇
m−1∂jsv( · , s)‖Lp(Rn)

and if j ≥ 1, then by our above bounds on ‖∇m−1∂ks v( · , s)‖Lp(Rn), the right-hand
side converges to zero as s → ∞. Thus, we may integrate by parts and see that,
for any j ≥ 0,

〈ġ,∇m−1v( · , T )−∇m−1v( · , τ)〉Rn =

ˆ ∞
0

ω2j(s)f
(2j+1)(s) ds

=

ˆ ∞
0

ω2j(s)〈ġ,∇m−1∂2j+1
s v( · , s)〉Rn ds.

Similarly,

〈ḣ,∇mw( · , T )−∇mw( · , τ)〉Rn =

ˆ ∞
0

ω2j(s)〈ḣ,∇m∂2j+1
s w( · , s)〉Rn ds.

Let O+ be such that

〈ġ,∇m−1∂tϕ〉 = 〈O+ġ,∇mϕ〉.

for any array ġ of functions indexed by multiindices γ with |γ| = m− 1. Then O+

is a constant matrix and

〈ġ,∇m−1v( · , T )−∇m−1v( · , τ)〉Rn =

ˆ ∞
0

ω2j(s)〈O+ġ,∇m∂2j
s v( · , s)〉Rn ds.

By formula (2.22),

∂tSLġ(x, t) = −SL∇(O+ġ)(x, t).

By Lemma 4.4 with ψs ≡ O+ġ for all s and with ω(s) = ω2j(s)/s
2j , we have that

|〈ġ,∇m−1v( · , T )−∇m−1v( · , τ)〉Rn |

≤ C
ˆ
Rn
A−2 (|t|j+1−2m∂j−m+1

n+1 SL
∗
ġ)(x)A+

2 (tΩ(t)∇mv)(x) dx

where Ω(s) satisfies the bounds

Ω(s) ≤ C


0, s < τ,

(1− τ/s)2j , τ < s < T,

(1− τ/s)2j−1(T/s− τ/s), T < s.

Let j = 2m+ k − 1, so j ≥ 2 and k = j + 1− 2m. Then by the bound (5.2),

‖A−2 (|t|j+1−2m∂j−m+1
n+1 SL

∗
ġ)‖Lp′ (Rn) ≤ C‖ġ‖Lp′ (Rn).

By assumption, A+
2 (t∇mv) ∈ Lp(Rn). Because Ω(s) is bounded, we have that

A+
2

(
tΩ(t)∇mv

)
(x) ≤ CA+

2 (t∇mv)(x).
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Furthermore, if A+
2 (t∇mv)(x) <∞ (true for almost every x ∈ Rn), then

A+
2

(
tΩ(t)∇mv

)
(x)→ 0 as τ →∞ or T → 0+.

By the dominated convergence theorem, this means that∥∥A+
2

(
tΩ(t)∇mv

)∥∥
Lp(Rn)

→ 0 as τ →∞ or T → 0+.

Thus, for any sequence of positive numbers tj that converge to either zero or infinity,
the sequence {∇m−1v( · , tj)}∞j=1 is a Cauchy sequence in Lp(Rn), and so the limits

ṗ = lim
t→∞

∇m−1v( · , t) and ḟ = lim
t→0+

∇m−1v( · , t)− ṗ

exist. Furthermore, ‖∇m−1v( · , t)− ṗ‖Lp(Rn) is bounded, uniformly in t.
Similarly, the limits

ṗ′ = lim
t→∞

∇mw( · , t) and ḟ
′

= lim
t→0+

∇mw( · , t)− ṗ′

exist. Furthermore, ‖∇mw( · , t)− ṗ′‖Lp(Rn) is bounded, uniformly in t.

It remains only to produce statements about the limits ṗ, ṗ′ at ∞.
If p < p+

0 , then by formula (5.7), ∇mv( · , t) → 0 in Lp(Rn) as t → ∞, and so
∇‖ṗ = 0 and so ṗ is a constant array. But ṗ is constant if and only if ṗ = ∇m−1P
for some polynomial P of degree at most m− 1, as desired.

If p+
0 ≤ p < p+

1 , we will need a more complicated argument. Fix some x ∈ Rn
and some R > 0. By Lemma 3.5,

ˆ
|x−y|<R

|∇mv(y, τ)|2 dy ≤ C
ˆ
|x−y|<2R

 τ+R

τ−R
|∇mv(y, s)|2 ds dy.

By the Caccioppoli inequality and Theorem 3.2, if q < p+
1 , and if P is a polynomial

of degree at most m− 1, then

ˆ
|x−y|<R

|∇mv(y, τ)|2 dy

≤ CRn−2n/q−2

(ˆ
|x−y|<4R

 τ+2R

τ−2R

|∇m−1v(y, s)−∇m−1P |q ds dy
)2/q

.

If τ > 64R, then by Lemma 3.5,

ˆ
|x−y|<R

|∇mv(y, τ)|2 dy

≤ CRn−2n/q−2

(ˆ
|x−y|<τ/8

 5τ/4

3τ/4

|∇m−1v(y, s)−∇m−1P |q ds dy
)2/q

.

Again by Theorem 3.2,

ˆ
|x−y|<R

|∇mv(y, τ)|2 dy

≤ CRn−2n/q−2τ2n/q−n
ˆ
|x−y|<τ/4

 3τ/2

τ/2

|∇m−1v(y, s)−∇m−1P |2 ds dy.
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Choosing P appropriately, by the Poincaré inequality
ˆ
|x−y|<R

|∇mv(y, τ)|2 dy

≤ CRn−2n/q−2τ2n/q−n+2

ˆ
|x−y|<τ/4

 3τ/2

τ/2

|∇mv(y, s)|2 ds dy.

By the definition (2.4) of A+
2 , if |x− z| < τ/4, thenˆ

|x−y|<R
|∇mv(y, τ)|2 dy ≤ CRn−2n/q−2τ2n/qA+

2 (t∇mv)(z)2.

Averaging over such z, we see thatˆ
|x−y|<R

|∇mv(y, τ)|2 dy ≤ CRn−2n/q−2τ2n/q−2n/p‖A+
2 (t∇mv)‖2Lp(Rn).

If p < p+
1 , we may choose q with p < q < p+

1 . Then for any x ∈ Rn and any R > 0,

lim
τ→∞

ˆ
|x−y|<R

|∇‖∇m−1v(y, τ)|2 dy = 0.

From this we see that ṗ = limτ→∞∇m−1v( · , τ) has a weak gradient that is equal
to zero almost everywhere in Rn, and thus ṗ is constant.

We now turn to w and ṗ′. By a similar argument, ∇m∂tw( · , t) → 0 and so
∇m−1∂n+1w approaches a constant ṗ′1. There is some polynomial P1 of order at
most m with ṗ′1 = ∇m−1∂n+1P1. We are left with ṗ′2 = limt→∞∇m‖ w( · , t). Since

w( · , t) is in Ẇ 2
m,loc(Rn), we have that ṗ′2 = ∇m‖ P2 for some function P2 defined on

Rn. Thus, ṗ(x) = ∇mP (x, t) where P (x, t) = P1(x, t) + P2(x), as desired.
We next check the claim LP = 0. Let ϕ be smooth and compactly supported.

Then

〈∇mϕ,A∇mP 〉Rn+1 =

ˆ ∞
−∞
〈∇mϕ( · , t),A∇mP 〉Rn dt

= lim
s→∞

ˆ ∞
−∞
〈∇mϕ( · , t),A∇mw( · , s+ t)〉Rn dt

= lim
s→∞
〈∇mϕ−s,A∇mw〉Rn+1

+
= 0

because Lw = 0 in Rn+1
+ . (Here ϕ−s(x, t) = ϕ(x, t − s); if ϕ is supported in

Rn× (−T, T ) then ϕ−s is supported in Rn× (s−T, s+T ).) Thus, LP = 0 as well.
Finally, suppose that ∇mw( · , t) ∈ Lp(Rn) for some t > 0. This implies that

‖∇mw( · , s)‖Lp(Rn) is bounded, uniformly in s > 0, and so ∇mP ∈ Lp(Rn) as well.

By assumption, p < p+
0 = p+

L . Let q satisfy p < q < p+
L . Recalling that LP = 0,

we have that by Lemma 3.5 and Theorem 3.2, if r > 0 then(ˆ
|x|<r
|∇mP (x, t)|q dx

)1/q

≤ Crn/q−n/p
( t+r

t−r

ˆ
|x|<2r

|∇mP (x, s)|p dx ds
)1/p

.

Recalling that ∇mP is constant in t, and taking the limit as r → ∞, we see that
‖∇mP‖Lq(Rn) = 0; thus ∇mP = 0 almost everywhere, as desired.
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6. The Neumann boundary values of a solution

In this section we will prove results pertaining to the Neumann boundary val-
ues as defined by formula (2.13), that is, defined in terms of a specific extension
operator E . Specifically, we will prove the following two theorems.

Theorem 6.1. Suppose that L is an operator of the form (1.1) of order 2m, asso-
ciated with coefficients A that are t-independent in the sense of formula (1.4) and

satisfy the ellipticity conditions (2.1) and (2.2). Let v ∈ Ẇ 2
m,loc(R

n+1
+ ) and suppose

that Lv = 0 in Rn+1
+ .

Suppose that A+
2 (t∇mv) ∈ Lp(Rn) for some 1 < p < ∞. Further assume that

for any σ > 0 we have that ∇mv ∈ L2(Rn × (σ,∞)).
Then for all ϕ smooth and compactly supported, we have that

〈A∇mv( · , t),∇mEϕ( · , t)〉Rn
represents an absolutely convergent integral for any fixed t > 0 and is continuous
in t.

Furthermore,

sup
0<ε<T<∞

∣∣∣∣ˆ T

ε

〈A∇mv( · , t),∇mEϕ( · , t)〉Rn dt
∣∣∣∣

≤ C‖∇‖ Ṫr+
m−1 ϕ‖Lp′ (Rn)‖A

+
2 (t∇mv)‖Lp(Rn)

and the limit

lim
ε→0+

T→∞

ˆ T

ε

〈A∇mv( · , t),∇mEϕ( · , t)〉Rn dt

exists, and so 〈Ṁ+
A v, Ṫrm−1 ϕ〉Rn+1

+
exists and satisfies the bound

|〈Ṁ+
A v, Ṫrm−1 ϕ〉Rn+1

+
| ≤ C‖∇‖ Ṫr+

m−1 ϕ‖Lp′ (Rn)‖A
+
2 (t∇mv)‖Lp(Rn).

Theorem 6.2. Suppose that L is an operator of the form (1.1) of order 2m, as-
sociated with coefficients A that are t-independent in the sense of formula (1.4)

and satisfy the ellipticity conditions (2.1) and (2.2). Let w ∈ Ẇ 2
m,loc(R

n+1
+ ) and

suppose that Lw = 0 in Rn+1
+ .

Suppose that A+
2 (t∇m∂tw) ∈ Lp(Rn) for some 1 < p <∞. Further assume that

for any σ > 0 we have that ∇m∂n+1w ∈ L2(Rn × (σ,∞)). Finally, assume that

sup
τ>0

(ˆ
Rn

( 
B((x,τ),τ/2)

|∇mw|2
)p/2)1/p

= C0 <∞.

Then for all ϕ smooth and compactly supported in Rn+1 we have that the bound

|〈Ṁ+
A w, Ṫrm−1 ϕ〉Rn | ≤ C‖Ṫr+

m−1 ϕ‖Lp′ (Rn)

(
‖A+

2 (t∇m∂tw)‖Lp(Rn) + C0

)
is valid. Furthermore, we have that

(6.3)

ˆ ∞
0

ˆ
Rn
|〈A(x)∇mw(x, t),∇mEϕ(x, t)〉| dx dt <∞

and that

(6.4) 〈Ṁ+
A w, Ṫrm−1 ϕ〉Rn = 〈A∇mw,∇mϕ〉Rn+1

+
.

That is, the Neumann boundary values may be defined in terms of arbitrary C∞0
extensions as well as the distinguished extension Eϕ.
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Before proving these theorems, we make two remarks; these remarks may assist
in applying Theorems 6.1 and 6.2.

Remark 6.5. We comment on the appearance in Theorem 6.2 of the term

sup
τ>0

(ˆ
Rn

( 
B((x,τ),τ/2)

|∇mw|2
)p/2)1/p

.

If p < p+
L , where p+

L is as in Theorem 3.2, then

sup
τ>0

ˆ
Rn

( 
B(x,τ),τ/2

|∇mw|2
)p/2

dx ≤ C sup
τ>0
‖∇mw( · , τ)‖pLp(Rn)

and so if p′ is such that the condition (5.4) is valid, then by Theorem 5.3 we have
that

sup
τ>0

ˆ
Rn

( 
B((x,τ),τ/2)

|∇mw|2
)p/2

≤ Cp‖A+
2 (t∇m∂tw)‖pLp(Rn).

provided ‖∇mw( · , τ)‖Lp(Rn) <∞ for at least one value of τ > 0.
As mentioned in the introduction, this term appears in other ways in the theory;

for example, if Ñ is the modified nontangential maximal function introduced in
[KP93], then

sup
τ>0

ˆ
Rn

( 
B((x,τ),τ/2)

|∇mw|2
)p/2

≤ C‖Ñ(∇mw)‖pLp(Rn).

Remark 6.6. As in Section 5, if p ≤ 2, then finiteness of ‖A+
2 (t∇mv)‖Lp(Rn) or

‖A+
2 (t∇m∂tw)‖Lp(Rn) implies the inclusions∇mv ∈ L2(Rn×(σ,∞)) or∇m∂n+1w ∈

L2(Rn × (σ,∞)), respectively, for any σ > 0.
Thus, if 1 < p ≤ 2, then v satisfies the conditions of Theorem 6.1 provided only

that A+
2 (t∇mv) ∈ Lp(Rn) and Lv = 0 in Rn+1

+ .
Similarly, by Remark 6.5, if 1 < p ≤ 2 then w̃ = w − P satisfies the conditions

of Theorem 6.2 provided A+
2 (t∇m∂tw) ∈ Lp(Rn) and Lw = 0 in Rn+1

+ , where P is
as in Theorem 5.3.

We will devote the remainder of this section to a proof of these two theorems.
We begin with the following estimates on Qmt .

Lemma 6.7. Let 0 ≤ j ≤ m and let ` ≥ j be an integer. Let γ be a multiindex
with γn+1 = 0 and |γ| ≤ `.

If 1 ≤ r ≤ p′ ≤ ∞, then

(6.8) ‖t`−j∂γ‖∂
`−|γ|
t Qmt ψ‖Lp′ (Rn) ≤ Cp′,rt

n/p′−n/r‖∇j‖ψ‖Lr(Rn)

for any t > 0 and ψ ∈ Ẇ r
j (Rn).

If 1 < p′ <∞, and if ` > |γ| or ` = |γ| > j, then then

(6.9) ‖A+
2 (t`−j∂γ‖∂

`−|γ|
t Qmt ψ)‖Lp′ (Rn) ≤ C‖∇

j
‖ψ‖Lp′ (Rn)

for any ψ ∈ Ẇ p′

j (Rn).

Proof. For any Schwartz function η, let ηt(y) = t−nη(y/t). Recall that Qmt =

e−(−t2∆‖)
m

; a straightforward argument using the Fourier transform establishes
that Qmt f(x) = θt ∗ f(x) for some Schwartz function θ.
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Observe that ∂tQmt = −2mt2m−1(−∆‖)
mQmt . Thus, there are some constants

C`,m,γ,ζ such that

t`−j∂γ‖∂
`−|γ|
t Qmt ψ(x) =

∑
2m≤|ζ|≤2m(`−|γ|)
ζn+1=0

t|ζ|+|γ|−jC`,m,γ,ζ∂
ζ+γ
‖ Qmt ψ(x) if ` > |γ|,

t`−j∂γ‖∂
`−|γ|
t Qmt ψ(x) = t|γ|−j∂γ‖Q

m
t ψ(x) if ` = |γ|.

Notice that the purely horizontal derivatives may be chosen to fall on either ψ or
the convolution kernel of Qmt , and, furthermore, if either ` > |γ| or ` = |γ| ≥ j then
there are at least j such derivatives. Thus, we have that

(6.10) t`−j∂γ‖∂
`−|γ|
t Qmt ψ(x) =

∑
|δ|=j, δ∈(N0)n

ηδt ∗ ∂δ‖ψ(x) = η̇t ∗ ∇
j
‖ψ(x)

for some array of Schwartz functions η̇ depending on γ, `, m and j.
Observe that if 1 ≤ s ≤ ∞ then ‖ηt‖Ls(Rn) = Cst

n/s−n for some constant Cs
depending only on s and η. It is well known that, if 1 ≤ r ≤ p′ ≤ ∞, then

‖η̇t ∗ ∇
j
‖ψ‖Lp′ (Rn) ≤ ‖η̇t‖Ls(Rn)‖∇j‖ψ‖Lr(Rn),

where 1/p′ + 1 = 1/s + 1/r. Applying this estimate to formula (6.10) yields the
bound (6.8).

Let ρ be a Schwartz function that satisfies
´
Rn ρ(x) dx = 0. Then by [BCP62,

Application (3)],

‖A+
2 (ρt ∗ f)‖Lp′ (Rn) ≤ C(p′)‖f‖Lp′ (Rn)

for any 1 < p′ < ∞. Thus, to establish the bound (6.9), it suffices to show that
η̇ integrates to zero. To show that η̇ integrates to zero, it suffices to show that, if
pδ(x) = xδ for some δ ∈ (N0)n with |δ| = j, so that ∇j‖pδ = δ! ėδ, then

t`−j∂γ‖∂
`−|γ|
t Qmt pδ(x) = 0.

But

Qmt pδ(x) = θt ∗ pδ(x) =

ˆ
(x− ty)δθ(y) dy

=
∑
ζ≤δ

δ!

ζ!(δ − ζ)!
xζ t|δ−ζ|

ˆ
(−y)δ−ζ θ(y) dy =

∑
ζ≤δ

Cζ,δ x
ζ tj−|ζ|

where we say that ζ ≤ δ if ζj ≤ δj for all 1 ≤ j ≤ n. Let Cζ,δ = 0 if |ζ| ≤ j but
ζ 6≤ δ, so that we may sum over ζ with |ζ| ≤ j. We thus may write

Qmt pδ(x) =

j∑
k=0

tk
∑
|ζ|=j−k

Cζ,δ x
ζ .

Recall that if 1 ≤ k ≤ 2m− 1, then ∂kt Qmt
∣∣
t=0

= 0. Thus,

0 = ∂kt Qmt pδ(x)
∣∣
t=0

= k!
∑
|ζ|=j−k

Cζ,δ x
ζ

for any 1 ≤ k ≤ j, and so Qmt pδ(x) = Cδ,δ x
δ. We compute

∂
`−|γ|
t Qmt pδ(x) = ∂

`−|γ|
t Cδ,δ x

δ.



32 ARIEL BARTON, STEVE HOFMANN, AND SVITLANA MAYBORODA

This is zero whenever ` > |γ|. If ` = |γ|, then

∂γ‖∂
`−|γ|
t Qmt pδ(x) = Cδ,δ ∂

γ
‖x

δ

which is zero if |γ| > |δ| = j. �

Next, we prove the following lemma.

Lemma 6.11. Let L be as in Theorems 6.1 and 6.2. Suppose that Lu = 0 in Rn+1
+ .

If ψ is smooth and compactly supported, if 0 ≤ j ≤ m, ` ≥ j and k ≥ 0 are integers,
and if r, p are real numbers with 1 < p <∞ and 1 ≤ r ≤ p′, 1/p+ 1/p′ = 1, thenˆ

Rn
|τ `−j+k+1∇`Qmτ ψ(x)| |A(x)∇m∂kτ u(x, τ)| dx

≤ Cτn/p
′−n/r‖∇j‖ψ‖Lr(Rn)‖A+

2 (t1(τ/2,3τ/2)(t)∇mu)‖Lp(Rn).

This lemma has obvious applications if u = v or u = ∂tw. We remark that it
may also be applied with u = w, because

1

τ
‖A+

2 (t1(τ/2,3τ/2)(t)∇mw)‖pLp(Rn) ≤ C sup
τ>0

ˆ
Rn

( 
B((x,τ),τ/2)

|∇mw|2
)p/2

.

Proof of Lemma 6.11. By Lemma 3.5 and the Caccioppoli inequality, 
|x−y|<τ/2

|∇m∂kτ u(y, τ)|2 dy ≤ Cτ−2−2kA+
2 (t1(τ/2,3τ/2)(t)∇mu)(x)2.

Thus,ˆ
Rn
|τ `−j+k+1∇`Qmτ ψ(x)| |A(x)∇m∂kτ u(x, τ)| dx

=

ˆ
Rn

 
|x−y|<τ/2

|τ `−j+k+1∇`Qmτ ψ(y)| |A(x)∇m∂kτ u(y, τ)| dy dx

≤ C
ˆ
Rn

(
sup

|x−y|<τ/2
|τ `−j∇`Qmτ ψ(y)|2

)1/2

A+
2 (t1(τ/2,3τ/2)(t)∇mu)(x) dx.

By formula (6.10),

sup
|x−y|<τ

|τ `−j∇`Qmτ ψ(y)| ≤ CM(∇j‖ψ)(x)

where M denotes the Hardy-Littlewood maximal function. Because Qmt is a semi-
group, we have that Qmτ ψ = Qmτ/2(Qmτ/2ψ), and so

sup
|x−y|<τ/2

|τ `−j∇`Qmτ ψ(y)| ≤ CM(∇j‖Q
m
τ/2ψ)(x).

Thus, by boundedness of M,ˆ
Rn
|τ `−j+k+1∇`Qmτ ψ(x)| |A(x)∇m∂kτ u(x, τ)| dx

≤ C‖∇j‖Q
m
τ/2ψ‖Lp′ (Rn)‖A

+
2 (t1(τ/2,3τ/2)(t)∇mu)‖Lp(Rn).

Now, by the bound (6.8), we have that if 1 ≤ r ≤ p′ then

‖∇j‖Q
m
τ/2ψ‖Lp′ (Rn) ≤ Cp′,rτ

n/p′−n/r‖∇j‖ψ‖Lr(Rn).

This completes the proof. �
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We now prove Theorems 6.1 and 6.2. We begin with the terms that require
different arguments in the two cases; we will conclude this section by bounding a
term that arises in both cases.

Lemma 6.12. Let v be as in Theorem 6.1. Then

〈A∇mv( · , t),∇mEϕ( · , t)〉Rn
represents an absolutely convergent integral over Rn for all t > 0 and is continuous
in t.

Furthermore, let ψj(x) = ϕm−j(x) = ∂m−jn+1 ϕ(x, 0), so

1

C
‖∇‖ Ṫr+

m−1 ϕ‖Lp′ (Rn) ≤
m∑
j=1

‖∇j‖ψj‖Lp′ (Rn) ≤ C‖∇‖ Ṫr+
m−1 ϕ‖Lp′ (Rn).

Suppose that ‖A+
2 (t∇mv)‖Lp(Rn) <∞ for some 1 < p <∞. Then

〈A∇mv( · , t),∇mEϕ( · , t)〉Rn

= OK(t) +

m∑
j=1

∑
|β|=m

∑
|γ|=j
γn+1=0

ˆ
Rn
∂γ‖Q

m
t ψj(x)Aγβ(x) ∂βv(x, t) dx

where Aγβ = Aγ̃β for γ̃ = γ + (m − |γ|)~en+1, and where OK(t) = OK(t, ϕ, v)
satisfies the boundˆ ∞

0

|OK(t, ϕ, v)| dt ≤ C‖∇‖ Ṫr+
m−1 ϕ‖Lp′ (Rn)‖A

+
2 (t∇mv)‖Lp(Rn).

Proof. Observe that by the definition (2.12) of E ,

〈A∇mv( · , t),∇mEϕ( · , t)〉Rn =

m∑
j=1

∑
|β|=m

∑
|γ|≤m
γn+1=0

1

(m− j)!

×
ˆ
Rn
∂γ‖∂

m−|γ|
t (tm−jQmt ψj(x))Aγβ(x) ∂βv(x, t) dx.

By Leibniz’s rule,

〈A∇mv( · , t),∇mEϕ( · , t)〉Rn

=
m∑
j=1

∑
|β|=m

∑
|γ|≤m
γn+1=0

m∑
`=max(j,|γ|)

(m− |γ|)!
(`− |γ|)!(m− `)!(`− j)!

×
ˆ
Rn
t`−j∂

`−|γ|
t ∂γ‖Q

m
t ψj(x)Aγβ(x) ∂βv(x, t) dx.

By Lemma 6.11 (with r = p′), the integral is absolutely convergent and has absolute
value at most

Ct−1‖∇j‖ψj‖Lp′ (Rn)‖A
+
2 (t∇mu)‖Lp(Rn).

Furthermore,ˆ
Rn

∣∣∣∣ ddt
(
t`−j∂

`−|γ|
t ∂γ‖Q

m
t ψj(x)Aγβ(x) ∂βv(x, t)

)∣∣∣∣ dx
≤ Ct−2‖∇j‖ψj‖Lp′ (Rn)‖A

+
2 (t∇mu)‖Lp(Rn)
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and so the integral over Rn is continuous (and in fact differentiable) in t.
By formula (4.9), Hölder’s inequality and the definition (2.4) of Aa2 , if a > 0 and

if F and G are nonnegative functions then

(6.13)

ˆ
Rn

ˆ ∞
0

F (x, t)G(x, t) dt dx =
Cn
an

ˆ
Rn
Aa2(F )(x)Aa2(tG)(x) dx.

Thus,

ˆ
Rn

ˆ ∞
0

∣∣t`−j ∂γ‖∂`−|γ|t Qmt ψj(x)Aγβ(x) ∂βv(x, t)
∣∣ dt dx

≤ C
ˆ
Rn
A+

2 (t`−j∂γ‖∂
`−|γ|
t Qmt ψj)(y)A+

2 (t ∂βv)(y) dy.

By the bound (6.9), if ` > |γ| or ` = |γ| > j, then

‖A+
2 (t`−j∂γ‖∂

`−|γ|
t Qmt ψj)‖Lp′ (Rn) ≤ ‖∇

j
‖ψj‖Lp′ (Rn).

Thus, we need only consider the |γ| = j = ` term; in other words,

〈A∇mv( · , t),∇mEϕ( · , t)〉Rn

= OK(t) +

m∑
j=1

∑
|β|=m

∑
|γ|=j
γn+1=0

ˆ
Rn
∂γ‖Q

m
t ψj(x)Aγβ(x) ∂βv(x, t) dx

where the term OK(t) satisfiesˆ ∞
0

|OK(t)| dt ≤ C‖∇‖ Ṫr+
m−1 ϕ‖Lp′ (Rn)‖A

+
2 (t∇mv)‖Lp(Rn).

This completes the proof. �

Lemma 6.14. Under the hypotheses of Theorem 6.2, the bound (6.3) and for-
mula (6.4) are valid.

Furthermore, let ψj(x) = ϕm−j−1(x) = ∂m−j−1
n+1 ϕ(x, 0), so

1

C
‖Ṫr+

m−1 ϕ‖Lp′ (Rn) ≤
m−1∑
j=0

‖∇j‖ψj‖Lp′ (Rn) ≤ C‖Ṫr+
m−1 ϕ‖Lp′ (Rn).

Then for any 0 < ε < T we have that

ˆ T

ε

〈A∇mw( · , t),∇mEϕ( · , t)〉Rn dt

= OK −
m−1∑
j=0

∑
|β|=m

∑
|γ|=j
γn+1=0

ˆ T

ε

ˆ
Rn
∂γ‖Q

m
t ψj(x)Aγβ(x) ∂β∂tw(x, t) dx dt

for some term OK = OKε,T (w,ϕ) that satisfies the bound

|OKε,T (w,ϕ)| ≤ C‖Ṫr+
m−1 ϕ‖Lp′ (Rn) sup

τ>0

(ˆ
Rn

( 
B((x,τ),τ/2)

|∇mw|2
)p/2)1/p

+ C‖Ṫr+
m−1 ϕ‖Lp′ (Rn)‖A

+
2 (t∇m∂tw)‖Lp(Rn).
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Proof. We begin with the bound (6.3). Observe that if |α| = m, then

∂αEϕ(x, t) =

m−1∑
j=0

∂α
(

1

(m− j − 1)!
tm−j−1Qmt ψj(x)

)

=

m−1∑
j=0

m∑
`=j+1

∑
|γ|=`

Cα,γ,jt
`−j−1∂γQmt ψj(x).

By Lemma 6.11 and the following remarks, if 1 ≤ r ≤ p′ then

ˆ
Rn

∣∣〈A∇mw(x, t),∇mEϕ(x, t)〉
∣∣ dx

≤ C
m−1∑
j=0

min
(
‖∇j+1
‖ ψj‖Lp′ (Rn), t

n/p′−n/r−1‖∇j‖ψj‖Lr(Rn)

)
× sup
τ>0

(ˆ
Rn

( 
B((x,τ),τ/2)

|∇mw|2
)p/2)1/p

.

By assumption the term on the last line is finite, and so if ϕ and thus ψj is
smooth and compactly supported, the bound (6.3) is valid. Thus, we may write
〈Ṫr+

m−1 ϕ, Ṁ
+
A w〉Rn = 〈∇mEϕ,A∇mw〉Rn+1

+
for all ϕ ∈ C∞0 (Rn+1), without taking

explicit limits.
We now turn to formula (6.4). We seek to show that if ϕ ∈ C∞0 (Rn+1), then

〈∇mϕ,A∇mw〉Rn+1
+

= 〈Ṫr+
m−1 ϕ, Ṁ

+
A w〉Rn = 〈∇mEϕ,A∇mw〉Rn+1

+
.

Let ηR(x, t) = η(x/R, t/R), where η is smooth, supported in B(0, 2) and equal to
1 in B(0, 1). An argument using the bound (6.3) shows that as R→∞,

〈∇m(ηREϕ),A∇mw〉Rn+1
+
→ 〈∇mEϕ,A∇mw〉Rn+1

+
= 〈Ṫr+

m−1 ϕ, Ṁ
+
A w〉Rn .

But by Lemma 3.5, ∇mw is locally integrable up to the boundary in Rn+1
+ , and

so if ϕ is compactly supported, then by the weak formulation (2.3) of Lw = 0 we
have that 〈∇mϕ,A∇mw〉Rn+1

+
depends only on Ṫr+

m−1 ϕ. Thus, if ϕ is compactly

supported then

〈∇mϕ,A∇mw〉Rn+1
+

= 〈∇m(ηREϕ),A∇mw〉Rn+1
+

for all R large enough, and so formula (6.4) is valid.
Finally, we come to the formula involving ψj . Observe that

ˆ T

ε

〈A∇mw( · , t),∇mEϕ( · , t)〉Rn dt

=

m−1∑
j=0

∑
|α|=m
|β|=m

ˆ T

ε

ˆ
Rn
∂α
(

tm−j−1

(m− j − 1)!
Qmt ψj(x)

)
Aαβ(x) ∂βw(x, t) dx dt.

We wish to bound the terms on the right-hand side.
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We begin with terms for which αn+1 > 0. Let α = γ + (m − |γ|)~en+1 for some
γ with γn+1 = 0 and m− |γ| ≥ 1. Then

ˆ T

ε

ˆ
Rn
∂α
(
tm−j−1Qmt ψj(x)

)
Aαβ(x) ∂βw(x, t) dx dt

=

ˆ T

ε

ˆ
Rn
∂γ‖∂

m−|γ|
t (tm−j−1Qmt ψj(x))Aγβ ∂βw(x, t) dx dt.

Integrating by parts in t, we see that

ˆ T

ε

ˆ
Rn
∂α
(
tm−j−1Qmt ψj(x)

)
Aαβ(x) ∂βw(x, t) dx dt

= −
ˆ T

ε

ˆ
Rn
∂γ‖∂

m−|γ|−1
t (tm−j−1Qmt ψj(x))Aγβ ∂β∂tw(x, t) dx dt

+

ˆ
Rn
∂γ‖∂

m−|γ|−1
t (Tm−j−1QmT ψj(x))Aγβ ∂βw(x, T ) dx

−
ˆ
Rn
∂γ‖∂

m−|γ|−1
t (εm−j−1Qmε ψj(x))Aγβ ∂βw(x, ε) dx.

By Lemma 6.11 and the following remarks, the second and third terms have norm
at most

C‖∇j‖ψj‖Lp′ (Rn) sup
τ>0

ˆ
Rn

( 
B((x,τ),τ/2)

|∇mw|2
)p/2

and thus satisfy our desired bounds.
We turn to the first term. Applying Leibniz’s rule, we have that

ˆ T

ε

ˆ
Rn
∂γ‖∂

m−|γ|−1
t (tm−j−1Qmt ψj(x))Aγβ(x) ∂β∂tw(x, t) dx dt

=

m−1∑
`=max(|γ|,j)

Cm,j,|γ|,`

ˆ T

ε

ˆ
Rn
t`−j∂

`−|γ|
t ∂γ‖Q

m
t ψj(x)Aγβ(x) ∂β∂tw(x, t) dx dt.

We remark that if ` = j = |γ|, then Cm,j,|γ|,` = (m − j − 1)!. Recall that these
terms are the terms that appear explicitly in the statement of this lemma, and so
we need not bound them in this proof.

If ` > j or ` > γ, then by the bounds (6.13) and (6.9),

ˆ ∞
0

ˆ
Rn

∣∣t`−j∂`−|γ|t ∂γ‖Q
m
t ψj(x)Aγβ(x) ∂β∂tw(x, t)

∣∣ dx dt
≤ C

ˆ
Rn
A+

2 (t`−j∂
`−|γ|
t ∂γ‖Q

m
t ψj)A+

2 (t ∂β∂tw) dx

≤ C‖∇j‖ψj‖Lp′ (Rn)‖A
+
2 (t∇m∂tw)‖Lp(Rn)

as desired.
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We now consider the terms with αn+1 = 0; we may write these terms as∑
|β|=m

∑
|α|=m
αn+1=0

ˆ T

ε

ˆ
Rn

tm−j−1

(m− j − 1)!
∂α‖Q

m
t ψj(x)Aαβ(x) ∂βw(x, t) dx dt

=

m−1∑
j=0

ˆ T

ε

tm−j−1

(m− j − 1)!
〈∇m‖ Q

m
t ψj(x),A∇mw( · , t)〉Rn dt.

We again integrate by parts in t and see that

ˆ T

ε

tm−j−1

(m− j − 1)!
〈∇m‖ Q

m
t ψj(x),A∇mw( · , t)〉Rn dt

= −
ˆ T

ε

tm−j

(m− j)!
∂

∂t
〈∇m‖ Q

m
t ψj(x),A∇mw( · , t)〉Rn dt

+
Tm−j

(m− j)!
〈∇m‖ Q

m
T ψj(x),A∇mw( · , T )〉Rn

− εm−j

(m− j)!
〈∇m‖ Q

m
ε ψj(x),A∇mw( · , ε)〉Rn .

We may bound the last two terms using Lemma 6.11 as before. We compute

−
ˆ T

ε

tm−j

(m− j)!
∂

∂t
〈∇m‖ Q

m
t ψj(x),A∇mw( · , t)〉Rn dt

= −
ˆ T

ε

tm−j

(m− j)!
〈∇m‖ ∂tQ

m
t ψj(x),A∇mw( · , t)〉Rn dt

−
ˆ T

ε

tm−j

(m− j)!
〈∇m‖ Q

m
t ψj(x),A∇m∂tw( · , t)〉Rn dt.

As before, we bound the second term using the bounds (6.13) and (6.9). To control
the first term, we integrate by parts in x and use the fact that Lw = 0. Then

〈∇m‖ ∂tQ
m
t ψj(x),A∇mw( · , t)〉Rn

=
∑
|α|=m
αn+1=0

∑
|β|=m

〈∂α‖ ∂tQ
m
t ψj(x), Aαβ∂βw( · , t)〉Rn

=
∑

|γ|≤m−1
γn+1=0

∑
|β|=m

(−1)m+|γ|+1〈∂γ‖∂tQ
m
t ψj(x), Aγβ∂β∂

m−|γ|
t w( · , t)〉Rn .

Thus, by formula (6.13),∣∣∣∣ˆ T

ε

tm−j

(m− j)!
〈∇m‖ ∂tQ

m
t ψj(x),A∇mw( · , t)〉Rn dt

∣∣∣∣
≤ C

∑
|γ|≤m−1
γn+1=0

‖A1/2
2 (t|γ|−j+1∂γ‖∂tQ

m
t ψj)‖Lp′ (Rn)

× ‖A1/2
2 (tm−|γ|∇m∂m−|γ|t w)‖Lp′ (Rn).

By the bound (6.9), the first term is at most C‖∇j‖ψj‖Lp′ (Rn). By the Caccioppoli

inequality, the second term is at most C‖A+
2 (t∇m∂tw)‖Lp′ (Rn), as desired.
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Assembling our estimates, we see that

ˆ T

ε

〈A∇mw( · , t),∇mEϕ( · , t)〉Rn dt

= OK −
m−1∑
j=0

∑
|β|=m

∑
|γ|=j
γn+1=0

ˆ
Rn

ˆ T

ε

∂γ‖Q
m
t ψj(x)Aγβ(x) ∂β∂tw(x, t) dt dx

as desired. �

To complete the proof of Theorems 6.1 and 6.2, we must bound terms of the
form

ˆ T

ε

∑
|β|=m

∑
|γ|=j
γn+1=0

ˆ
Rn
∂γ‖Q

m
t ψj(x)Aγβ(x) ∂βu(x, t) dx dt

for 0 ≤ j ≤ m, where u = v or u = ∂tw.
Choose some j with 0 ≤ j ≤ m. As usual, we integrate by parts in t. If ` ≥ 0 is

an integer, then

ˆ T

ε

ˆ
Rn
∂γ‖Q

m
t ψj(x)Aγβ(x) ∂β∂`tu(x, t) t` dx dt

= − 1

`+ 1

ˆ T

ε

ˆ
Rn
∂γ‖Q

m
t ψj(x)Aγβ(x) ∂β∂`+1

t u(x, t) t`+1 dx dt

− 1

`+ 1

ˆ T

ε

ˆ
Rn
∂γ‖∂tQ

m
t ψj(x)Aγβ(x) ∂β∂`tu(x, t) t`+1 dx dt

+
1

`+ 1

ˆ
Rn
∂γ‖Q

m
T ψj(x)Aγβ(x) ∂β∂`Tu(x, T )T `+1 dx

− 1

`+ 1

ˆ
Rn
∂γ‖Q

m
ε ψj(x)Aγβ(x) ∂β∂`εu(x, ε) ε`+1 dx.

The second integral may be controlled by the bounds (6.13) and (6.9) as usual. By
Lemma 6.11 (with r = p′), the last integral has norm at most

C‖∇j‖ψj‖Lp′ (Rn)‖A
+
2 (t1(ε/2,3ε/2)(t)∇mu)‖Lp(Rn)

and so is uniformly bounded and approaches zero as ε → 0. Similarly, the third
integral is uniformly bounded and approaches zero as T →∞.

Thus, by induction,

ˆ
Rn

ˆ T

ε

∂γ‖Q
m
t ψj(x)Aγβ(x) ∂βu(x, t) dt dx

=
1

(2k)!

ˆ
Rn

ˆ T

ε

∂γ‖Q
m
t ψj(x)Aγβ(x) ∂β∂2k

t u(x, t) t2k dt dx+OK(ε, T )
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for any integer k ≥ 0, where the term OK(t) is uniformly bounded and approaches
a limit as ε→ 0+ and T →∞. We have that∑
|β|=m

∑
|γ|=j
γn+1=0

ˆ
Rn

ˆ T

ε

∂γ‖Q
m
t ψj(x)Aγβ(x) ∂β∂2k

t u(x, t) t2k dt dx

=

ˆ T

ε

〈∇m∂2k
t u( · , t),A∗mj∇

j
‖Q

m
t ψj〉Rnt2k dt

where A∗mj is the matrix that satisfies

(A∗mjψ̇)β =
∑
|γ|=j
γn+1=0

A∗βγψγ for any |β| = m.

By Lemma 4.4, if k ≥ m then

ˆ ∞
0

t2k|〈A∗mj∇
j
‖Q

m
t ψj ,∇m∂2k

t u( · , t)〉Rn | dt

≤ Ck
ˆ 4

4/3

ˆ
Rn
A−2 (|t|k−2m+1∂k−mn+1 SL

∗

∇ (A∗mj∇
j
‖Q

m
|t|rψj))(x)

×A+
2 (t∇mu)(x) dx dr.

Define

Rrt ψ̇(z) = tk−2m+1∂k−mn+1 SL
∗

∇ (A∗mjQmtrψ̇)(z,−t).
Observe that Pt = Qmtr is also an approximate identity with a Schwartz kernel. By
the bound (3.10), for any fixed r with 4/3 < r < 4 and any p′ with 1 < p′ <∞ we

have Lp
′

boundedness of ψ 7→ A+
2 (Rrt ψ̇). Thus,

ˆ ∞
0

t2k|〈A∗mj∇
j
‖Q

m
t ψj ,∇m∂2k

n+1u( · , t)〉Rn | dt

≤ C‖∇j‖ψj‖Lp′ (Rn)‖A
+
2 (t∇mu)‖Lp(Rn)

as desired.
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[DPR17] Martin Dindoš, Jill Pipher, and David Rule, Boundary value problems for second-

order elliptic operators satisfying a Carleson condition, Comm. Pure Appl. Math.

70 (2017), no. 7, 1316–1365. MR 3666568 4
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