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Abstract. In this paper we establish square-function estimates on the double

and single layer potentials for divergence form elliptic operators, of arbitrary
even order 2m, with variable t-independent coefficients in the upper half-space.

This generalizes known results for variable-coefficient second-order operators,

and also for constant-coefficient higher-order operators.
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1. Introduction

In this paper we continue towards the goal of resolving the Dirichlet and Neu-
mann problems for general divergence form higher order elliptic operators with Lp

data. The investigation of the second-order case has spanned the past three decades
in the subject, drawing from the field of harmonic analysis and giving back to it
many tools, and by now the real coefficient case is relatively well understood. How-
ever, there are still open problems in the theory of even the simplest higher order
operators, such as the bilaplacian; for instance, the sharp range of p for which the
Dirichlet problem for the bilaplacian is well-posed in Lp is still not known in high
dimensions. Even less is known in the case of more complicated operators; indeed,
we are not aware of any Lp well-posedness results that are currently available in
the general variable coefficient case.

In this work we aim to develop the method of layer potentials for general diver-
gence form higher order elliptic operators. The main results of the present paper
are square function estimates for single and double layer potentials in L2 and the
corresponding Sobolev spaces. We remark that one of the key difficulties in this
context lies in the definition of suitable layer potentials and, more generally, of
Dirichlet and Neumann boundary data, as in the higher order case there is con-
siderable ambiguity, some choices leading to ill-posed problems. Our approach is
new even in the constant coefficient context, but is carefully crafted to handle the
general case.

Let us discuss the background and the results in more detail.
In this project we study elliptic differential operators of the form

(1.1) Lu = (−1)m
∑

|α|=|β|=m

∂α(Aαβ∂
βu),

for m ≥ 2, with general bounded measurable coefficients. As mentioned above,
contrary to the second order case, most of the known well-posedness results for
higher order boundary value problems have been established only in the case of
constant coefficients (see, for example, [Ver90,PV95a,Ver96,She06a,She06b,KS11,
MM13b], or the survey paper [BM16a]), or concern boundary-value problems with
data in fractional smoothness spaces, such as the Dirichlet problem

(1.2) Lu = (−1)m
∑

|α|=|β|=m

∂α(Aαβ∂
βu) = 0 in Ω, ∇m−1u = ḟ on ∂Ω
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where Ω is a Lipschitz domain and where ḟ lies in a boundary Besov space with
smoothness parameter between zero and one. See [Agr07,MMS10,Bar16b]. We are
interested in the Dirichlet problem (1.2), with variable coefficients, in the classical

case where the boundary data ḟ lies in L2(∂Ω).

1.1. The method of layer potentials, general framework. Classic tools for
solving second-order boundary-value problems are the double and single layer po-
tentials, given by

DA
Ω f(X) =

ˆ
∂Ω

ν ·A∗(Y )∇Y EL∗(Y,X) f(Y ) dσ(Y ),(1.3)

SLΩg(X) =

ˆ
∂Ω

EL(X,Y ) g(Y ) dσ(Y )(1.4)

for all X ∈ Rn+1 \ ∂Ω, where Ω ⊂ Rn+1 is a Lipschitz domain with boundary
surface measure dσ, ν is the unit outward normal to Ω, and where EL(X,Y ) is the
fundamental solution for the operator L = −divA∇. Making sense of formulas
(1.3) and (1.4) in the context of higher-order operators is one of the key tasks in
its own right. In the case where Ω is the half-space Rn+1

+ , we will return to it in
Section 2.4 below; in more general Lipschitz domains we refer the interested reader
to [BM16a,Bar16b].

It may be shown that, for any nice functions f and g defined on ∂Ω, the functions
u = DA

Ω f or u = SLΩg satisfy Lu = 0 away from ∂Ω. The classic method of
layer potentials for solving (for example) the Dirichlet problem with data in the

boundary Sobolev space Ẇ 2
1 (∂Ω) is to show that, for all g ∈ L2(∂Ω), the boundary

value SLΩg
∣∣
∂Ω

exists in some sense and lies in Ẇ 2
1 (∂Ω), and moreover g 7→ SLΩg

∣∣
∂Ω

is invertible from L2(∂Ω) to Ẇ 2
1 (∂Ω). Then the function u = SLΩ

(
(SLΩ

∣∣
∂Ω

)−1f
)

is a
solution to the Dirichlet problem

(1.5) Lu = 0 in Ω, u = f on ∂Ω.

Furthermore, if SLΩ satisfies some estimate, then solutions to the Dirichlet problem
may be shown to satisfy a corresponding estimate; for example, if

ˆ
Ω

|∇∂n+1SLΩg(X)|2 dist(X, ∂Ω) dX ≤ C‖g‖2L2(∂Ω),

then the solution u to the Dirichlet problem (1.5) satisfies

ˆ
Ω

|∇∂n+1u(X)|2 dist(X, ∂Ω) dX ≤ C‖f‖2
Ẇ 2

1 (∂Ω)
.

This method has been used in [FJR78,Ver84,DK87,FMM98,Zan00] in the case
of harmonic functions (that is, the case A = I and L = −∆). This method
has also been used to study more general second order problems in [AAA+11,
Bar13, Ros13, HKMP15a, HMM15a, HMM15b, BM16b] under various assumptions
on the coefficients A. Layer potentials have been used in other ways in [KR09,
Rul07, Mit08, Agr09, MM11, AM14]. In particular, the second-order double and
single layer potentials have been used to study higher-order differential equations
in [PV92,BM13].
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1.2. Outline of the main results. In this paper we begin to generalize this
method to the case of higher-order equations by defining the double and single layer
potentials DA and SL for higher-order equations in the half-space (see Section 2.4),
and then by establishing some bounds on these potentials under certain conditions
on the coefficients A. We hope in future work to establish invertibility of layer
potentials for some variable coefficients A, thus establishing existence of solutions
to the corresponding boundary value problems.

Even in the case of second-order equations, some regularity assumption must
be imposed on the coefficients A in order to ensure well-posedness of boundary-
value problems. See the classic example of Caffarelli, Fabes, and Kenig [CFK81], in
which real, symmetric, bounded, continuous, elliptic coefficients A are constructed
for which the Dirichlet problem with Lp boundary data is not well-posed in the unit
disk for any 1 < p <∞. A common starting regularity condition is t-independence,
that is,

(1.6) A(x, t) = A(x, s) = A(x) for all x ∈ Rn and all s, t ∈ R.
Boundary value problems for such coefficients have been investigated extensively in
domains Ω where the distinguished t-direction is always transverse to the bound-
ary, that is, Ω = {(x, t) : t > ϕ(x)} for some Lipschitz function ϕ. See, for exam-
ple, [JK81,FJK84,KP93,AAA+11,AAH08,AAM10,AA11,AR12,AM14,HKMP15b,
HKMP15a, BM16b]. (In two dimensions some well-posedness results are avail-
able even if the distinguished direction is not transverse to the boundary; see
[KKPT00,Rul07,Bar13].)

The main result of this paper is the following theorem.

Theorem 1.1. Suppose that L is an elliptic operator associated with coefficients
A that are t-independent in the sense of formula (1.6) and satisfy the ellipticity
conditions (2.4) and (2.5).

Then the double and single layer potentials DA and SL in the half-space, as
defined by formulas (2.25) and (2.32), satisfy the boundsˆ

Rn

ˆ ∞
−∞
|∇m∂tDAḟ(x, t)|2 |t| dt dx ≤ C‖ḟ‖2

Ẇ 2
1 (Rn)

= C‖∇‖ḟ‖2L2(Rn),(1.7)

ˆ
Rn

ˆ ∞
−∞
|∇m∂tSLġ(x, t)|2 |t| dt dx ≤ C‖ġ‖2L2(Rn)(1.8)

for all ġ ∈ L2(Rn) and all ḟ = ∇m−1ϕ
∣∣
∂Rn+1
±

for some ϕ ∈ C∞0 (Rn+1), where C

depends only on the dimension n+ 1 and the ellipticity constants λ and Λ in the
bounds (2.4) and (2.5).

We conjecture that this theorem may be generalized from the half-space to Lip-
schitz graph domains, but the method of proof at the moment requires the extra
structure of Rn+1

+ . In the case of second-order operators (the case m = 1), bounds
in the upper half-space may be immediately extended to bounds in domains above
Lipschitz graphs via a change of variables, and so extra arguments are not neces-
sary. In the higher-order case, this is not true, as the divergence form (1.1) is not
preserved under changes of variables. (A different form of higher-order operator is
preserved under changes of variables; such operators were investigated in [BM13].)

1.3. Boundedness of layer potentials for second order elliptic operators.
We now turn to the history of this problem. A reader familiar with the second
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order case may skip this subsection. As discussed above, layer potentials have been
used extensively in the theory of second-order and constant coefficient boundary
value problems. Thus, boundedness results for layer potentials have long been
of interest. The celebrated result of Coifmann, McIntosh and Meyer [CMM82]
established boundedness of the Cauchy integral on a Lipschitz curve; this implies
that the operators f 7→ DI

Ωf
∣∣
∂Ω

and g 7→ ν · ∇S−∆
Ω g

∣∣
∂Ω

are bounded L2(∂Ω) 7→
L2(∂Ω), where Ω is a Lipschitz domain and where A = I is the identity matrix
(that is, where L = −∆ is the Laplace operator). From there many other bounds on
harmonic layer potentials may be derived. For example, boundedness Lp(∂Ω) 7→
Lp(∂Ω), for 1 < p < ∞, follows from classical Calderón-Zygmund theory. Also,

bounds on DI
Ωf and S−∆

Ω in Ω (rather than on ∂Ω) were established in [FJR78] in
the case where Ω is C1; as observed in [Ver84], these results may be extended to
the case of Lipschitz domains using boundedness of the Cauchy integral.

In the case of second-order equations with variable t-independent coefficients,
a number of boundedness results have been established. In [KR09], Kenig and
Rule established that in dimension n+ 1 = 2, layer potentials for operators with
real-valued coefficients are bounded on Lp(∂Ω) for Ω the domain above a Lipschitz
graph, and in [Rul07] this result was extended to bounded Lipschitz domains and
Lipschitz graph domains with arbitrary orientation. In [AAA+11], boundedness of
layer potentials on L2(∂Ω) was established in arbitrary dimensions, in the domain
above a Lipschitz graph, for coefficients that are real-valued and symmetric. A
stability result was also established; that is, if layer potentials for some operator L0

have certain boundedness and invertibility properties on L2(∂Ω), and if correspond-
ing boundary value problems are well-posed, then the same is true for any operator
L1 whose coefficients A1 are t-independent and near (in L∞) to those of L0. (This
result required a local Hölder continuity estimate for solutions to L0u = 0; this
estimate is always valid if A0 is real-valued but may not be valid for complex A0.)

More generally, in [Ros13] Rosén showed that layer potentials are always bounded
on L2(∂Ω), for Ω the domain above a Lipschitz graph, provided that the coefficients
of the associated operator are t-independent, and also that solutions to Lu = 0 are
continuous and satisfy the local bound

|u(X)| ≤ C
( 

B(X,r)

|u|2
)1/2

whenever Lu = 0 in B(X, r). (The local Hölder continuity requirement, used
in [AAA+11] and in many other papers, is a stronger requirement than this local
bound. The local boundedness estimate is necessary for Rosén’s construction of
the fundamental solution EL(X,Y ), and thus for the formulas (1.3) and (1.4) to
be meaningful; he also showed that, even without local boundedness, the double
and single layer potentials may be continued analytically to bounded operators
for t-independent coefficients A.) Rosén’s results built on an alternative approach
to boundary-value problems involving semigroups [AAH08,AAM10]; essentially he
established that layer potentials are equal to certain operators studied in [AAM10],
and thus the boundedness results therein apply. The results of [AAM10, Ros13]
extend to the case of elliptic systems.

In the case of two dimensions, or of smooth coefficients, standard Calderón-
Zygmund theory allows for straightforward generalization of L2 bounds to Lp

bounds, 1 < p < ∞. In the case of rough coefficients in higher dimensions,
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new arguments are necessary to bound the layer potentials (1.3) and (1.4) on
Lp(∂Ω). Some such arguments are presented in various papers, in particular in
[HKMP15b,HMM15b,HMM15a].

In the case of scalar equations, Rosén’s L2 boundedness result was later es-
tablished another way, without semigroups, by Grau de la Herran and Hofmann
in [GdlHH16]. As in [AAA+11], they required that solutions to Lu = 0 be locally
Hölder continuous, and in particular locally bounded. In this paper we will closely
follow their approach. We will need to confront a number of additional difficulties
that arise in the case of higher-order equations. However, one significant advantage
of the higher-order setting is that local Hölder continuity is automatic in the case
of operators of very high order, and there are established techniques to generalize
to operators of low or moderate order (see [AHMT01,Bar16a] or Section 11); thus,
our Theorem 1.1 is valid without any assumptions on local boundedness or Hölder
continuity of solutions.

1.4. Layer potentials for higher order operators: known approaches and
new ideas. Turning to the history of higher order problems, we recall that an
interesting first step lies in even defining layer potentials in the higher order case.
In particular, the prototypical higher order operator, the bilaplacian ∆2, can be
viewed in two ways: either as an operator in the divergence form (1.1), ∆2 =∑n+1
j,k=1 ∂jk(∂jk), or as a composition of two second order operators (two copies of

−∆). Many papers have used potentials based on a formulation of fourth order
operators as compositions; see [DKV86,Ver90,PV92,BM13]. A somewhat different
approach is necessary for the operators studied in this paper; we instead view ∆2

as a divergence form operator, and seek to generalize to other such operators.
We begin by defining Neumann boundary values. This is a necessary precursor

to defining layer potentials; notice that the Neumann boundary values ν ·A∗∇EL∗

of the fundamental solution appear in the definition (1.3) of the second order dou-
ble layer potential. In fact, layer potentials are deeply connected to Dirichlet and
Neumann boundary values of solutions in other ways; for example, if u is a reason-
ably nice solution to Lu = 0 in Ω for some second-order operator L and Lipschitz
domain Ω, then u satisfies the Green’s formula

(1.9) u(X) = −DA
Ω (u

∣∣
∂Ω

)(X) + SLΩ(ν ·A∇u)(X) for all X ∈ Ω.

That is, we have a formula for u in Ω involving only the Dirichlet and Neumann
boundary values of u on ∂Ω, mediated by the layer potentials.

The formulation of Neumann boundary data for higher-order equations is an
interesting question in its own right. It has often been based on an integration by
parts: for sufficiently nice domains Ω, operators L given by (1.1), and test functions
w and v, there exist functions BA

j v defined on ∂Ω such that

(1.10)

ˆ
Ω

wLv =
∑

|α|=|β|=m

ˆ
Ω

∂αwAαβ ∂
βv +

m−1∑
j=0

ˆ
∂Ω

∂jνwB
A
j v dσ

where ∂jν is the jth derivative in the direction normal to the boundary. (If desired,
exact formulas for the functions BA

j v in terms of the higher derivatives of v may

be computed; if L = ∆2 then formulas for BA
j v may be found in [CG85,Ver05] or

in Section 2.2.1 below, and in the case of general constant-coefficient operators an
explicit formula may be found in [MM13b, Proposition 4.3].)
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It is very natural to regard the array {∂jνw}m−1
j=0 as the Dirichlet boundary values

of w. Then the array of functions {BA
j v}

m−1
j=0 may be regarded as the Neumann

boundary values of v. The Neumann problem for the biharmonic function ∆2, with
this formulation of boundary data, was studied in [CG85, Ver05, She07, MM13a].
The Neumann problem for more general constant-coefficient operators was studied
in [Ver10,MM13b], and for some classes of variable coefficient operators in [Agr07].
We remark that a given operator L may be associated to more than one coefficient
matrix A, and that each choice of A will give rise to different boundary operators
BA
j . We will provide more details and a specific example of these different boundary

operators (for L = ∆2) in Section 2.2.1; several of them are physically relevant (in
different contexts) and some even lead to ill-posed problems.

Going further, if Lu = 0 in a Lipschitz domain Ω and EL
∗
(X,Y ) is the funda-

mental solution to L∗ (so that L∗Y E
L∗(Y,X) = δX(Y )), then for any X ∈ Ω,

u(X) =

ˆ
Ω

uL∗EL∗( · , X)

=

m−1∑
j=0

ˆ
∂Ω

∂jνuB
A∗
j EL∗( · , X) dσ −

ˆ
∂Ω

BA
j u ∂

j
νEL

∗( · , X) dσ.

This naturally suggests the two multiple layer potentials

DA
Ω ḟ(X) =

m−1∑
j=0

ˆ
∂Ω

BA∗
j EL∗( · , X) fj dσ, SLΩ ġ(X) =

m−1∑
j=0

ˆ
∂Ω

∂jνEL
∗( · , X) gj dσ.

Notice that in the higher-order case, layer potentials take as input an array of
several functions. Also, this formulation of layer potentials generalizes the Green’s
formula (1.9). Layer potentials constructed in this way, from an integration by parts
against the fundamental solution, have been used in [CG83, CG85, Ver05, MM13b,
MM13a] to study the biharmonic operator ∆2 (and in particular the associated Neu-
mann problem), and in [Agm57,MM13b] to study more general constant-coefficient
operators; therein certain boundedness and invertibility results were established for
such potentials.

Our formulation of the Neumann boundary values of a solution, and thus layer
potentials, is different. Specifically, observe that the different terms ∂jνu exhibit
different degrees of smoothness; if ∇m−1u ∈ L2(∂Ω), for example, and ∂Ω is suf-

ficiently smooth, then we expect ∂jνu to lie in the Sobolev space Ẇ 2
m−1−j(∂Ω) of

functions with gradients of order m− 1− j. Furthermore, if ∇mu ∈ L2(∂Ω), then
we generally expect the Neumann boundary terms BA

j u to lie in negative smooth-

ness spaces (specifically, we expect BA
j u ∈ Ẇ 2

j+1−m(∂Ω), and so only BA
m−1u lies

in L2(∂Ω)). See Section 2.2.1 for an example.
This is somewhat problematic in the case of Lipschitz domains and other non-

smooth domains, as higher smoothness spaces and negative smoothness spaces are
difficult to formulate. Furthermore, dealing with mixed orders of smoothness is
difficult even in smooth domains. To avoid these difficulties, we will prefer to
regard ∇m−1u, rather than {∂jνu}m−1

j=0 , as the Dirichlet boundary values of u; this
will allow us to formulate a similarly homogeneous notion of Neumann boundary
data. The latter has the advantage of working with elements of the same degree
of smoothness and being naturally adaptable to the general context of Lipschitz
domains (see [Bar16b]). However, explicit formulas for Neumann boundary data
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can only rarely be obtained; we treat the entire package of Neumann data as a
linear functional on a suitable Sobolev space. See a detailed discussion and an
example in Section 2.2.1. We have also formulated layer potentials based on this
notion of boundary data; see Section 2.4. Our potentials thus take as input arrays
of functions in homogeneous spaces; notice the L2 norms on the right-hand sides of
the bounds (1.7) and (1.8).

A Green’s formula involving homogeneous boundary data has been used in
[PV95b, Ver96]. However, this Green’s formula was formulated in terms of deriva-
tives of order 2m− 1, and as such does not lend itself to formulation of Neumann
boundary data or the natural division into double and single layer potentials. Fur-
thermore, their construction used some delicate integrations by parts not available
in the variable coefficient case, and so our formulation of layer potentials is of
necessity somewhat different and more abstract.

1.5. Our method and outline of the paper. The remainder of this paper will
be devoted to a proof of Theorem 1.1. Specifically, we will define our terminology in
Section 2. We will provide a few preliminary arguments, mainly involving the theory
of solutions to higher-order equations, in Section 3. We will show that the bounds
(1.7) and (1.8) follow from more convenient bounds (specifically, bounds involving
derivatives in the t-direction only) in Section 4; we will also define new operators
ΘD
t and ΘS

t that are somewhat easier to work with. The proof of Theorem 1.1
will make extensive use of T1 and Tb theorems; we will state the theorems we
will need (taken from [CJ87] and [GdlHH16]) in Section 5. The remaining sections
of the paper will be devoted to showing that ΘD

t and ΘS
t satisfy the conditions

of Theorems 5.2 and 5.4, and thus satisfy appropriate estimates; a more detailed
outline of Sections 6–11 is provided in Section 5.

2. Definitions

Throughout we work with an elliptic operator L in the divergence form (1.1), of
order 2m, acting on functions defined in Rn+1.

We will reserve the letters α, β, γ, ζ and ξ to denote multiindices in Nn+1.
(Here N denotes the nonnegative integers.) If ζ = (ζ1, ζ2, . . . , ζn+1) is a multiindex,
then we define |ζ|, ∂ζ and ζ! in the usual ways, as |ζ| = ζ1 + ζ2 + · · · + ζn+1,

∂ζ = ∂ζ1x1
∂ζ2x2
· · · ∂ζn+1

xn+1 , and ζ! = ζ1! ζ2! · · · ζn+1!. If ζ and ξ are two multiindices,
then we say that ξ ≤ ζ if ξi ≤ ζi for all 1 ≤ i ≤ n+ 1, and we say that ξ < ζ if in
addition the strict inequality ξi < ζi holds for at least one such i.

We will routinely deal with arrays Ḟ =
(
Fζ
)

of numbers or functions indexed by
multiindices ζ with |ζ| = k for some k. In particular, if ϕ is a function with weak
derivatives of order up to k, then we view ∇kϕ as such an array.

The inner product of two such arrays of numbers Ḟ and Ġ is given by〈
Ḟ , Ġ

〉
=
∑
|ζ|=k

Fζ Gζ .

If Ḟ and Ġ are two arrays of functions defined in an open set Ω or on its boundary,
then the inner product of Ḟ and Ġ is given by〈

Ḟ , Ġ
〉

Ω
=
∑
|ζ|=k

ˆ
Ω

Fζ Gζ or
〈
Ḟ , Ġ

〉
∂Ω

=
∑
|ζ|=k

ˆ
∂Ω

Fζ Gζ dσ
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where σ denotes surface measure.
If Ġ is an array of functions defined in Ω and indexed by multiindices α with

|α| = m, then divm Ġ is the distribution given by

(2.1)
〈
ϕ,divm Ġ

〉
Ω

= (−1)m
〈
∇mϕ, Ġ

〉
Ω

for all smooth test functions ϕ supported in Ω. In particular, if the right-hand side
is zero for all such ϕ then we say that divm Ġ = 0.

We let ~ej be the unit vector in Rn+1 in the jth direction; notice that ~ej is a
multiindex with |~ej | = 1. We let ėζ be the “unit array” corresponding to the

multiindex ζ; thus, 〈ėζ , Ḟ 〉 = Fζ . We will often distinguish the n+ 1th direction;
we let γ⊥ = (m − 1)~en+1 = (0, . . . , 0,m − 1) and α⊥ = m~en+1, and let the array
ė⊥ denote either ėγ⊥ or ėα⊥ . Which is meant should be clear from context.

We let Lp(U) and L∞(U) denote the standard Lebesgue spaces with respect to
either Lebesgue measure (if U is a domain) or surface measure (if U is a subset of the
boundary of a domain). We say that u ∈ Lploc(U) if u ∈ Lp(V ) for every bounded

set V with V ⊂ U . In particular, if U is a set and U is its closure, then functions
in Lploc(U) are required to be locally integrable even near the boundary ∂U ; if U is
open this is not true of Lploc(U).

We let the homogeneous Sobolev space Ẇ p
k (U) be the set of all equivalence

classes of functions u ∈ L1
loc(U), modulo adding polynomials of degree k − 1, that

have weak derivatives of order up to k in U , and for which the Sobolev norm
‖u‖Ẇp

k (U) = ‖∇ku‖Lp(U) is finite. (Notice that if p is a polynomial of degree

k − 1 then ∇kp = 0 and so ‖p‖Ẇp
k (U) = 0.) We define Ẇ p

k,loc(U) analogously to

Lploc(U), as the set of all (equivalence classes of) functions u ∈ L1
loc(U) such that

∇ku ∈ Lp(V ) for all V bounded with V ⊂ U .
If µ is a measure and E is a µ-measurable set, with µ(E) <∞, we let

ffl
E
f dµ =

1
µ(E)

´
E
f dµ. If E ⊂ Rn+1 is a set, we let 1E denote the characteristic function

of E; in particular, we will let 1± denote the characteristic function of the half-space
Rn+1
± . If f is a function defined on E, we will often let 1Ef denote the extension

of f to Rn+1 by zero.
If Q ⊂ Rn is a cube, we let `(Q) be its side-length. We let rQ be the concentric

cube of side-length r`(Q). We will make frequent use of “dyadic annuli” defined as
follows. We let

(2.2) A0(Q) = 2Q, Aj(Q) = 2j+1Q \ 2jQ for all j ≥ 1.

If i ≥ 0, let

(2.3) Aj,i(Q) =

j+i⋃
`=j−i

A`(Q) where A`(Q) = ∅ whenever ` < 0.

Throughout the paper we will work mainly in the domain Rn+1
+ = {(x, t) : x ∈

Rn, t > 0}. We will also need to consider Rn+1
− = {(x, t) : x ∈ Rn, t < 0}. We will

often identify Rn with ∂Rn+1
± .

If ϕ is a function defined on an open subset of Rn+1, we will let ∇‖ϕ =
(∂1ϕ, ∂2ϕ, . . . , ∂nϕ) denote the gradient only in the first n variables; we will also
use ∇‖f to denote the gradient of a function f defined on Rn = ∂Rn+1

± . We will

view ∇k‖ϕ as an array of functions indexed by multiindices ζ ∈ Nn+1 with |ζ| = k
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and ζn+1 = 0; equivalently we may view ∇k‖ϕ as an array of functions indexed by

multiindices ζ ∈ Nn with |ζ| = k.

2.1. Elliptic operators. Let A =
(
Aαβ

)
be measurable coefficients defined on

Rn+1, indexed by multtiindices α, β with |α| = |β| = m. If Ḟ is an array, then AḞ
is the array given by

(AḞ )α =
∑
|β|=m

AαβFβ .

Throughout we consider coefficients that satisfy the G̊arding inequality

Re
〈
∇mϕ,A∇mϕ

〉
Rn+1 ≥ λ‖∇mϕ‖2L2(Rn+1) for all ϕ ∈ Ẇ 2

m(Rn+1)(2.4)

and the bound

‖A‖L∞(Rn+1) ≤ Λ(2.5)

for some Λ > λ > 0.
We let L be the 2mth-order divergence form operator associated with A. That

is, we say that Lu = divm Ḟ in Ω in the weak sense if, for every ϕ smooth and
compactly supported in Ω, we have that

(2.6)
〈
∇mϕ,A∇mu

〉
Ω

= (−1)m
〈
∇mϕ, Ḟ

〉
Ω
,

that is, we have that∑
|α|=|β|=m

ˆ
Ω

∂αϕ̄ Aαβ ∂
βu = (−1)m

∑
|α|=m

ˆ
Ω

∂αϕ̄ Fα.

In particular, if the left-hand side is zero for all such ϕ then we say that Lu = 0.
We remark that the coefficients A are not uniquely determined by the elliptic

operator L; for example, if M is constant and Mαβ = −Mβα, then the coefficients
A and A+M are associated to the same elliptic operator.

We letA∗ be the adjoint matrix, that is, A∗αβ = Aβα. We let L∗ be the associated
elliptic operator.

In this paper we will focus exclusively on operators L that are t-independent,
that is, whose coefficients satisfy formula (1.6).

Throughout the paper we will let C denote a constant whose value may change
from line to line, but which depends only on the dimension n+ 1, the ellipticity
constants λ and Λ in the bounds (2.4) and (2.5), and the order 2m of our elliptic
operators. Any other dependencies will be indicated explicitly.

2.2. Dirichlet and Neumann boundary data. Our goal in the present paper is
to bound the double and single layer potentials; in future work we hope to use the
results of this paper to solve the Dirichlet and Neumann boundary value problems.
Thus, in this section, we will define higher-order Dirichlet and Neumann boundary
data.

We define higher-order Dirichlet boundary data as follows. Suppose that ∇mu ∈
L1
loc(R

n+1
+ ) or ∇mu ∈ L1

loc(R
n+1
− ). Then ∂γu ∈ Ẇ 1

1,loc(R
n+1
± ) for any γ with |γ| =

m− 1. We define Ṫr±m−1 u as the array given by

(2.7)
(
Ṫr±m−1 u

)
γ

= Tr ∂γu for all |γ| = m− 1

where Tr denotes the standard trace operator on the Sobolev space Ẇ 1
1,loc(R

n+1
± ).

Notice that if ∇mu is locally integrable in all of Rn+1, then Ṫr+
m−1 u = Ṫr−m−1 u.
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We will sometimes omit the ± superscript, either because u ∈ Ẇ 1
1,loc(Rn+1) or

because the space under consideration is clear from context.
With some care we may define boundary values of certain higher-order deriva-

tives. If u ∈ Ẇ 1
m,loc(R

n+1
± ) is such that Ṫr±m−1 u ∈ Ẇ 1

1,loc(Rn), then for each β with

βn+1 < |β| = m, we define

(2.8) (Ṫr±m,| u)β = ∂xj Tr ∂β−~eju for all j with 1 ≤ j ≤ n and βj > 0.

Note the requirement that j 6= n+ 1. This is well-defined; that is, if βj > 0 and
βk > 0 for some j < n+ 1 and k < n+ 1, then it does not matter whether we
choose xj or xk as our distinguished representative.

We define higher-order Neumann boundary data as follows. Let Ẇ 2
m,0(Rn+1

± ) be

the closure in Ẇ 2
m(Rn+1

± ) of the set of all smooth functions supported in Rn+1
± . It

is well known (see, for example, the proof of [Eva98, Theorem 5.5.2]) that we may

alternatively characterize Ẇ 2
m,0(Rn+1

± ) by

Ẇ 2
m,0(Rn+1

± ) = {v ∈ Ẇ 2
m(Rn+1

± ) : Ṫr±m−1 v = 0}.

Observe that if v ∈ Ẇ 2
m,0(Rn+1

± ), u ∈ Ẇ 2
m(Rn+1

± ) and Lu = 0 in Rn+1
± , then by the

definition (2.6) of Lu,

〈∇mv,A∇mu〉Rn+1
±

= 0.

Thus, if ϕ and η are two functions in Ẇ 2
m(Rn+1

± ), and if Ṫr±m−1 ϕ = Ṫr±m−1 η,

then 〈∇mϕ,A∇mu〉Rn+1
±

= 〈∇mη,A∇mu〉Rn+1
±

. Hence, if ϕ ∈ Ẇ 2
m(Rn+1

± ), then

the inner product 〈∇mϕ,A∇mu〉Rn+1
±

depends only on Ṫr±m−1 ϕ. We define the

Neumann boundary values Ṁ±
A u by

(2.9)
〈
Ṫr±m−1 ϕ, Ṁ

±
A u
〉
∂Rn+1
±

=
〈
∇mϕ,A∇mu

〉
Rn+1
±

for all ϕ ∈ Ẇ 2
m(Rn+1

± ).

Ṁ±
A u is then a linear operator on the space of traces of Ẇ 2

m(Rn+1
± )-functions.

Recall that the elliptic operator L may be associated with more than one set
of coefficients A; the Neumann boundary operator Ṁ±

A depends on our particular
choice of associated coefficients A, not only on the associated operator L. This
phenomenon also occurs in the (smooth) second-order case, when the Neumann
boundary data for solutions to Lu = −divA∇u = 0 is given by ν ·A∇u and thus
depends on the particular choice of A.

2.2.1. Historical remarks and context. We now provide some further discussion and
history of Dirichlet and Neumann boundary data.

We remark that we have three ways to refer to derivatives of order m at Rn =
∂Rn+1
± , namely ∇m‖ u(x, 0), Ṫrm,| u(x), and ∇mu(x, 0). All three are arrays in-

dexed by multiindices β with |β| = m. To give the reader some intuition, let
us discuss the simplest case, where m = 2 and u is defined in R2

+ = {(x, t) :
x ∈ R, t > 0} and smooth up to the boundary. In this case, ∇m‖ u(x, 0) =

∇2
‖u(x, 0) = ∂2

xxu(x, 0), Ṫrm,| u(x) = Ṫr2,| u(x) is the array (∂2
xxu, ∂

2
xtu) containing

∂2
xxu = ∂x Tr ∂xu and ∂2

xtu = ∂x Tr ∂tu on ∂R2
+, while ∇mu(x, 0) = ∇2u(x, 0) is the

array (∂2
xxu, ∂

2
xtu, ∂

2
ttu) of all second derivatives.

The reader should compare our choice of representation of the Dirichlet data
Ṫr1 u = (∂xu(x, 0), ∂tu(x, 0)) to the traditional choice (u(x, 0), ∂tu(x, 0)). This
is, of course, a question of representation; (u(x, 0), ∂tu(x, 0)) determines Ṫr1 u(x),
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and the reverse is true up to adding a constant (or, for m − 1 ≥ 2, a polyno-
mial). What matters is the function spaces for the data. Working with Ṫr1 in
place of (u(x, 0), ∂tu(x, 0)) brings considerable advantage and clarity mainly be-
cause both components of Ṫr1 u belong to a function space of the same level of
smoothness. For example, Ṫr1 is a vector with both components in L2(R) precisely

when (u(x, 0), ∂tu(x, 0)) lies in Ẇ 2
1 (R) × L2(R). This makes things much clearer

when dealing with divergence form operators of arbitrary higher order. This also
allows us to properly define Neumann data.

Neumann data is somewhat intricate even for the simple case of the bilaplacian
and some seemingly natural formulations can make the Neumann problem ill-posed.
Let us discuss this in some detail, starting with the bilaplacian on a Lipschitz
domain Ω ⊂ Rn+1. We will translate to the half-space below.

The Neumann boundary values of a solution are traditionally given by an integra-
tion by parts (formula (1.10)) or less explicitly as an inner product (formula (2.9)).
In the case of the biharmonic equation, Neumann boundary values also have ap-
plications in the theory of elasticity. The principal physical motivation for the
inhomogeneous biharmonic equation ∆2u = h is that it describes the equilibrium
position of a thin elastic plate subject to a vertical force h. The Dirichlet problem
u
∣∣
∂Ω

= f , ∇u
∣∣
∂Ω

= ~g describes an elastic plate whose edges are clamped, that is,
held at a fixed position in a fixed orientation. The Neumann problem, on the other
hand, corresponds to the case of a free boundary. Guido Sweers has written an
excellent short paper [Swe09] discussing the boundary conditions that correspond
to these and other physical situations.

More precisely, if a thin two-dimensional plate is subject to a force h and the
edges are free to move, then its displacement u satisfies the boundary value problem

∆2u = h in Ω ⊂ R2,

ρ∆u+ (1− ρ)∂2
νu = 0 on ∂Ω,

∂ν∆u+ (1− ρ)∂τ (∂ντu) = 0 on ∂Ω.

Here ρ is a physical constant, called the Poisson ratio, and ν and τ are the unit
outward normal and unit tangent vectors to the boundary. This formulation goes
back to Kirchoff and is well known in the theory of elasticity; see, for example,
Section 3.1 and Chapter 8 of the classic engineering text [Nad63].

This suggests the following homogeneous boundary value problem in a Lipschitz
domain Ω ⊂ Rn+1 of arbitrary dimension. We say that the Lp-Neumann problem
is well-posed if there exists a constant C > 0 such that, for every f0 ∈ Lp(∂Ω) and
Λ0 ∈W p

−1(∂Ω), there exists a function u such that

(2.10)



∆2u = 0 in Ω,

Mρu := ρ∆u+ (1− ρ)∂2
νu = f0 on ∂Ω,

Kρu := ∂ν∆u+ (1− ρ)
1

2

n+1∑
j,k=1

∂τjk
(
∂ντjku

)
= Λ0 on ∂Ω,

‖N(∇2u)‖Lp(∂Ω) ≤ C‖f0‖Wp
1 (∂Ω) + C‖Λ0‖Wp

−1(∂Ω) on ∂Ω.

Here τjk = νj~ek− νk~ej is a vector orthogonal to the outward normal ν and lying in
the xjxk-plane, and N(∇2u) denotes the nontangential maximal function common
in the theory of elliptic boundary value problems.
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The boundary operators Mρ and Kρ, derived from the theory of elasticity, are
the same as the Neumann boundary operators discussed in Section 1.4. Specifically,
for any ρ ∈ R, the equation

ˆ
Ω

w∆2v =

ˆ
Ω

(
ρ∆w∆v + (1− ρ)

n+1∑
j,k=1

∂jkw ∂jkv

)
+

ˆ
∂Ω

wKρv − ∂νwMρv dσ

(2.11)

is valid for arbitrary smooth functions. Comparing to formula (1.10), we see that
BA

0 = Kρ and BA
1 = −Mρ, where A = Aρ is an appropriate choice of coefficients

such that L = ∆2 = div2Aρ∇2; observe that the coefficients Aρ are different for
each value of ρ.

Thus, there is a family of coefficients and relevant Neumann data for the bihar-
monic equation. Moreover, different values (or, rather, ranges) of ρ correspond to
different natural physical situations. We refer the reader to [Ver05] for a detailed
discussion.

Recall that our formulation of Neumann data is somewhat different; we use the
array Ṁ±

A u of formula (2.9) rather than the functions BA
j u of formula (1.10). As

an example, in the case L = ∆2 and Ω = Rn+1
+ , we will provide an explicit formula

for one representative of Ṁ+
A u. On the boundary of the half-space,

Kρu = −∂n+1∆u− (1− ρ)

n∑
j=1

∂j(∂
2
j(n+1)u), Mρu = ρ∆u+ (1− ρ)∂2

n+1u.

If ∆u is harmonic in Rn+1
+ , then ∂n+1∆u =

∑n
j=1 ∂jRj(∆u), where Rj denotes the

jth Riesz transform. Thus, if ~ϕ : Rn 7→ Cn is any divergence-free vector field, then

ˆ
Rn+1

+

w∆2u =

ˆ
Rn+1

+

(
ρ∆w∆u+ (1− ρ)

n+1∑
j,k=1

∂jkw ∂jku

)(2.12)

+

ˆ
∂Rn+1

+

∂n+1wMρu+

n∑
j=1

∂jw
(
Rj(∆u) + (1− ρ)∂2

j(n+1)u+ ϕj
)
dσ

and so
(2.13)
(Ṁ+

A u)~ej = Rj(∆u) + (1− ρ)∂2
j(n+1)u+ ϕj for 1 ≤ j ≤ n, (Ṁ+

A u)~en+1
= Mρu.

We comment on several aspects of this formula. First, observe that we still have
a family of Neumann boundary data indexed by the parameter ρ. Next, observe
that we did use the fact that ∆2u = 0; formula (2.12), unlike formula (2.11), is
not valid for arbitrary smooth functions. Furthermore, observe the presence of the
vector field ~ϕ in Ṁ+

A u; our explicit representation gives a natural normalization
~ϕ = 0, but for more general operators the divergence-free vector field cannot be
neglected. Finally, observe that our formula for Ṁ+

A u is not a local one: it involves
the Riesz transforms of derivatives of u rather than simply linear combinations.

However, notice one significant advantage of our formulation (2.13) over the
operators Kρ and Mρ. The term Mρu involves second derivatives of u, while the

term Kρu involves third derivatives; we have expressed all components of Ṁ+
A u

using the second derivatives of u. As discussed in Section 1.4, this means that we
expect the different components of the Neumann boundary data to lie in a single
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smoothness space; furthermore, using boundedness of the Riesz transform, we may
control ‖Ṁ+

A u‖Lp(Rn) by ‖∇2u‖Lp(Rn), for 1 < p <∞.
Our formulation of Neumann boundary data for general operators will display

most of these issues. The existence of a family of Neumann data may be eliminated
by specifying the matrix of coefficients A in formula (2.9), but our formulation of
Ṁ+

A u does require that u be a solution, is well-defined only up to adding divergence-
free terms, and need not have a local representation. Indeed, in this article, the
estimate ‖Ṁ+

A u‖Lp(Rn) ≤ C‖∇mu‖Lp(Rn), while apparently plausible, is still only
a conjecture.

We now discuss the history of the Lp-Neumann problem (2.10). In [CG85], Cohen
and Gosselin showed that this problem was well-posed in C1 domains contained in
R2 for for 1 < p < ∞, provided in addition that ρ = −1. In [Ver05], Verchota
investigated the Neumann problem (2.10) in full generality. He considered Lipschitz
domains with compact, connected boundary contained in Rn+1, n + 1 ≥ 2. He
showed that if −1/n ≤ ρ < 1, then the Neumann problem is well-posed provided
2 − ε < p < 2 + ε. That is, the solutions exist, satisfy the desired estimates,
and are unique either modulo functions of an appropriate class, or (in the case
where Ω is unbounded) when subject to an appropriate growth condition. See
[Ver05, Theorems 13.2 and 15.4]. The Neumann problem is ill-posed for ρ ≥ 1
and ρ < −1/n; see [Ver05, Section 21]. More recently, in [She07], Shen improved
upon Verchota’s results by extending the range on p (in bounded simply connected
Lipschitz domains) to 2n/(n + 2) − ε < p < 2 + ε if n + 1 ≥ 4, and 1 < p < 2 + ε
if n+ 1 = 2 or n+ 1 = 3. All of the aforementioned results rely on the method of
layer potentials. Finally, in [MM13b, Section 6.5], I. Mitrea and M. Mitrea showed
that if Ω ⊂ Rn+1 is a simply connected domain whose unit outward normal ν lies
in VMO(∂Ω) (for example, if Ω is a C1 domain), then the acceptable range of p is
1 < p <∞; this may be seen as a generalization of the result of Cohen and Gosselin
to higher dimensions, to other values of ρ, and to slightly rougher domains. The
question of the sharp range of p for which the Lp-Neumann problem is well-posed
in a Lipschitz domain is still open.

Very few well-posedness results for the Neumann problem, beyond the case of the
bilaplacian, are known. Even defining Neumann boundary values for more general
operators is complicated; consider the traditional definition of Neumann bound-
ary data of (1.10) and our formulation (2.9). Some further issues are discussed
in [Ver10]. While some progress has been made (see [Agr07, MM13b, Bar16b]),
at present there are no well-posedness results for the Neumann problem with Lp

boundary data.
Recall that [Agr07,MM13b] have investigated the Neumann problem for bound-

ary data formulated as in formula (1.10). Specifically, Agranovich has established
some well-posedness results for the inhomogeneous problem Lu = h with homo-
geneous Neumann boundary data, and has provided some brief discussion of the
conditions needed to resolve the Neumann problem with inhomogeneous boundary
data; see [Agr07, Section 5.2]. The book [MM13b] considers the case of constant-
coefficient operators at length; therein they establish well-posedness results for the
Neumann problem, with boundary data in certain fractional smoothness spaces,
for homogeneous constant-coefficient operators that satisfy a certain very strong
ellipticity condition.



SQUARE FUNCTION ESTIMATES ON HIGHER-ORDER LAYER POTENTIALS 15

2.3. The Newton potential and the fundamental solution. The main pur-
pose of the present paper is to define and bound the double and single layer poten-
tials for higher-order elliptic operators of the form specified in Section 2.1. Recall
from formulas (1.3) and (1.4) that the second-order layer potentials are built from
the second-order fundamental solution.

The main result of the paper [Bar16a] was a construction of the fundamental
solution EL in the case of higher-order operators. EL was constructed as an order-
m antiderivative of the kernel to the operator ΠL, the Newton potential for L,
defined as follows. For any Ḣ ∈ L2(Rn+1), by the Lax-Milgram lemma there is a

unique function v = ΠLḢ in Ẇ 2
m(Rn+1) that satisfies

(2.14) 〈∇mϕ,A∇mv〉Rn+1 = 〈∇mϕ,A∇mΠLḢ〉Rn+1 = 〈∇mϕ, Ḣ〉Rn+1

for all ϕ ∈ Ẇ 2
m(Rn+1). The Newton potential is a bounded operator on L2(Rn+1)

and satisfies the bound

(2.15) ‖∇mΠLḢ‖L2(Rn+1) ≤ C‖Ḣ‖L2(Rn+1).

Notice the resemblance of formula (2.14) to formula (2.9). Recall that any elliptic
operator L is associated to more than one choice of coefficients A. Because the
inner product on the right-hand side of formula (2.9) is taken over a half-space, the
choice of coefficients A affects the value of the Neumann boundary values Ṁ±

A u
defined by formula (2.9). However, because the inner products in formula (2.14) are
taken over the whole space Rn+1, this dependency disappears; the unique function
ΠLḢ that satisfies formula (2.15) is independent of our choice of coefficients A.

We will need two additional properties of the Newton potential from [Bar16a].
First, we will need the symmetry relation

(2.16) 〈Ġ,∇mΠLḢ〉Rn+1 = 〈∇mΠL∗Ġ, Ḣ〉Rn+1

for all Ḣ ∈ L2(Rn) and all Ġ ∈ L2(Rn). Second, we will need the identity

(2.17) ∇mΠL(A∇mF ) = ∇mF

for all F ∈ Ẇ 2
m(Rn+1); this identity follows by uniqueness of the Newton potential

as the solution operator in formula (2.14).
We remark that this Newton potential ΠL is somewhat different in smoothness

from the traditional Newton potential. This potential, which we will denote NL, is
the unique solution to the equation Lu = f , u ∈ Ẇ 2

m(Rn+1), or, more precisely, to

(2.18) 〈∇mϕ,A∇mNLf〉Rn+1 = 〈ϕ, f〉Rn+1

for all ϕ ∈ Ẇ 2
m(Rn+1). The input f should thus be taken in Ẇ 2

−m(Rn+1), the dual

space to Ẇ 2
m(Rn+1). One can write f = divm Ḣ for some Ḣ ∈ L2(Rn+1). The

above formulas then become Lu = divm Ḣ, u ∈ Ẇ 2
m(Rn+1), or, more precisely,

〈∇mϕ,A∇mNL divm Ḣ〉Rn+1 = (−1)m〈∇mϕ, Ḣ〉Rn+1 .

In other words, ΠL = (−1)mNL divm. We shall be working exclusively with ΠL,
but this analogy may be useful to keep in mind.

The main result of [Bar16a] may be stated as follows.

Theorem 2.1 ( [Bar16a, Theorem 62 and Lemma 69]). Let L be an operator of
order 2m that satisfies the bounds (2.4) and (2.5). Then there exists a function
EL(X,Y ) with the following properties.
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Let q and s be two integers that satisfy q + s < n+ 1 and the bounds 0 ≤ q ≤
min(m, (n+ 1)/2), 0 ≤ s ≤ min(m, (n+ 1)/2).

Then we have the symmetry property

(2.19) ∂ζX∂
ξ
Y E

L(X,Y ) = ∂ζX∂
ξ
Y E

L∗(Y,X)

as locally L2 functions, for all multiindices ζ, ξ with |ζ| = m− q and |ξ| = m− s.
There is some ε > 0 such that if X0, Y0 ∈ Rn+1, if 0 < 4r < R < |X0 − Y0|/3,

and if q < (n+ 1)/2 then

(2.20)

ˆ
B(Y0,r)

ˆ
B(X0,R)

|∇m−sX ∇m−qY EL(X,Y )|2 dX dY ≤ Cr2qR2s

(
r

R

)ε
.

If n+ 1 is even and q = (n+ 1)/2 then we instead have the bound

(2.21)

ˆ
B(Y0,r)

ˆ
B(X0,R)

|∇m−sX ∇m−qY EL(X,Y )|2 dX dY ≤ C(δ) r2qR2s

(
R

r

)δ
for all δ > 0 and some constant C(δ) depending on δ.

Furthermore, if |α| = m then

(2.22) ∂αΠLḢ(X) =
∑
|β|=m

ˆ
Rn+1

∂αX∂
β
Y E

L(X,Y )Hβ(Y ) dY

for almost every X /∈ supp Ḣ, and for all Ḣ ∈ L2(Rn+1) whose support is not all
of Rn+1.

Finally, if ẼL is any other function that satisfies the bounds (2.20), (2.21) and
formula (2.22), then

ẼL(X,Y ) = EL(X,Y ) +
∑

|ζ|<m−(n+1)/2

fζ(X)Y ζ +
∑

|ξ|<m−(n+1)/2

gξ(Y )Xξ(2.23)

+
∑

|ζ|=|ξ|=m−(n+1)/2

cζ,ξX
ζ Y ξ

for some functions fζ and gξ and some constants cζ,ξ. Thus, ∇m−qX ∇m−sY EL(X,Y )
is a well-defined, locally L2 function provided q and s satisfy the conditions specified
above.

Note that formula (2.22) and the definition of ΠL assures that EL is indeed
analogous to the traditional fundamental solution, which, roughly speaking, solves
LEL = δ. That is, EL is formally the kernel of the potential N defined above.

We record one further property of the fundamental solution for t-independent
operators. By the uniqueness property for the fundamental solution, if A is t-
independent, then we have that

∂ζx,t∂
ξ
y,sE

L(x, t, y, s) = ∂ζx,t∂
ξ
y,sE

L(x, t+ r, y, s+ r)

for almost every x ∈ Rn, y ∈ Rn and almost every t, s, r ∈ R, and all multiindices ζ,
ξ as in formula (2.19). In particular, for such ζ and ξ we have that

(2.24) ∂ζx,t∂
ξ
y,s∂tE

L(x, t, y, s) = −∂ζx,t∂ξy,s∂sEL(x, t, y, s).

Remark 2.2. We comment on the additional terms in formula (2.23). Notice that
EL is defined essentially by the relation (2.22). But this relation involves only
derivatives of order 2m; in other words, it is only ∇mX∇mY EL(X,Y ) that is well-
defined. The lower-order derivatives are defined only up to adding polynomials.
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(The ∂αX derivative is included in formula (2.22) because ΠLḢ ∈ Ẇ 2
m(Rn+1), and

so ΠLḢ is also defined only up to adding polynomials.)
If q and s are small enough, then there is a unique normalization of the deriva-

tives ∇m−qX ∇m−sY EL(X,Y ) that satisfies the bound (2.20) or (2.21); in [Bar16a]
this normalization was found using the Gagliardo-Nirenberg-Sobolev inequality.
However, if 2m ≥ n+ 1 then EL itself (and possibly some of its derivatives) are
still not well-defined. The extra terms on the right-hand side of formula (2.23)

are precisely the terms compatible with the requirement ∇m−qX ∇m−sY ẼL(X,Y ) =

∇m−qX ∇m−sY EL(X,Y ) for q, s small enough.
Consequently, throughout this paper we will be careful to use only derivatives

of EL of sufficiently high order; in fact, we will use only derivatives of the form

∂ζX∂
ξ
Y E

L(X,Y ) for |ξ| ≥ m− 1, |ζ| ≥ m− 1 and |ξ|+ |ζ| ≥ 2m− 1.
In some very special cases, there are natural normalization conditions for the fun-

damental solution even if 2m > n+ 1; for example, if L = (−∆)m and n+ 1 ≤ 2m
is even, then we may take EL(X,Y ) = Cm,n|X − Y |2m−(n+1) log|X − Y |. Notice
the presence of logarithmic growth in the fundamental solution. However, if we
take 2m− (n+ 1) + 1 derivatives (in either X or Y ), then the logarithm vanishes;
this is the lowest order of derivative that Theorem 2.1 guarantees is well-defined.

2.4. The double and single layer potentials. In this paper we seek to formulate
a notion of layer potentials for higher-order elliptic operators of the form specified
in Section 2.1. The goal of this paper is to produce bounds on layer potentials in
the domain Ω = Rn+1

± ; thus, we will define boundary values and layer potentials
only for the half-spaces.

We begin by recalling the second-order Green’s formula (1.9). To generalize this

formula to higher order, notice that, for any function u ∈ Ẇ 2
m(Rn+1

+ ),

1+u = (1+u−ΠL(1+A∇mu)) + ΠL(1+A∇mu)

as Ẇ 2
m(Rn+1

± )-functions. We claim that the quantity

(2.25) DAḟ = −1+F + ΠL(1+A∇mF ) if ḟ = Ṫr+
m−1 F

is well-defined; that is, the right-hand side depends only on Ṫr+
m−1 F . We will define

SLġ in such a way that SL(Ṁ+
A u) = ΠL(1+A∇mu) as Ẇ 2

m(Rn+1)-functions for

any u ∈ Ẇ 2
m(Rn+1

+ ) with Lu = 0 in Rn+1
+ ; this then yields the higher-order Green’s

formula

(2.26) 1Rn+1
+
∇mu = −∇mDA(Ṫr+

m−1 u) +∇mSL(Ṁ+
A u).

We will shortly find formulas (2.28) and (2.32) for the double and single layer
potentials in terms of the fundamental solution; these formulas will parallel formulas
(1.3) and (1.4).

The quantity DAḟ given by formula (2.25), like the Neumann boundary values of
formula (2.9), depends on the particular choice of coefficients A associated with L.
However, we will see in formulas (2.31) and (2.32) below that the single layer
potential depends only on the elliptic operator L and not on any particular choice
of coefficients A; in other words, the dependence of the quantity SL(Ṁ+

A u) =

ΠL(1+A∇mu) on the choice of A will turn out to lie entirely in the term Ṁ+
A u

and not in the operator SL.
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We now establish our claim that, if ḟ = Ṫr+
m−1 F for some F ∈W 2

m(Rn+1
+ ), then

DAḟ is a well-defined element of Ẇ 2
m(Rn+1

+ ) and Ẇ 2
m(Rn+1

− ). It suffices to show

that, if Ṫr+
m−1 F = 0, then the right-hand side of formula (2.25) is zero.

Suppose that Ṫr+
m−1 F = Tr∇m−1F = 0. As in the argument preceding for-

mula (2.9), ∇m−1F lies in the completion in Ẇ 2
1 (Rn+1

+ ) of the set of smooth func-

tions compactly supported in Rn+1
+ . Now, if ϕ is compactly supported in Rn+1

+ ,

then we may extend ϕ to a function in all of Rn+1 by letting ϕ = 0 in Rn+1
− . By

density, we have that ∇m−1F also extends by zero to a function in Ẇ 2
1 (Rn+1);

thus, we may extend F to a polynomial of degree m− 2 in Rn+1
− . Without loss of

generality we may take this to be the zero polynomial. Thus, if Ṫr+
m−1 F = 0, then

1+F ∈ Ẇ 2
m(Rn+1). We may apply the identity (2.17) to 1+F , and so the right-

hand side of formula (2.25) is zero in Ẇ 2
m(Rn+1), that is, up to adding polynomials

of degree m− 1.
We will need two alternative formulations of DAḟ . Notice that we may extend

F to a Ẇ 2
m(Rn+1) function even if Ṫr+

m−1 F = ḟ 6= 0; then Ṫr−m−1 F = ḟ as well.
Then by formula (2.17),

(2.27) DAḟ = 1−F −ΠL(1−A∇mF ) if ḟ = Ṫr−m−1 F.

By formula (2.22), if |α| = m, then for almost every x ∈ Rn and t > 0, we have
that

∂αDAḟ(x, t) = −
∑

|β|=|ξ|=m

ˆ
Rn+1
−

∂αx,t∂
β
y,sE

L(x, t, y, s)Aβξ(y, s) ∂
ξF (y, s) ds dy.

(2.28)

A corresponding formula, involving an integral over Rn+1
+ , is valid if t < 0.

Recall that the bound (1.7) is a bound on DAḟ in terms of the L2 norm of

the tangential derivative ∇‖ḟ of ḟ . In order to use existing theorems concerning

L2 boundedness, we will want to slightly modify the definition of the double layer
potential, by defining

D̃A(Ṫrm,| F )(x, t) = DA(Ṫrm−1 F )(x, t)(2.29)

for all sufficiently well-behaved functions F (e.g., for F ∈ C∞0 (Rn+1)). Then the
bound (1.7) is equivalent to the boundˆ

Rn

ˆ ∞
−∞
|∇m∂tD̃Aḟ(x, t)|2 |t| dt dx ≤ C‖ḟ‖2L2(Rn)(2.30)

for all ḟ = Ṫrm,| ϕ for some ϕ ∈ C∞0 (Rn+1). Note that this bound has a L2 norm

of ḟ , not of ∇‖ḟ , on the right-hand side.
We now must define the single layer potential. Let ġ be a bounded linear operator

on the space

ẆA2
m−1/2(Rn) = {Ṫrm−1 F : F ∈ Ẇ 2

m(Rn+1)} = {Ṫr±m−1 F : F ∈ Ẇ 2
m(Rn+1

± )}.

The operator TġF = 〈ġ, Ṫr±m−1 F 〉Rn is a bounded linear operator on Ẇ 2
m(Rn+1

± ).

We may identify Ẇ 2
m(Rn+1

± ) with a closed subspace of (L2(Rn+1
± ))q, where q is the

number of multiindices α of length m, via the map F 7→ ∇mF . We may then
extend Tġ to an operator on (L2(Rn+1

± ))q. Let Ġ± ∈ (L2(Rn+1
± ))q be the kernel of

Tġ, so TġḢ = 〈Ġ±, Ḣ〉Rn+1
±

for all Ḣ ∈ (L2(Rn+1
± ))q. Let 1±Ġ

± be the extension



SQUARE FUNCTION ESTIMATES ON HIGHER-ORDER LAYER POTENTIALS 19

of Ġ± to Rn+1 by zero. In particular, 〈Ġ±,∇mϕ〉Rn+1
±

= 〈ġ, Ṫrm−1 ϕ〉∂Rn+1
±

for all

ϕ ∈ Ẇ 2
m(Rn+1

± ). Let

SLġ = ΠL(1±Ġ
±) if 〈Ġ±,∇mϕ〉Rn+1

±
(2.31)

= 〈ġ, Ṫr±m−1 ϕ〉∂Rn+1
±

for all ϕ ∈ Ẇ 2
m(Rn+1

± ). By boundedness of ΠL, if ġ is a bounded linear operator on

ẆA2
m−1/2(Rn) then SLġ ∈ Ẇ 2

m(Rn+1). Furthermore, if ϕ ∈ Ẇ 2
m(Rn+1) then

〈∇mϕ,A∇mΠL(1±Ġ
±)〉Rn+1 = 〈∇mϕ, Ġ±〉Rn+1

±
= 〈Ṫrm−1 ϕ, ġ〉Rn+1

by definition of ΠL and Ġ±, and so the value of ΠL(1±Ġ
±) as an element of

Ẇ 2
m(Rn+1) depends only on ġ, not on our choice of Ġ± (or indeed whether we

characterize SLġ by Ġ+ or Ġ−).
In particular, the formula SL(Ṁ+

A u) = ΠL(1+A∇mu) follows immediately from
the definitions (2.9) and (2.31) of Neumann boundary data and the single layer
potential.

Again we will wish to formulate our layer potentials in terms of the fundamental
solution. By formula (2.22), if |α| = m and t > 0 then

∂αSLġ(x, t) = ∂αΠL(1−Ġ
−)(x, t)

=
∑
|β|=m

ˆ
Rn+1
−

∂αx,t∂
β
y,sE

L(x, t, y, s)G−β (y, s) ds dy.

But by the bound (2.20), ϕ(y, s) = ∂αx,tE
L(x, t, y, s) is a Ẇ 2

m(Rn+1
− )-function for

almost every x ∈ Rn and t > 0; thus we may write

(2.32) ∂αSLġ(x, t) =
∑

|γ|=m−1

ˆ
Rn
∂αx,t∂

γ
y,sE

L(x, t, y, 0) gγ(y) dy.

2.5. Function spaces on the boundary. We have now defined DA and SL as
operators on ẆA2

m−1/2(Rn) and its dual space, respectively. We wish to extend DA

and SL to bounded operators on the space L2(Rn). However, notice that DA acts
naturally only on traces of gradients; that is, density arguments will only allow us
to extend DA to a subspace of L2(Rn). We will define this subspace as follows.

Definition 2.3. We let ẆA2
m−1(Rn) be the completion of the set

{Ṫrm−1 ϕ : ϕ smooth and compactly supported in Rn+1}
under the L2 norm.

We let ẆA2
m,|(R

n) be the completion of the set

(2.33) D = {Ṫrm,| ϕ : ϕ smooth and compactly supported in Rn+1}

under the L2 norm.

It is well known that that the space ẆA2
m−1/2(Rn) used above is the completion

of D under the norm of the Besov space Ḃ2,2
1/2(Rn). This space is often called a

Whitney-Besov space and has been used in the theory of higher-order boundary-
value problems; see, for example, [AP98,Agr07,MMS10,MMW11,MM13b,Bar16b].

The spaces ẆA2
m−1(Rn) or ẆA2

m,|(R
n) are called Whitney-Sobolev spaces; they



20 ARIEL BARTON, STEVE HOFMANN, AND SVITLANA MAYBORODA

have also been used extensively in the theory, for example, in [Ver90,PV95a,PV95b,
Ver96, She06a, She06b, KS11]. The goal of this paper is to extend the double and
single layer potentials to bounded operators on Whitney-Sobolev spaces by estab-
lishing boundedness results.

Remark 2.4. We remark that D̃A is a well-defined operator on the space D of

formula (2.33). We will extend D̃A to ẆA2
m,|(R

n) by density.

We will also extend the single layer potential; in this case we wish to extend
SL to all arrays of functions ġ ∈ L2(Rn). It will be convenient to have a dense
subspace N at our disposal on which SL is known to be well-defined. We claim that
SLġ is well-defined for any ġ ∈ L2(Rn) that is compactly supported and integrates
to zero.

The argument is as follows. Recall that SLġ is well-defined whenever ġ is a
bounded linear operator on

ẆA2
m−1/2(Rn) = {Ṫrm−1 Φ : ∇mΦ ∈ L2(Rn+1

+ )}.

Now, suppose that
´
gγ = 0. Choose some function Φ ∈ Ẇ 2

m(Rn+1
+ ) that is smooth

up to the boundary. Thenˆ
Rn
gγ ∂

γΦ =

ˆ
Rn
gγ (∂γΦ− cΦ)

for any constant cΦ. Suppose that gγ is supported in Rn ∩ B((x0, 0), R) for some

x0 ∈ Rn and some R > 0. Let Ω = Rn+1
+ ∩ B((x0, 0), R). It is well known (see,

for example, [Eva98]) the trace map is bounded from L2(Ω) ∩ Ẇ 2
1 (Ω) to L2(∂Ω).

Thus, ∣∣∣∣ˆ
Rn
gγ ∂

γΦ

∣∣∣∣ ≤ ‖gγ‖L2(Rn)‖∂γΦ− cΦ‖L2(∂Ω)

≤ CR1/2‖gγ‖L2(Rn)‖∂γΦ− cΦ‖L2(Ω)

+ CR3/2‖gγ‖L2(Rn)‖∇∂γΦ‖L2(Ω).

By the Poincaré inequality, if we choose cΦ correctly then we may control the
quantity R−1‖∂γΦ− cΦ‖L2(Ω) by ‖∇∂γΦ‖L2(Ω) ≤ ‖∇mΦ‖L2(Rn+1

+ ), and so we see

that ġ gives rise to a bounded operator on ẆA2
m−1/2(Rn). Thus, for such ġ, SLġ

is a well-defined element of Ẇ 2
m(Rn+1).

3. Preliminary arguments

In this section we will establish some basic results that will be useful throughout
the paper.

We begin with some bounds on solutions to elliptic equations. Specifically, we
begin with the following higher-order generalization of the Caccioppoli inequality;
in its full generality it was proven in [Bar16a], but the j = m case was proven
in [Cam80] and an intriguing version appears in [AQ00].

Lemma 3.1 (The Caccioppoli inequality). Suppose that L is a divergence form
elliptic operator associated to coefficients A satisfying the ellipticity conditions (2.4)

and (2.5). Let u ∈ Ẇ 2
m(B(X0, 2r)) ∩ L2(B(X0, 2r)) with Lu = 0 in B(X0, 2r).
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Then we have the boundˆ
B(X,r)

|∇ju(x, s)|2 dx ds ≤ C

r2

ˆ
B(X,2r)

|∇j−1u(x, s)|2 dx ds

for any j with 1 ≤ j ≤ m.

We remark that if A is t-independent and Lu = 0, then L(∂kt u) = 0 for any
integer k > 0; thus, we also have thatˆ

B(X,r)

|∇j∂k+1
s u(x, s)|2 dx ds ≤ C

r2

ˆ
B(X,2r)

|∇j∂ksu(x, s)|2 dx ds

for any j with 0 ≤ j ≤ m and any k ≥ 0.
We may use the following lemma to bound u not in balls of dimension n+ 1, but

on horizontal slices of dimension n; the second-order case of this lemma is known
and is Proposition 2.1 in [AAA+11].

Lemma 3.2. Let t ∈ R be a constant, and let Q ⊂ Rn be a cube.
Suppose that u̇ is an array of functions in L2(2Q×(t−`(Q), t+`(Q))) whose weak

vertical derivative ∂su̇(x, s) is locally in L2, and that satisfies the Caccioppoli-like
inequality ˆ

B(X,r)

|∂su̇(x, s)|2 dx ds ≤ c0
r2

ˆ
B(X,2r)

|u̇(x, s)|2 dx ds

whenever B(X, 2r) ⊂ {(x, s) : x ∈ 2Q, t− `(Q) < s < t+ `(Q)}.
Then ˆ

Q

|u̇(x, t)|2 dx ≤ C(c0)

`(Q)

ˆ
2Q

ˆ t+`(Q)

t−`(Q)

|u̇(x, s)|2 ds dx.

In particular, if Lu = 0 in 2Q × (t − `(Q), t + `(Q)), and L is an operator of
order 2m associated to t-independent coefficients A, then

ˆ
Q

|∇j∂kt u(x, t)|2 dx ≤ C

`(Q)

ˆ
2Q

ˆ t+`(Q)

t−`(Q)

|∇j∂ksu(x, s)|2 ds dx

for any 0 ≤ j ≤ m and any integer k ≥ 0.

Proof. Begin by observing that(ˆ
Q

|u̇(x, t)|2 dx
)1/2

≤
(ˆ

Q

∣∣∣∣u̇(x, t)−
 t+`(Q)/2

t

u̇(x, s) ds

∣∣∣∣2 dx)1/2

+

(ˆ
Q

 t+`(Q)/2

t

|u̇(x, s)|2 ds dx
)1/2

.

But
ˆ
Q

∣∣∣∣u̇(x, t)−
 t+`(Q)/2

t

u̇(x, s) ds

∣∣∣∣2 dx ≤ ˆ
Q

∣∣∣∣ `(Q)/2

0

ˆ s

0

∂ru̇(x, t+ r) dr ds

∣∣∣∣2 dx
≤ `(Q)

2

ˆ
Q

ˆ `(Q)/2

0

|∂ru̇(x, t+ r)|2 dr dx.

Applying the Caccioppoli inequality completes the proof. �
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Throughout this paper we will frequently need to bound the fundamental so-
lution of Theorem 2.1 on horizontal slices. The following estimate follows from
Lemma 3.2, the Caccioppoli inequality and the bound (2.20); we will use it several
times. Suppose that Q is a cube and that either j ≥ 1 or j = 0 and `(Q) ≤ |s− t|.
Suppose further that q, s, i and k are nonnegative integers with q ≤ m, s ≤ m and
q − k < (n+ 1)/2, s− i ≤ (n+ 1)/2. Then for some ε > 0,

(3.1)

ˆ
Q

ˆ
Aj(Q)

|∇m−qx,t ∇m−sy,s ∂kt ∂
i
sE

L(x, t, y, s)|2 dy dx ≤ C

`(Q)2r+2
2−j(2(i−s)+1+ε)

where r = k+ i− q− s = (m− q) + (m− s) + k+ i− 2m. In applying this formula
it is always useful to remember formula (2.24), that is, that we may take vertical
derivatives in either the s variable or the t variable.

Now, recall that we seek to bound the double layer potential DA. Furthermore,
recall that if ḟ = Ṫrm−1 F , then we may write DAḟ in terms of F ; see formu-

las (2.25) or (2.28). The following lemma provides extensions of ḟ with useful
quantitative bounds.

Lemma 3.3. Let ḟ = Ṫrm−1 F for some smooth, compactly supported function F .

Then there is some function H defined in Rn+1
+ such that Ṫrm−1H = ḟ and

such that

‖∇mH‖2L2(Rn+1) ≤ C
ˆ
Rn
|ξ| |̂̇f(ξ)|2 dξ,(3.2)

sup
t6=0
‖∇m−1H( · , t)‖2L2(Rn) ≤

ˆ
Rn
|ḟ(x)|2 dx,(3.3)

sup
t 6=0
‖∇mH( · , t)‖2L2(Rn) ≤

ˆ
Rn
|∇‖ḟ(x)|2 dx,(3.4)

ˆ
Rn

ˆ ∞
0

|∇mH(x, t)|2 t dt dx ≤
ˆ
Rn
|ḟ(x)|2 dx.(3.5)

Furthermore, if ḟ = 0 in some cube Q, then ∇m−1H = 0 in {(x, t) : dist(x,Rn \
Q) > t}, and in particular in (1/2)Q× (0, `(Q)/4).

Proof. For each 0 ≤ j ≤ m− 1, let fj(x) = ∂jn+1F (x, 0); observe that up to adding

polynomials of appropriate degree, fj is determined entirely by ḟ = ∇m−1F (x, 0).
Let η : Rn 7→ R be smooth, nonnegative, supported in B(0, 1), and satisfy´

Rn η = 1 and
´
Rn x

ζ η(x) dx = 0 for all multiindices ζ ∈ Nn with 1 ≤ |ζ| ≤ m− 1.

Let ηt(x) = t−nη(x/t). Let

Hj(x, t) =
1

j!
tj fj ∗ ηt(x) =

1

j!
tj
ˆ
Rn
fj(x− ty) η(y) dy, H(x, t) =

m−1∑
j=0

Hj(x, t).

By inspection, limt→0 ∂
j
tHj(x, t) = fj(x), and if 0 ≤ k ≤ m − 1 with j 6= k, then

limt→0 ∂
k
tHj(x, t) = 0. Thus Ṫrm−1H = ḟ , as desired.

We may bound H in terms the functions fj using the Fourier transform in the
x-variable and Plancherel’s theorem, and we may bound appropriate derivatives
of fj using the array ḟ . We omit the routine details.

If ḟ = 0 in Q, then ∇m−1−jfj = 0 in Q, and so fj is a polynomial in Q. Thus,

we may write fj(x − ty) =
∑
|γ|<m−1−j t

|γ|yγPγ(x) for some polynomials Pγ(x).
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Notice P0(x) = fj(x). By our moment condition on η, if dist(x,Rn \Q) > t, then

Hj(x, t) =
1

j!
tj
ˆ
Rn
fj(x− ty) η(y) dy =

1

j!
tj
ˆ
Rn
P0(x) η(y) dy =

1

j!
tjfj(x).

Thus, H(x, t) is equal to a polynomial of degree at most m − 2 in this region, as
desired. �

4. Operators to be bounded

Recall that Theorem 1.1 involves bounding the quantities ∇m∂n+1SLġ and

∇m∂n+1DAḟ (or, substituting the bound (2.30) for the bound (1.7), the quan-

tity ∇m∂n+1D̃Aḟ). In this section we will reduce to the case of the purely vertical

derivatives; that is, we will show that bounding ∂m+k
n+1 SLġ and ∂m+k

n+1 D̃Aḟ , for any

k ≥ 1, suffices to bound ∇m∂n+1SLġ and ∇m∂n+1D̃Aḟ . We will also establish
some notation for these operators.

Let k ≥ 1 be an integer, to be chosen later. Let

ΘS
t ġ(x) = tk∂m+k

t SLġ(x, t).(4.1)

Observe that by formula (2.32), if t > 0 then

(4.2) ΘS
t ġ(x) =

∑
|γ|=m−1

tk
ˆ
Rn
∂m+k
t ∂γy,sE

L(x, t, y, 0) gγ(y) dy.

Notice that by the bound (3.1), if k is large enough and if ġ ∈ L2(Rn+1), then the
integral converges for almost every (x, t) ∈ Rn+1

+ . We will elaborate on this point
in Section 6.

If ḟ lies in the space D of Remark 2.4, we let

ΘD
t ḟ(x) = tk∂m+k

t D̃Aḟ(x, t).(4.3)

Establishing a bound on ΘD
t in terms of the L2 norm of ḟ will allow us to extend

ΘD
t to all of ẆA2

m,|(R
n).

Note that ΘS
t , ΘD

t implicitly depend on k ≥ 1.
We begin by reducing the proof of Theorem 1.1 to establishing bounds on ΘS

t

and ΘD
t ; the remainder of this paper will be devoted to establishing these bounds.

Remark 4.1. The conclusion of Theorem 1.1 is a bound in the whole space Rn+1;
for notational convenience, we will establish a bound only in the upper half-space
Rn+1

+ and note that the corresponding bound in Rn+1
− follows by careful argument

involving the change of variables (x, t) 7→ (x,−t).

Lemma 4.2. Let ḟ ∈ D and ġ ∈ N, where D and N are as in Remark 2.4. If
k ≥ 1, then we have the boundsˆ

Rn+1
+

|∇m∂tSLġ(x, t)|2 t dx dt ≤ C
ˆ
Rn+1

+

|ΘS
t ġ(x)|2 1

t
dx dt,

ˆ
Rn+1

+

|∇m∂tD̃Aḟ(x, t)|2 t dx dt ≤ C
ˆ
Rn+1

+

|ΘD
t ḟ(x)|2 1

t
dx dt.
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Proof. We follow the proof of the similar formula (5.5) in [AAA+11]. Let u = SLġ
or u = D̃Aḟ , and define

Uj(t) =

ˆ
Rn
|∇m∂jt u(x, t)|2 dx, Vj(t) =

ˆ
Rn
|∂m+j
t u(x, t)|2 dx.

To prove the lemma we need only establish the boundˆ ∞
0

t U1(t) dt ≤ C
ˆ ∞

0

t2k−1Vk(t) dt.

By Lemma 3.2 and the Caccioppoli inequality, if j ≥ −m then

Um+j(t) ≤
C

t2m

 2t

t/2

Vj(s) ds

and thus we may easily show thatˆ ∞
0

t2m+2k−1 Um+k(t) dt ≤
ˆ ∞

0

t2k−1Vk(t) dt.

Thus, we need only show thatˆ ∞
0

t U1(t) dt ≤ C
ˆ ∞

0

t2m+2k−1 Um+k(t) dt.

Observe that ∇mu ∈ L2(Rn+1
+ ). By Lemma 3.2 and the Caccioppoli inequality,

we have that if j ≥ 0, then

Uj(t) ≤
C

t1+2j
‖∇mu‖2

L2(Rn+1
+ )

.

Suppose j > 0. Then if 0 < ε < S <∞, we have thatˆ S

ε

t2j−1 Uj(t) dt =

ˆ S

ε

t2j−1 Uj(S) dt−
ˆ S

ε

t2j−1

ˆ S

t

U ′j(s) ds dt

≤ C

S
‖∇mu‖2L2(Ω) +

1

2j

ˆ S

ε

s2j |U ′j(s)| ds.

Observe that |U ′j(s)| ≤ 2
√
Uj(s)Uj+1(s) ≤ 1

sUj(s) + sUj+1(s). Thus,
ˆ S

ε

t2j−1 Uj(t) dt ≤
C

S
‖∇mu‖2L2(Ω) +

1

2j

ˆ S

ε

s2j−1 Uj(s) ds

+
1

2j

ˆ S

ε

s2j+1 Uj+1(s) ds.

Rearranging terms, we have that if j ≥ 1 thenˆ S

ε

t2j−1 Uj(t) dt ≤
C

S
‖∇mu‖2L2(Ω) + C

ˆ S

ε

s2j+1 Uj+1(s) ds.

Taking the limit as ε→ 0+ and S →∞, we have that if j > 0 thenˆ ∞
0

t2j−1 Uj(t) dt ≤ C
ˆ ∞

0

s2j+1 Uj+1(s) ds.

Iterating, we see thatˆ ∞
0

t U1(t) dt ≤ C(k)

ˆ ∞
0

t2m+2k−1 Um+k(t) dt

as desired. �
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Remark 4.3. In Sections 5–11 we will bound the operators ΘD
t and ΘS

t for some
values of k. In particular, we will make many arguments that are only valid for k
large enough; we will not make any arguments that require k to be small, and thus
there will be some k large enough that all our arguments are valid.

5. A vector-valued T (b) theorem

Our goal now is to produce square-function estimates for the operators ΘS
t and

ΘD
t . In this section, we will review some known theorems that may be used to

establish square-function estimates on singular integral operators.
We begin with one of the first such results, the Christ-Journé T1 theorem from

Section 2 of [CJ87], which is a square function analogue of the well-known result of
David and Journé [DJ84].

Theorem 5.1. Suppose that the family of linear operators {Θt}t>0 are given by

Θtf(x) =

ˆ
Rn
ψt(x, y) f(y) dy

for some kernels ψt : Rn × Rn 7→ R that satisfy

|ψt(x, y)| ≤ C0
tε

(t+ |x− y|)n+ε
,

|ψt(x, y)− ψt(x, z)| ≤ C1
tε|y − z|ε

(t+ |x− y|)n+2ε
for all |y − z| ≤ 1

2
(t+ |x− y|)

for some constants C0, C1 and some ε > 0. If

sup
Q⊂Rn

1

|Q|

ˆ `(Q)

0

ˆ
Q

|Θt1(x)|2 dx dt
t
≤ C2

then we have the boundˆ ∞
0

ˆ
Rn
|Θtf(x)|2 dx dt

t
≤ C‖f‖2L2(Rn)

where C depends only on the constants ε, C0, C1, C2 and the dimension n+ 1.

We will use this theorem directly in Section 10.2 below. However, this theorem
is too restrictive to apply to the operators ΘD

t and ΘS
t . (In particular, ΘD

t and ΘS
t

lack smooth kernels.) There are many generalizations of this theorem; we will need
the following T1 and Tb theorems from [GdlHH16]. (We will define a CLP family
in Section 7.)

Theorem 5.2 ( [GdlHH16, Theorem 4.5]). Consider a family of operators {Θt}t>0

taking values in Cp+1, p ≥ 0, so that Θt = (Θ1
t ,Θ

2
t , . . . ,Θ

p+1
t ), where each Θj

t acts
on scalar-valued L2(Rn), and where for ~g = (g1, g2, . . . , gp+1) ∈ L2(Rn 7→ Cp+1),
we set

Θt~g =

p+1∑
j=1

Θj
tgj .

Suppose that there is some θ > 0 and some C > 0 such that, for all dyadic
cubes Q, all integers j ≥ 0, and all functions ~gj ∈ L2(Aj(Q)), where Aj(Q) is as
in formula (2.2), we have the estimate

‖Θt(1Aj(Q)~g
j)‖L2(Q) ≤ C2−j(n+2+θ)/2‖~gj‖L2(Aj(Q)) if `(Q) ≤ t ≤ 2`(Q).(5.1)
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Suppose further that for some θ > 0, some CLP family of operators Qs, and some
subspace H of L2(Rn), we have that

‖ΘtQs~h‖L2(Rn) ≤ C
(
s

t

)θ
‖~h‖L2(Rn) for all ~h ∈ H and all s ≤ t.(5.2)

Finally, suppose that
ˆ `(Q)

0

ˆ
Q

|Θt1(x)|2 dx dt
t
≤ C0|Q|(5.3)

where 1 denotes the (p+ 1)× (p+ 1) identity matrix. Equivalently, we may require
that ˆ `(Q)

0

ˆ
Q

|Θj
t1(x)|2 dx dt

t
≤ C0|Q|

for each 1 ≤ j ≤ p+ 1, where 1 denotes the function that is one everywhere.

Then for all ~h ∈ H, we have that

(5.4)

ˆ ∞
0

ˆ
Rn
|Θt

~h(x)|2 dx dt
t
≤ C‖~h‖2L2(Rn).

Remark 5.3. The uniform L2 bound

sup
t>0
‖Θt~g‖L2(Rn) ≤ C‖~g‖L2(Rn)(5.5)

follows from the bound (5.1) by summing over dyadic cubes Q of side-length 2j ,
2j ≤ t < 2j+1. In particular, establishing the bound (5.1) suffices to show that Θt

is a well-defined operator on L2(Rn).

The major advantage of Theorem 5.2 over Theorem 5.1, from our perspective,
is that we need not have pointwise estimates on the kernels of our operators Θt.
Rough kernels appear in the theory of second-order equations (see [GdlHH16, Sec-
tion 3]) and are an essential part of our treatment of layer potentials for higher-order
equations. On the other hand, we note that the proof of Theorem 5.2 is an easy
modification of that of Theorem 5.1; see [GdlHH16] for details.

We now outline the bounds that we will prove using Theorem 5.2.
In Section 6, we will show that ΘD

t and ΘS
t satisfy the estimate (5.1). Notice

that ΘD
t is required to satisfy this estimate for all ġ ∈ L2(Rn), not only all ġ ∈

ẆA2
m,|(R

n) ⊂ L2(Rn 7→ Cq); to deal with this technical requirement, in Section 6.1

we will extend ΘD
t to an operator defined on all of L2(Rn). This extension is used

only for this technical requirement and will take a strange form; a similar extension
will be used for another purpose in Section 10.2.

In Section 7 we will show that ΘS
t satisfies the estimate (5.2) for all ḣ ∈ L2(Rn),

and that ΘD
t satisfies the estimate (5.2) for all ḣ ∈ ẆA2

m,|(R
n). (We do not need

to extend this estimate to all ḣ ∈ L2(Rn).)
Finally, in Section 8, we will show that if

Θ⊥t f(x) = ΘS
t (f ė⊥)(x),(5.6)

ΘS′

t ḟ(x) =
∑

γn+1<|γ|=m−1

ΘS
t (fγ ėγ)(x),(5.7)
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then ΘS′

t 1̇ = 0 for almost every x and t. Thus, the estimate (5.4) is valid for

Θt = ΘS′

t . Indeed, one can see that the splitting (5.6)–(5.7) corresponds to the
case when γ = (0, . . . , 0,m − 1) in formula (4.2) (that is, all derivatives under the
integral are in t, s) and the case when each term of the integrand has at least one
y-derivative, respectively.

We will not be able to show directly that Θ⊥t 1 or ΘD
t 1̇ satisfy the bound (5.3).

In Section 9, we will show that if 2m > n, then

ΘD
t 1̇(x) = Υt(x) + ΘS

t ȧ(x)

where Υt is a Carleson measure (that is, satisfies the estimate (5.3)) and where ȧ(x)
is a uniformly bounded function. Standard techniques will allow us to control ΘS

t ȧ
by ΘS

t 1̇, using only the fact that ȧ is bounded (that is, without using any special
cancellation properties); see Lemma 9.1 below. Thus, a bound on Θ⊥t 1 together

with the equation ΘS′

t 1̇ = 0 will give us a bound on ΘD
t 1̇ and thus allow us to use

Theorem 5.2.
However, this argument does require control on Θ⊥t , and Theorem 5.2 will not

suffice to bound Θ⊥t .
We will bound Θ⊥t (giving us a bound on ΘD

t ) using the following theorem, with

Θp+1
t = Θ⊥t and Θ′t = (ΘD

t ,Θ
S′

t ).

Theorem 5.4 ( [GdlHH16, Theorem 2.13]). Consider a family {Θt}t>0 of opera-

tors taking values in Cp+1, p ≥ 0, so that Θt = (Θ′t,Θ
p+1
t ) = (Θ1

t ,Θ
2
t , . . . ,Θ

p+1
t ),

where each Θj
t acts on scalar-valued L2(Rn), and where for ~g = (g′, gp+1) =

(g1, g2, . . . , gp+1) ∈ L2(Rn 7→ Cp+1), we set

Θt~g =

p+1∑
j=1

Θj
tgj , Θ′tg

′ =

p∑
j=1

Θj
tgj .

Suppose that Θt satisfies the bound (5.1), that Θp+1
t satisfies the bound (5.2) for

all h ∈ L2(Rn), and that there is some subspace H ′ ⊂ L2(Rn 7→ Cp) such that Θ′t
satisfies the bound (5.2) for all ~h ∈ H ′.

We define the C, δ-norm as

‖Υt‖2C,δ = sup
`(Q)>δ

1

|Q|

ˆ min(`(Q),1/δ)

δ

ˆ
Q

|Υt(x)|2 dx dt
t

.

Suppose that for each 1 ≤ j ≤ p,

‖Θj
t1‖C,δ ≤ C1 + C1‖Θp+1

t 1‖C,δ for all δ > 0 small enough.(5.8)

Suppose that for each dyadic cube Q ⊂ Rn, we have a measure µQ such that

(5.9) dµQ = φQ dx, ‖∇φQ‖L∞(Rn) ≤ C0`(Q)−1,
1

C0
≤ φQ on Q.
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Suppose further that for each such Q there exists a vector-valued function ~bQ =

(~b′Q, b
p+1
Q ) ∈ H ′ × L2(Rn) such that

ˆ `(Q)

0

ˆ
Q

|Θt
~bQ(x)|2 dx dt

t
≤ C0|Q|,(5.10)

ˆ
Rn
|~bQ(x)|2 dx ≤ C0|Q|,(5.11)

Re

 
Q

bp+1
Q dµQ ≥ σ,(5.12) ∣∣∣∣ 

Q

~b′Q dµQ

∣∣∣∣ ≤ ησ, η ≤ 1/(2C1 + 4).(5.13)

Then for all ~f ∈ H ′ × L2(Rn),

(5.14)

ˆ ∞
0

ˆ
Rn
|Θt

~f(x)|2 dx dt
t
≤ C‖~f‖2L2(Rn).

This theorem is a local Tb theorem; that is, we may test Θt
~bQ near Q, for some

~bQ adapted to our particular cube Q, rather than testing Θt1 in an arbitrary cube.
There is an extensive body of work devoted to generalizing T1 theorems to Tb
theorems and local Tb theorems; see, for example, the survey paper [Hof10], and
in particular [MM85,DJS85,Sem90,Chr90] for a few of the important milestones of
the theory.

As mentioned above, we will establish the bound (5.8) in Section 9, for Θp+1
t =

Θ⊥t and Θ′t = (ΘD
t ,Θ

S′

t ), provided 2m > n. We will construct the measure µQ
and test functions ḃQ = (ḃSQ, ḃ

D
Q) at the beginning of Section 10, and therein will

establish the estimates (5.10); we will establish the bounds (5.11), (5.12) and (5.13)
in Sections 10.1 and 10.2. The assumption 2m > n will be useful in Section 10 as
well as Section 9. This will allow us to bound Θ⊥t , and so together with Lemma 4.2
will complete the proof of Theorem 1.1 in the case 2m > n. We will extend to the
case 2m ≤ n in Section 11.

6. The decay estimate (5.1)

In this section, we will show that the operators ΘS
t and ΘD

t satisfy the bound (5.1)
for all ġj in L2(Aj(Q)).

By formula (4.2) for ΘS
t ,

ˆ
Q

|ΘS
t ġ

j |2 =

ˆ
Q

t2k
∣∣∣∣ ∑
|γ|=m−1

ˆ
Aj(Q)

∂m+k
t ∂γy,sE

L(x, t, y, 0) gγ(y) dy

∣∣∣∣2 dx.
By Hölder’s inequalityˆ

Q

|ΘS
t ġ

j |2 ≤ C‖ġ‖L2(Aj(Q))

ˆ
Q

t2k
ˆ
Aj(Q)

|∂m+k
t ∇m−1

y,s EL(x, t, y, 0)|2 dy dx.

Finally, by the bound (3.1) on the fundamental solution,ˆ
Q

|ΘS
t ġ

j |2 ≤ C2−j(2k−1+ε)‖ġ‖2L2(Aj(Q)).

Thus, if k is large enough then the operator ΘS
t satisfies bound (5.1).
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Remark 6.1. Suppose that ġj(z) = ∂ziḣ
j(z) for some 1 ≤ i ≤ n and some ḣj

supported in Aj,1(Q). Then
ˆ
Q

|ΘS
t (∂iḣ

j)|2 =

ˆ
Q

t2k
∣∣∣∣ ∑
|γ|=m−1

ˆ
Aj,1(Q)

∂m+k
t ∂γy,sE

L(x, t, y, 0) ∂yih
j
γ(y) dy

∣∣∣∣2 dx.
Integrating by parts in yi, and applying the bound (3.1), we see thatˆ

Q

|ΘS
t (∂iḣ

j)|2 ≤ C

t2
2−j(2k+1+ε)‖ḣj‖2L2(Aj,1(Q)).

In particular, for any ḣ ∈ L2(Rn), we have the uniform L2 estimate

(6.1) ‖ΘS
t (∂iḣ)‖L2(Rn) ≤

C

t
‖ḣ‖L2(Rn), 1 ≤ i ≤ n.

This formula will be useful in Section 7.

We now wish to show that ΘD
t satisfies the decay estimate (5.1), that is, that

‖ΘD
t ḟ

j‖L2(Q) ≤ C2−j(n+2+θ)/2‖ḟ j‖L2(Aj(Q)) for all `(Q) ≤ t ≤ 2`(Q)

for all ḟ j ∈ L2(Rn) and supported in Aj(Q).
Choose some dyadic cube Q and some t with `(Q) ≤ t < 2`(Q). Suppose first

that ḟ j ∈ D, where D is as in Remark 2.4, and is supported in Aj,1(Q). Recall that

D̃Aḟ j (and thus ΘD
t ḟ

j) is defined in terms of extensions F j of ḟ j . Thus, we begin
by choosing an appropriate extension. Let Hj be the function given by Lemma 3.3;
we then have that

Ṫr−m,|H
j = ḟ j , sup

t<0
‖∇mHj( · , t)‖L2(Rn) ≤ C‖ḟ j‖L2(Rn).

We may assume without loss of generality that TrHj ≡ 0 outside of 2j+2Q. Let
ηj(x, t) be smooth and satisfy the bound |∇iηj(x, t)| ≤ Ci(2j`(Q))−i, with

ηj(x, t) = 1 if x ∈ 2j+2Q and − 2j`(Q) < t < 2j`(Q),

ηj(x, t) = 0 if x /∈ 2j+3Q or |t| > 2j+1`(Q).

Then Ṫr−m,|(ηjH
j) = Ṫr−m,|H

j = ḟ j . We take F j = ηj H
j . Observe that if j ≥ 2,

then ∇mF j(x, t) = ∇mHj(x, t) = 0 if |t| < dist(x,Rn \ 2j−1Q). Furthermore, we
still have the bound

sup
t<0
‖∇mF j( · , t)‖L2(Rn) ≤ C‖ḟ j‖L2(Rn).

Now, by the definition (4.3) of ΘD
t and by formulas (2.29) and (2.28),

ˆ
Q

|ΘD
t ḟ

j |2 = t2k
ˆ
Q

∣∣∣∣ ∑
|β|=m

ˆ
Rn+1
−

∂m+k
t ∂βy,sE

L(x, t, y, s) (A∇mF j)β(y, s) ds dy

∣∣∣∣2 dx.
Applying the bound (3.1), we see thatˆ

Q

|ΘD
t ḟ

j |2 ≤ C2−j(2k+ε)‖ḟ j‖2L2(Rn)

for all ḟ j ∈ D supported inAj,1(Q); by density we may extend to all ḟ ∈ ẆA2
m,|(R

n)

supported in Aj,1(Q).
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6.1. Extending ΘD
t to all of L2(Rn). We now must extend ΘD

t to an operator
defined on all of L2(Rn) that still satisfies the estimate (5.1). Essentially, this

argument consists of defining a projection operator from L2(Rn) to ẆA2
m,|(R

n),

the space on which ΘD
t naturally acts.

Because L2(Rn) is a Hilbert space, there is an orthogonal projection operator

OW : L2(Rn) 7→ ẆA2
m,|(R

n). For example, if m = 1 then OW ~f = ∇‖u, where

∆‖u = ∇‖ · ~f . This is the most natural mapping from L2(Rn) to ẆA2
m,|(R

n);

however, this mapping does not satisfy adequate decay estimates. Thus, we must
refine this mapping by applying cutoffs before and after projecting.

Let Wj be the closure in L2(Rn) of

{12j+2Q Ṫrm−1 ϕ+ (1− 12j+2Q)ḟ : ϕ ∈ C∞0 , ḟ ∈ L2(Rn)}.

Loosely, elements of Wj are higher-order traces in the cube 2j+2Q and are merely
arbitrary L2 arrays outside of that cube. Let Oj denote orthogonal projection

from L2(Rn) onto the subspace Wj ; observe that Oj ḟ = ḟ outside of 2j+2Q.
Furthermore, if ϕ is a nice function then Oj(Ṫrm−1 ϕ) = Ṫrm−1 ϕ.

Let ηj be a smooth partition of unity; that is,
∑
j ηj(x, t) = 1 for t near zero,

with ηj supported in Aj,1(Q) × (−2j`(Q), 2j`(Q)) and satisfying |∇iηj(x, t)| ≤
C2−ij`(Q)−i for all (x, t) ∈ Rn+1.

Define πj : Wj 7→ ẆA2
m,|(R

n) as follows. Suppose that ḟ = Ṫrm,| ϕ in 2j+2Q

for some smooth function ϕ. We may renormalize ϕ so that
´
Q

Tr ∂ζϕ = 0 for all

|ζ| ≤ m − 1. Let πj ḟ = Ṫrm,|(ηjϕ). We remark that πj ḟ is well-defined, that is,

Ṫrm,|(ηjϕ) depends only on Ṫrm,| ϕ. Furthermore, observe that πj ḟ is supported
in Aj,1(Q). Finally, by the Poincaré inequality

‖πj ḟ‖L2(Aj,1(Q)) ≤ C2jn/2‖Ṫrm,| ϕ‖L2(2j+2Q) = C2jn/2‖ḟ‖L2(2j+2Q).

We will extend to an operator on all of L2(Rn) using the orthogonal projection

operators Oj . Observe, first, that πjOj ḟ = 0 outside of Aj,1(Q), and second, that

if ḟ = 0 in 2j+2Q then Oj ḟ = ḟ and so πjOj ḟ = 0.
If ϕ is smooth and compactly supported in Rn+1, and renormalized as above,

then

Ṫrm,| ϕ =

∞∑
j=0

Ṫrm,|(ηjϕ) =

∞∑
j=0

πj(Ṫrm−1 ϕ) =

∞∑
j=0

πj(Oj(Ṫrm−1 ϕ)).

We define ΘD
t ḟ =

∑∞
j=0 ΘD

t (πjOj ḟ). Now, if ḟ j is supported in Aj(Q), ob-

serve that πiOiḟ = 0 for all i ≤ j − 2, and furthermore that ‖πiOiḟ j‖L2(Rn) ≤
C2in/2‖ḟ j‖L2(Aj(Q)) for all i ≥ j − 1. Then

‖ΘD
t ḟ

j‖L2(Q) ≤
∞∑

i=j−1

‖ΘD
t (πiOiḟ

j)‖L2(Q) ≤ C
∞∑

i=j−1

2−i(k+ε/2)‖πiOiḟ j‖L2(Ai,1(Q))

≤ C
∞∑

i=j−1

2−i(k+ε/2)2in/2‖ḟ j‖L2(Aj(Q))

and so ΘD
t satisfies the decay estimate (5.1) provided k is large enough.
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7. The quasi-orthogonality estimate (5.2)

In [GdlHH16], a family of operators {Qs}s>0 was defined to be a Calderón-Little-
wood-Paley family, or CLP family, if

Qsf(x) =

ˆ
Rn
s−n ϕ(y/s) f(x− y) dy

for some ϕ ∈ L1(Rn) that satisfies the conditions

(7.1) |ϕ̂(ξ)| ≤ C min(|ξ|σ, |ξ|−σ), |ϕ(x)| ≤ C(1 + |x|)−n−σ

for some C > 0 and σ > 0, where ϕ̂ denotes the Fourier transform of ϕ, and such
that Q satisfies the conditions

‖Qsf‖L2(Rn) + ‖s∇Qsf‖L2(Rn) ≤ C‖f‖L2(Rn) for all s > 0,(7.2) ˆ
Rn

ˆ ∞
0

|Qsf(x)|2 ds dx
s
≤ C‖f‖2L2(Rn),(7.3)

ˆ ∞
0

Q2
s

ds

s
= I(7.4)

where convergence to the identity in the last formula is in the strong operator
topology on B(L2(Rn)).

We now provide some conditions on ϕ that ensure validity of the bounds (7.2)–
(7.4).

Lemma 7.1. Suppose that ψ ∈ L1(Rn) satisfies the bounds (7.1) for some C > 0

and σ > 0. Suppose further that |ψ̂(ξ)| ≤ C|ξ|−1. Finally, suppose that ψ is radial,
real-valued, and not identically zero.

Then there is some constant c such that if ϕ = cψ, then

Qsf(x) =

ˆ
Rn
s−nϕ(y/s) f(x− y) dy

is a CLP family.

Proof. Observe that

Q̂sf(ξ) = c ψ̂(s ξ) f̂(ξ).

Given this relation, the estimates (7.2) and (7.3) follow from the estimate |ψ̂(ξ)| ≤
C min(|ξ|σ, |ξ|−1) by Plancherel’s theorem. To establish the identity (7.4), we nor-

malize ψ as follows. Because ψ is radial, so is ψ̂. Thus, the integralˆ ∞
0

c2ψ̂(s ξ)2 1

s
ds

is independent of ξ provided ξ 6= 0. If ψ is both radial and real-valued, then ψ̂ is

real-valued, and so this integral is positive; furthermore, our bounds on ψ̂ imply
finiteness of this integral. We may choose c so that this integral equals 1. It is then
straightforward to establish the condition (7.4). �

In this section, let ϕ̂ be bounded, radial and supported in B(0, 2)\B(0, 1/2), and
such that formula (7.4) is valid. (In Section 9.2 we will use a CLP family again;
in that section it will be more convenient to take ϕ, rather than ϕ̂, compactly
supported.) We wish to establish the bound (5.2), for the operators Θt = ΘS

t or
Θt = ΘD

t . We proceed as in [GdlHH16].
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We begin with ΘS
t . Fix some ḣ ∈ L2(Rn); we wish to bound ΘS

t Qsḣ. For each
1 ≤ j ≤ n, let f jγ satisfy

f̂ jγ(ξ) =
ξj

2πi|ξ|2
Q̂shγ(ξ) =

ξj
2πi|ξ|2

ϕ̂(s ξ) ĥγ(ξ).

Then Qshγ =
∑n
j=1 ∂jf

j
γ , and so

ΘS
t Qsḣ(x) =

n∑
j=1

ΘS
t (∂j ḟ

j)(x).

By the bound (6.1),

‖ΘS
t Qsḣ‖L2(Rn) ≤

n∑
j=1

‖ΘS
t (∂j ḟ

j)‖L2(Rn) ≤ C
1

t

n∑
j=1

‖ḟ j‖L2(Rn).

Notice that |ϕ̂(ξ)| ≤ C|ξ|, and so ‖ḟ‖L2(Rn) ≤ Cs‖ḣ‖L2(Rn). Thus,

‖ΘS
t Qsḣ‖L2(Rn) ≤ C

s

t
‖ḣ‖L2(Rn).

Therefore, ΘS
t satisfies the bound (5.2) for θ = 1 (and thus for any θ ≤ 1).

We now consider ΘD
t . Let the subspace H be ẆA2

m,|(R
n); recall that this is the

natural space upon which D̃A and ΘD
t act. It suffices to show that

‖ΘD
t Qs Ṫrm,| ϕ‖L2(Rn) ≤ C

(
s

t

)θ
‖Ṫrm,| ϕ‖L2(Rn)

for some θ > 0 and for all smooth, compactly supported functions ϕ. To establish
this bound, we begin with the following lemma.

Lemma 7.2. If ϕ is smooth and compactly supported in Rn+1, then

Qs(Ṫrm,| ϕ) = Ṫrm,|Φs

for some function Φs that satisfies

‖∇mΦs‖L2(Rn+1
− ) ≤ C

√
s‖Ṫrm,| ϕ‖L2(Rn).

Proof. For each j with 0 ≤ j ≤ m − 1, let f j(x) = ∂jn+1ϕ(x, 0). Observe that if β
is a multiindex and βn+1 < |β| = m, then

(Ṫrm,| ϕ)β = ∂
β‖
x fβn+1(x, 0).

Qs is a convolution operator and so commutes with horizontal derivatives, and thus

(Qs Ṫrm,| ϕ)β = ∂
β‖
x Qsf

βn+1(x, 0).

Let gjs = Qsf
j . Then ĝjs(ξ) = ϕ̂(s ξ) f̂ j(ξ) and so |ξ|−1 |ĝjs(ξ)|2 ≤ Cs|f̂ j(ξ)|2. Thus,ˆ

Rn
|ĝjs(ξ)|2|ξ|2m−2j−1 dξ ≤ Cs

ˆ
Rn
|f̂ j(ξ)|2|ξ|2m−2j dξ = Cs

ˆ
Rn
|∇m−j‖ f j(x)|2 dx.

Because |∇m−j‖ f j | ≤ |Ṫrm,| ϕ|, we have that
ˆ
Rn
|ĝjs(ξ)|2|ξ|2m−2j−1 dξ ≤ Cs‖Ṫrm,| ϕ‖2L2(Rn).
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Let ġs = Qs(Ṫrm−1 ϕ); then ġs satisfies (ġs)γ = ∂γ‖g
γn+1
s for each |γ| = m−1. We

have established that ˆ
Rn
|̂̇gs(ξ)|2|ξ| dξ ≤ Cs‖Ṫrm,| ϕ‖2L2(Rn).

Extending ġs using Lemma 3.3 completes the proof. Notice that more general
extension theorems, also appropriate in this case, are well known; see, for example,
[Tri78, Theorem 2.9.3] or [Tri83, Theorem 2.7.2]. �

The estimate (5.2) for ΘD
t follows quickly from Lemma 7.2. By the defini-

tion (4.3),

ΘD
t (Qs Ṫrm,| ϕ)(x) = tk∂m+k

t DA(Ṫrm−1 Φs)(x, t).

But by the definition (2.27),

ΘD
t (Qs Ṫrm,| ϕ)(x) = −tk∂m+k

t ΠL(1−A∇mΦs)(x, t).

But u = ΠL(1−A∇mΦs) satisfies Lu = 0 in Rn+1
+ ; furthermore, by the bound (2.15),

‖∇mu‖L2(Rn+1
+ ) ≤ C‖∇mΦs‖L2(Rn+1

− ) ≤ C
√
s‖Ṫrm,| ϕ‖L2(Rn). Applying the Cac-

cioppoli inequality and Lemma 3.2 in small cubes of sidelength t/C suffices to
establish that ΘD

t satisfies the bound (5.2) for θ = 1/2.

8. The semi-horizontal single layer potential

In this section we will prove the following theorem.

Theorem 8.1. Suppose that γn+1 < |γ| = m−1. Then we have the square-function
estimate ˆ

Rn+1
+

|ΘS
t (gėγ)(x)|2 1

t
dx dt ≤ C‖g‖2L2(Rn).

Proof. Let Θtg = ΘS
t (gėγ). We want to apply Theorem 5.2. As shown in Sections 6

and 7, the bounds (5.1) and (5.2) are valid for this choice of Θt. We are left with
the estimate (5.3).

Recall that by formula (4.2),

Θtg(x) = tk
ˆ
Rn
∂m+k
t ∂γy,sE

L(x, t, y, 0) g(y) dy.

In particular,

Θt1(x) = tk
ˆ
Rn
∂m+k
t ∂γy,sE

L(x, t, y, 0) dy.

Let j satisfy 1 ≤ j ≤ n and γj > 0; by assumption on γ such a j exists. Let
ζ = γ − ~ej + ~en+1. By formula (2.24), we have that

Θt1(x) = −tk
ˆ
Rn
∂yj
(
∂m+k−1
t ∂ζy,sE

L(x, t, y, 0)
)
dy.

By the bound (3.1), for almost every (x, t) ∈ Rn+1, if k is large enough then

v(y) = ∂m+k−1
t ∂ζy,sE

L(x, t, y, 0) lies in both L1(Rn) and in Ẇ 1
1 (Rn). Thus,ˆ

Rn
∂yj
(
∂m+k−1
t ∂ζy,sE

L(x, t, y, 0)
)
dy = 0

for almost every (x, t) ∈ Rn+1. Thus, Θt1 = 0, and in particular the bound (5.3) is
valid. �
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We are now left with the double layer potential ΘD
t and the vertical single layer

potential Θ⊥t f = ΘS
t (f ė⊥). In the following sections we will use the full force of

Theorem 5.4 to bound Θ⊥t ; we will bound ΘD
t as a component of the auxiliary

operator Θ′t in Theorem 5.4.

9. The Carleson estimate (5.8)

We will let Θt = (ΘD
t ,Θ

S
t ), with Θ⊥t denoting the purely vertical component of

ΘS
t (that is, Θ⊥t f = ΘS

t (f ė⊥)). The bounds (5.1) and (5.2) are valid. We wish to
show that the bound (5.8) is also valid. Observe that we may state this bound as

‖Θ′t~ej‖C,δ ≤ C1 + C1‖Θ⊥t 1‖C,δ for all 1 ≤ j ≤ q, if δ > 0 small enough.

In Section 8, we showed that ΘS
t ėγ = 0 whenever γn+1 < |γ| = m − 1; the

bound (5.8), with Θ′t = ΘS′

t , follows immediately. Thus, we need only bound
ΘD
t ėβ by Θ⊥t 1 and a constant.

Recall that by formulas (4.3), (2.29) and (2.28), if ḟ = Ṫrm,| F , then

ΘD
t ḟ(x) = −

∑
|α|=|β|=m

tk
ˆ
Rn+1
−

∂m+k
t ∂αy,sE

L(x, t, y, s)Aαβ(y, s) ∂βF (y, s) ds dy.

Using the bound (3.1), we see that if ∇mF is bounded then the integral converges
absolutely for almost every (x, t) ∈ Rn+1

+ .

Recall that ΘD
t acts on arrays of functions of the form ϕ̇ = Ṫrm,| ϕ; these arrays

ϕ̇ are indexed by multiindices β with βn+1 < |β| = m. Fix some such β. By
choosing

F (x, t) =
1

β!
(x, t)β

we see that

ΘD
t ėβ(x) = −

∑
|α|=m

tk
ˆ
Rn+1
−

∂m+k
t ∂αy,sE

L(x, t, y, s)Aαβ(y) ds dy.(9.1)

We use formula (2.24) to convert one of the derivatives in t into a derivative in s;
we evaluate the integral ds to see that

ΘD
t ėβ(x) =

∑
|α|=m

tk
ˆ
Rn
∂m+k−1
t ∂αy,sE

L(x, t, y, 0)Aαβ(y) dy.

Observe that this is a sum of terms depending on α and β. In Section 9.1 we will
bound the terms for which αn+1 > 0. In Sections 9.2–9.5, we will bound the terms
for which αn+1 = βn+1 = 0; this case is the most involved, and will closely parallel
the argument in [GdlHH16, Section 3.1]. Finally, in Section 9.6 we will bound the
remaining terms, that is, the terms for which αn+1 = 0 and βn+1 > 0; this bound
will rely on the bound in the case αn+1 = βn+1 = 0.

9.1. Terms with αn+1 > 0. Observe that if αn+1 > 0, then α = γ + ~en+1 for a
unique γ with |γ| = m−1. For any such γ, let γ̃ = γ+~en+1. Then by formula (2.24),∑
|α|=m
αn+1>0

∂αy,s∂
m+k−1
t EL(x, t, y, 0)Aαβ(y) = −

∑
|γ|=m−1

∂γy,s∂
m+k
t EL(x, t, y, 0)Aγ̃β(y).
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Thus,

ΘD
t ėβ(x) =

∑
|α|=m
αn+1=0

tk
ˆ
Rn
∂m+k−1
t ∂αy,sE

L(x, t, y, 0)Aαβ(y) dy

−
∑

|γ|=m−1

tk
ˆ
Rn
∂m+k
t ∂γy,sE

L(x, t, y, 0)Aγ̃β(y) dy.

In this section we will bound the second sum; we will consider the first sum in
Sections 9.2–9.6.

By formula (4.2), the second sum is equal to ΘS
t ȧβ , where (aβ)γ = Aγ̃β . Notice

that ȧβ is bounded. Our goal is to show that ‖ΘD
t ėβ‖C,δ ≤ C1 + C1‖Θ⊥t 1‖C,δ. In

this section we will show that ‖ΘS
t ȧβ‖C,0 ≤ C1; because ‖ΘS

t ȧβ‖C,δ ≤ ‖ΘS
t ȧβ‖C,0

this will reduce matters to the terms for which αn+1 = 0.
We may control ΘS

t ȧβ using a standard technique in the study of T1 theorems.
Let

Ptf(x) =

ˆ
Rn

1

tn
ψ

(
x− y
t

)
f(y) dy

where ψ is smooth, nonnegative and satisfies
´
Rn ψ = 1. We do not require that ψ

be compactly supported. Fix some γ with |γ| = m− 1, and let

Ψta(x) = ΘS
t (a ėγ)(x)− Pta(x) ΘS

t ėγ(x).

Then

‖Pt(aβ)γ ΘS
t ėγ‖C,δ ≤ ‖ȧ‖L∞‖ΘS

t ėγ‖C,δ.
Either γ = γ⊥ and so ΘS

t ėγ = Θ⊥t 1, or γn+1 < |γ| and so ΘS
t ėγ = 0. (See the

proof of Theorem 8.1.) So to bound ‖ΘS
t ȧβ‖C,δ, we need only control Ψta(x) for

arbitrary bounded functions a.
We begin our analysis of Ψta by applying Theorem 5.2 to Ψt. Observe that

Ψt1(x) = 0, and so the bound (5.3) is valid. We need only verify the bounds (5.1)
and (5.2) for the operator Ψt; because these bounds have been verified for ΘS

t , we
need only consider Υta(x) = Pta(x) ΘS

t ėγ(x).
We begin with the bound (5.2). Observe that

P̂tQsh(ξ) = ψ̂(t ξ) ϕ̂(s ξ) ĥ(ξ)

where Qs is the operator defined in Section 7. Recall that ϕ̂ is supported in B(0, 2)\
B(0, 1/2). If we require that ψ̂ be smooth and supported in B(0, 1/2), then PtQsh =
0 whenever s ≤ t; thus Υt satisfies the bound (5.2).

We now establish the bound (5.1). By Section 6, we know that the operator ΘS
t

satisfies the decay estimate (5.1). From this we may verify that, if Q ⊂ Rn is a
cube with `(Q) ≤ t < 2`(Q), then

‖ΘS
t ėγ‖L2(Q) ≤ C|Q|1/2.

If ψ̂ is smooth as well as being supported in B(0, 1/2), then ψ is a Schwartz function
and satisfies the estimate |ψ(y)| ≤ CN (1 + |y|)−N for any N > 0. If gj is supported
in Aj(Q), and `(Q) ≤ t < 2`(Q), then

sup
x∈Q
|Ptgj(x)| ≤ CN t−n2−jN‖gj‖L1(Aj(Q)) ≤ CN t−n/22−j(N−n/2)‖gj‖L2(Aj(Q))

and so if we choose N large enough, then the operator Υt satisfies the bound (5.1).
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Thus, by Theorem 5.2, we have that the operators Ψt satisfy the square-function
estimate (5.4). To show that ‖Ψta‖C ≤ C‖a‖L∞(Rn), we need only show that the

estimate (5.4) for L2 test functions implies an estimate for L∞ test functions.

Lemma 9.1. Suppose that the operators Ψt satisfy the square-function estimateˆ ∞
0

ˆ
Rn
|Ψtf(x)|2 dx dt

t
≤ C0‖f‖2L2(Rn)

for all f ∈ L2(Rn 7→ C), and that for some θ > −2, Ψt satisfies the off-diagonal
decay estimate

‖Ψtgj‖L2(Q) ≤ C12−j(n+2+θ)/2‖gj‖L2 if `(Q) ≤ t ≤ 2`(Q)

for all j ≥ 1 and all gj supported in Aj(Q) = 2j+1Q \ 2jQ.
Then there is some C depending only on C0, C1 and θ such that Ψt satisfies the

Carleson condition

‖Ψtb‖2C,0 = sup
Q

1

|Q|

ˆ
Q

ˆ `(Q)

0

|Ψtb(x)|2 dt dx
t
≤ C‖b‖2L∞(Rn)

for all bounded functions b.

Proof. Choose some cube Q and some bounded function b. Let bj = b1Aj(Q); recall
that b0 = b1A0(Q) = b12Q. Then by the square-function estimate,(ˆ

Q

ˆ `(Q)

0

|Ψtb0(x)|2 dt dx
t

)1/2

≤ C‖b0‖L2(2Q) ≤ C‖b‖L∞(Rn)|Q|1/2.

Furthermore, if j ≥ 1, then by the decay estimate applied in cubes R ⊂ Q with
side-length t ≤ `(R) < 2t,(ˆ `(Q)

0

ˆ
Q

|Ψtbj(x)|2 dx dt
t

)1/2

≤ C‖b‖L∞(Rn)|Q|1/22−j(2+θ)/2.

Summing in j, we see that(ˆ
Q

ˆ `(Q)

0

|Ψtb(x)|2 dt dx
t

)1/2

≤ C‖b‖L∞(Rn)|Q|1/2

as desired. �

9.2. Terms with αn+1 = βn+1 = 0: preliminaries. We have now established
that

ΘD
t ėβ(x) =

∑
|α|=m
αn+1=0

tk
ˆ
Rn
∂m+k−1
t ∂αy,sE

L(x, t, y, 0)Aαβ(y) dy −ΘS
t ȧβ(x)

and that ‖ΘS
t ȧβ‖C,δ ≤ C1. In order to show that ΘD

t satisfies the estimate (5.8),

we need only show that the operator Θβ
t , defined as

(9.2) Θβ
t f(x) =

∑
|α|=m
αn+1=0

tk
ˆ
Rn
∂m+k−1
t ∂αyE

L(x, t, y, 0)Aαβ(y) f(y) dy,

satisfies the Carleson-measure estimate

(9.3) ‖Θβ
t 1‖C,δ ≤ C1 + C1‖Θ⊥t 1‖C,δ

for any multiindex β with βn+1 < |β| = m.
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We will make use of the horizontal operator L‖, defined as follows. Recall that

L is an operator acting on Ẇ 2
m,loc(Rn+1)-functions. We may (formally) define the

operator L‖, acting on Ẇ 2
m,loc(Rn)-functions, as

(9.4) L‖f = (−1)m
∑

|α|=|β|=m
αn+1=βn+1=0

∂α(Aαβ∂
βf)

where ∂α, ∂β are understood to be derivatives in the n horizontal directions. (The
operator L‖ has a weak formulation, as in formula (2.6).)

To establish the bound (9.3) for βn+1 = 0, we will follow the argument of
[GdlHH16, Section 3.1]. We remark that the argument we will make in this sec-
tion is valid only in the case where the order 2m of L (and thus L‖) satisfies the
inequality 2m > n. Thus, the argument of Sections 9 and 10 will only establish
boundedness of ΘD

t and Θ⊥t in the case of operators of very high order. In Sec-
tion 11 we will show that bounds on ΘD

t and ΘS
t , for operators of high order, imply

the corresponding bounds for operators of lower order, completing the proof of
Theorem 1.1.

We will use some tools from the proof of the Kato conjecture, in particular from
the paper [AHMT01]. The following lemma was established therein.

Lemma 9.2. Suppose that 2m ≥ n. There is some W depending only on the
standard constants such that, for each cube Q ⊂ Rn, there exist W functions fQ,w
that satisfy the estimates

ˆ
R

|∇m‖ fQ,w|
2 ≤ C|Q| for any cube R with `(R) = `(Q),(9.5)

|L‖fQ,w(x)| ≤ C

`(Q)m
,(9.6)

and such that, for any array γ̇t,

(9.7) sup
Q

1

|Q|

ˆ `(Q)

0

ˆ
Q

|γ̇t(x)|2 dx dt
t

≤ C
W∑
w=1

sup
Q

1

|Q|

ˆ `(Q)

0

ˆ
Q

|〈γ̇t(x), AQt ∇m‖ fQ,w(x)〉|2 dx dt
t

where AQt f(x) =
ffl
Q′
f(y) dy, for Q′ ⊂ Q the unique dyadic subcube that satisfies

x ∈ Q′ and t ≤ `(Q′) < 2t.

Specifically, the bound (9.6) is the bound (2.19) in [AHMT01]. The bound (9.5)
follows from the bound (2.18) in [AHMT01] (if R = Q) and the observation that,
by Lemma 3.1 in [AHMT01] and the definition of fQ,w therein, ∇m‖ fQ,w = ∇m‖ fR,w
whenever `(Q) = `(R). Finally, the bound (9.7) is simply Lemma 2.2 of [AHMT01].
The requirement that 2m ≥ n is a sufficient condition (see [AHMT01, Proposi-
ton 2.5] or [Dav95,AT98]) for L‖ to satisfy a pointwise upper bound; this condition
is assumed in the proofs of the above results.
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Let (γt)β = 1δ<t<1/δΘ
β
t 1 whenever |β| = m and βn+1 = 0. Thus, the esti-

mates (9.3) and thus (5.8), for βn+1 = 0, follow from the estimate

sup
Q

1

|Q|

ˆ min(1/δ,`(Q))

δ

ˆ
Q

∣∣∣ ∑
|β|=m
βn+1=0

Θβ
t 1(x)AQt ∂

β
‖fQ,w(x)

∣∣∣2 dx dt
t
≤ C1 + C1‖Θ⊥t 1‖C,δ.

for δ < `(Q) and δ < 1.
We will divide this quantity into a sum of controllable terms as follows. Let

Ptf(x) = f ∗ ψt(x), where ψt(x) = t−nψ(x/t). We require that ψ be smooth and
nonnegative, that

´
ψ = 1, and that ψ(x) = 0 whenever |x| > 1/2. (We will later

impose some additional constraints on ψ. Notice that it is convenient to use a
different approximate identity Pt in this section from that used in Section 9.1.) Let

R1,β
t F (x) = Θβ

t 1(x) (AQt F (x)− PtF (x)),

R2,β
t F (x) = Θβ

t 1(x)PtF (x)−Θβ
t (PtF )(x),

R3,β
t F (x) = Θβ

t (PtF − F )(x),

R4,β
t F (x) = Θβ

t F (x)

so that we seek to establish the estimate

(9.8)
1

|Q|

ˆ min(1/δ,`(Q))

δ

ˆ
Q

∣∣∣ ∑
|β|=m
βn+1=0

Rj,βt ∂βfQ,w(x)
∣∣∣2 dx dt

t
≤ C1 + C1‖Θ⊥t 1‖C,δ

for j = 1, 2, 3, 4 and for all cubes Q ⊂ Rn.

We begin with R4,β
t . Observe that by the definition (9.2) of Θβ

t ,∑
|β|=m
βn+1=0

R4,β
t ∂βfQ,w(x)

=
∑

|α|=|β|=m
αn+1=βn+1=0

tk
ˆ
Rn
∂αy ∂

m+k−1
t EL(x, t, y, 0)Aαβ(y) ∂βfQ,w(y) dy.

Using formula (2.24) and then integrating by parts in y, we see that this quantity
is equal to∑

|β|=m
βn+1=0

R4,β
t ∂βfQ,w(x) = (−1)k−1tk

ˆ
Rn
∂mt ∂

k−1
s EL(x, t, y, 0)L‖fQ,w(y) dy

and by the bounds (9.6) and (3.1), we see that if k is large enough then

1

|Q|

ˆ `(Q)

0

ˆ
Q

∣∣∣ ∑
|β|=m
βn+1=0

R4,β
t ∂βfQ,w(x)

∣∣∣2 dx dt
t
≤ C.

9.3. The term R1,β
t ∂βfQ,w. Next, we bound R1,β

t ∂βfQ,w. We begin by establishing

a L∞ bound on Θβ
t 1. (Recall that our goal is a Carleson estimate on Θβ

t 1; the L∞

estimate is weaker but suffices to establish a Carleson estimate on R1,β
t ∂βfQ,w.)
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Recall the following special case of Morrey’s inequality (see, for example, [Eva98,

Section 5.6.3]): if x ∈ Q and Q ⊂ Rn is a cube, then for every v ∈ Ẇ 2
m(Q)∩L2(Q),

there is a representative of v that satisfies

|v(x)| ≤
m∑
i=0

C`(Q)i
( 

Q

|∇i‖v|
2

)1/2

provided 2m > n.

We apply this bound to the function v(x) = ∂αy ∂
m+k−1
t EL(x, t, y, 0), a locally

Sobolev function for almost all y and t. Then by the bound (3.1), we have that if
|α| = m and either |t| = `(R) or |t| < `(R) and j ≥ 1, then

(9.9)

ˆ
Aj(R)

|∂αy,s∂m+k−1
t EL(x, t, y, 0)|2 dy ≤ C`(R)−n−2k2−j(n+2k).

Observe that this bound is valid for any k > 1/2−n/2; in this section we will need
this bound only for k large, but in Section 10 we will need this bound for k = 0 and
k = 1 as well. Also, by formula (2.19) it is valid with the roles of y and x reversed.

Using Hölder’s inequality and summing over j, we see that if k > 0 then

|Θβ
t 1(x)| =

∣∣∣∣ ∑
|α|=m
αn+1=0

tk
ˆ
Rn
∂αy ∂

m+k−1
t EL(x, t, y, 0)Aαβ(y) dy

∣∣∣∣ ≤ C
and so

|R1,β
t ∂βfQ,w(x)| ≤ C|AQt ∂βfQ,w(x)− Pt∂βfQ,w(x)|.

Thus, we need only bound AQt ∂
βfQ,w(x) − Pt∂βfQ,w(x). We will do this using a

standard orthogonality argument.

Let R̃1
t = AQt −Pt. Recall that the kernel ψ of Pt is supported in B(0, 1/2); thus,

if x ∈ Q and t < `(Q), then R̃1
tF (x) = R̃1

t (12QF )(x), and so

ˆ `(Q)

0

ˆ
Q

|R1,β
t ∂βfQ,w(x)|2 dx dt

t
≤ C

ˆ ∞
0

ˆ
Rn
|R̃1
t (12Q∂

βfQ,w)(x)|2 dx dt
t

.

Let {Qs} be a CLP family, as in Section 7, but with the kernel ϕ (and not its
Fourier transform ϕ̂) supported in B(0, 1/2). By the identity (7.4),

ˆ `(Q)

0

ˆ
Q

|R1,β
t ∂βfQ,w(x)|2 dx dt

t
≤ C

ˆ ∞
0

ˆ
Rn

∣∣∣∣ˆ ∞
0

R̃1
tQ

2
s(12Q∂

βfQ,w)(x)
ds

s

∣∣∣∣2 dx dtt .

By Hölder’s inequality, for any number ε > 0,

ˆ `(Q)

0

ˆ
Q

|R1,β
t ∂βfQ,w(x)|2 dx dt

t

≤ C

ε

ˆ ∞
0

ˆ ∞
0

ˆ
Rn
|R̃1
tQ

2
s(12Q∂

βfQ,w)(x)|2 dx max

(
s

t
,
t

s

)ε
ds

s

dt

t
.

We claim that

(9.10) ‖R̃1
tQsg‖L2(Rn) ≤ C min

(
s

t
,
t

s

)1/6

‖g‖L2(Rn).
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Choose ε = 1/6. Assuming validity of the bound (9.10), we have that

ˆ `(Q)

0

ˆ
Q

|R1,β
t ∂βfQ,w(x)|2 dx dt

t

≤ C
ˆ ∞

0

ˆ ∞
0

ˆ
Rn
|Qs(12Q∂

βfQ,w)(x)|2 dx min

(
s

t
,
t

s

)1/6
ds

s

dt

t
.

Interchanging the order of integration and evaluating the integral in t, we see that
ˆ `(Q)

0

ˆ
Q

|R1,β
t ∂βfQ,w(x)|2 dx dt

t
≤ C

ˆ ∞
0

ˆ
Rn
|Qs(12Q∂

βfQ,w)(x)|2 dx ds
s
.

By the bounds (7.3) and (9.5), we have that
ˆ `(Q)

0

ˆ
Q

|R1,β
t ∂βfQ,w(x)|2 dx dt

t
≤ C‖∂βfQ,w‖2L2(2Q) ≤ C|Q|

and so the bound (9.8) is valid for j = 1. Thus, to complete our bound on

R1,β
t ∂βfQ,w, we need only establish the estimate (9.10).

Suppose first that t ≤ s and so min(s/t, t/s) = t/s. By definition of R̃Qt and Qs,

R̃1
tQsg(x) =

ˆ
Rn

ˆ
Rn

(
1

|Q′|
1Q′(y)− ψt(x− y)

)
ϕs(y − z) g(z) dy dz.

Notice that
´
Rn

1
|Q′|1Q′(y)−ψt(x− y) dy = 0, and that the integrand is zero unless

|x− y| < Ct. Thus

R̃1
tQsg(x) ≤

ˆ
Rn

ˆ
B(x,Ct)

(
1

|Q′|
1Q′(y)−ψt(x−y)

)(
ϕs(y−z)−ϕs(x−z)

)
dy g(z) dz.

Suppose that y ∈ B(x,Ct). Because ϕ is supported in B(0, 1/2) and s ≥ t, if
|x− z| > 2Cs, then ϕs(y − z)− ϕs(x− z) = 0. Otherwise,

|ϕs(y − z)− ϕs(x− z)| ≤ Cs−n−1|y − x|.

Thus,

R̃1
tQsg(x) = C

ˆ
B(x,2Cs)

t

sn+1

ˆ
B(x,Ct)

∣∣∣∣ 1

|Q′|
1Q′(y)− ψt(x− y)

∣∣∣∣ dy |g(z)| dz

≤ C t
s

 
B(x,Cs)

|g(z)| dz ≤ C t
s
Mg(x)

where Mg denotes the Hardy-Littlewood maximal function of g. It is well known
thatM is bounded Lp(Rn) 7→ Lp(Rn) for any 1 < p ≤ ∞, and so the estimate (9.10)
is valid whenever t < s.

Recall that the kernel ϕs of Qs also integrates to zero and that the kernel ψt
of Pt is also smooth. Thus, by a similar argument, if s ≤ t then ‖PtQsg‖L2(Rn) ≤
C(s/t)‖g‖L2(Rn). Bounding AQt Qsg is somewhat more involved, because the kernel

1
|Q′|1Q′ of AQt is not smooth.

Suppose s ≤ t. Let η = ηt,s,x be a smooth cutoff function that is identically 1 in

Q′ and is supported in (1 +
√
s/t)Q′. We may require that |∇η| ≤ C/

√
st. Let

BQt,sG(x) =
1

|Q′|

ˆ
η(y)G(y) dy.
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By the same argument as above, we may show that if s ≤ t then |BQt,sQsg(x)| ≤
C(s/t)1/2Mg(x). To conclude the argument, notice that

|AQt Qsg(x)−BQt,sQsg(x)| ≤ C

tn

ˆ
supp η\Q′

|Qsg|.

Notice that |supp η \Q′| ≤ Ctn
√
s/t. We apply Hölder’s inequality to see that

|AQt Qsg(x)−BQt,sQsg(x)| ≤ C
(

1

tn

ˆ
supp η

|Qsg|3/2
)2/3(

s

t

)1/6

≤ C
(
s

t

)1/6

M(|Qsg|3/2)(x)2/3.

Because 3/2 < 2, the estimate (9.10) is valid for s ≤ t as well as t ≤ s. This

establishes our desired bound on R1,β
t ∂βfQ,w.

9.4. The term R2,β
t ∂βfQ,w. Next, we bound R2,β

t ∂βfQ,w. We will use the following
lemma from [AAA+11]; this is a square-function T1 theorem that is somewhat
simpler than Theorem 5.2 but has more stringent requirements.

Lemma 9.3 (Lemna 3.5(ii) in [AAA+11]). Suppose that {Rt}t>0 is a family of
operators defined on L2(Rn) and satisfying

(9.11) ‖Rt(F1Aj(Q))‖2L2(Q) ≤ C2−nj
(

t

2j`(Q)

)4

‖F‖2L2(Aj(Q))

for all 0 < t < `(Q) and all j ≥ 1. Suppose further that for all t > 0, all F ∈
L2(Rn), and all smooth ~F ∈ L2(Rn), we have the bounds

(9.12) ‖RtF‖L2(Rn) ≤ C‖F‖L2(Rn), ‖Rt div‖ ~F‖L2(Rn) ≤
C

t
‖~F‖L2(Rn).

Finally, suppose that Rt1 = 0 for all t > 0.
Then

(9.13)

ˆ
Rn

ˆ ∞
0

|RtF (x)|2 dt dx
t
≤ C‖F‖2L2(Rn)

for all F ∈ L2(Rn).

By the definitions of Θβ
t and R2,β

t , we have that

R2,β
t F (x) = Θβ

t 1(x)PtF (x)−Θβ
t (PtF )(x)

=
∑
|α|=m
αn+1=0

tk
ˆ
Rn
∂m+k−1
t ∂αyE

L(x, t, y, 0)Aαβ(y)
(
PtF (x)− PtF (y)

)
dy.

Let

(9.14) R̃2,α,β
t F (x) = tk

ˆ
Rn
∂αy ∂

m+k−1
t EL(x, t, y, 0)Aαβ(y) (PtF (x)− PtF (y)) dy.

In this section we need only bound R̃2,α,β
t for αn+1 = 0; in Section 9.5 we will need

an estimate on R̃2,α,β
t in the case where αn+1 > 0.

Observe that Pt1(x) = Pt1(y) = 1 and so R̃2,α,β
t 1 = 0.
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Now, recall that PtF (x) =
´
t−nψ((x−y)/t)F (y) dy for some smooth, compactly

supported function ψ; then

‖PtF‖L2(Rn) ≤ C‖F‖L2(Rn) and ‖Pt(div‖ ~F )‖L2(Rn) ≤
C

t
‖~F‖L2(Rn).

We will use this fact to establish the bounds (9.11) and (9.12).
Let Q be a cube and let 0 < t < `(Q). If j ≥ 1 and F is supported in Aj(Q),

observe that PtF (x) is supported in Aj,1(Q). Thus, by the bound (3.1),

‖R̃2,α,β
t (F1Aj(Q))‖L2(Q) ≤ C

tk

`(Q)k
2−j(k−1/2+ε/2)‖Pt(F1Aj(Q))‖L2(Rn).

(In the case j = 1 some extra care must be taken to establish this estimate; however,
it may be done by considering the cases t > `(Q)/2 and t ≤ `(Q)/2 separately.)

This implies the bound (9.11). We are left with the uniform L2 bounds (9.12).
Suppose that F is supported in 8Q and that `(Q)/2 < t ≤ `(Q). Then PtF (y) =

0 for all y /∈ 16Q and so

|R̃2,α,β
t F (x)| ≤ Ctk

ˆ
Rn
|∂αy ∂m+k−1

t EL(x, t, y, 0)||PtF (x)− PtF (y)| dy

≤ Ctk
ˆ

16Q

|∂αy ∂m+k−1
t EL(x, t, y, 0)||PtF (x)− PtF (y)| dy

+ Ctk
∞∑
j=1

|PtF (x)|
ˆ
Aj(Q)

|∂αy ∂m+k−1
t EL(x, t, y, 0)| dy.

Applying the bound (9.9), we see that

|R̃2,α,β
t F (x)| ≤ C|PtF (x)|+ Ct−n/2‖PtF‖L2(16Q).

Thus,
‖Rt(F18Q)‖L2(Q) ≤ C‖Pt(F18Q)‖L2(Rn).

We sum over cubes of side-length t; this yields the bound

‖RtF‖L2(Q) ≤ C‖PtF‖L2(Rn)

and, combined with the existing bounds on PtF and Pt div‖ F , yields the desired
estimates (9.12).

Thus, Lemma 9.3 applies and the operator R̃2,α,β
t satisfies a square-function

estimate (9.13). In particular, using the bound (9.5) on ∇m‖ fQ,w and arguing as in

the proof of Lemma 9.1, we have the desired Carleson bound (9.8) for j = 2.

9.5. The term R3,β
t ∂βfQ,w. Finally, we consider the term R3,β

t ∂βfQ,w. As in the

case of R4,β
t , but unlike R1,β

t and R2,β
t , we will not be able to bound the individual

terms R3,β
t ∂βfQ,w; we will only be able to bound

R̃3
t fQ,w(x) =

∑
|β|=m
βn+1=0

R3,β
t ∂βfQ,w(x)

=
∑

|α|=|β|=m
αn+1=βn+1=0

tk
ˆ
Rn
∂αy ∂

m+k−1
t EL(x, t, y, 0)Aαβ(y) ∂β(PtfQ,w − fQ,w)(y) dy.

Another complication of this section is that we will need to use the term ‖Θ⊥t 1‖C,δ
on the right-hand side of the bound (9.8).
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Let f = (fQ,w − pQ,w)ηQ, where ηQ is a smooth cutoff function that is identi-
cally 1 in 2Q and is supported in 4Q, and where pQ,w is a polynomial of degree
m − 1. By the Poincaré inequality, we may choose pQ,w so that ‖∇m‖ f‖L2(Rn) ≤
‖∇m‖ fQ,w‖L2(4Q), and by the bound (9.5),

‖∇m‖ f‖L2(Rn) ≤ C|Q|1/2.

Furthermore, ∂βf = ∂βfQ,w in 2Q whenever |β| = m. Using the bound (9.9) on
EL and the bound (9.5) on ∇m‖ fQ,w, we may show that

1

|Q|

ˆ
Q

ˆ `(Q)

0

|R̃3
t fQ,w(x)− R̃3

t f(x)|2 dt dx
t
≤ C

and so to establish the bound (9.8) for j = 3, we need only establish the bound

1

|Q|

ˆ
Q

ˆ min(1/δ),`(Q)

δ

|R̃3
t f(x)|2 dt dx

t
≤ C + C‖Θ⊥t 1‖C,δ.

By the definition (9.4) of L‖, and by formula (2.19),

R̃3
t f(x) = tk

ˆ
Rn
∂m+k−1
t L∗‖E

L∗(y, 0, x, t) (Ptf − f)(y) dy

where L∗‖ is taken in the y variable. Recalling that L∗y,s(E
L∗(y, s, x, t)) = 0 away

from (x, t), we see that

L∗‖E
L∗(y, 0, x, t) = (−1)m+1

∑
|ξ|=|ζ|=m

ξn+1+ζn+1≥1

∂ζy,s(Aξζ(y) ∂ξy,sE
L(x, t, y, 0)).

Thus, we need only establish the bound

(9.15)
1

|Q|

ˆ
Q

ˆ min(1/δ),`(Q)

δ

|R̃3,ξ,ζ
t f(x)|2 dt dx

t
≤ C + C‖Θ⊥t 1‖C,δ

where

R̃3,ξ,ζ
t f(x) = (−1)mtk

ˆ
Rn
∂ζy,s(Aξζ(y) ∂ξy,s∂

m+k−1
t EL(x, t, y, 0)) (Ptf − f)(y) dy

and where at least one of ζn+1 and ξn+1 is positive.
For each multiindex ζ, we write ζ = ζ‖+ ζ⊥~e⊥, where ζ⊥ = ζn+1 and where ζ‖ is

a multiindex with (ζ‖)n+1 = 0. Integrating by parts and applying formula (2.24),
we see that

R̃3,ξ,ζ
t f(x) = tk

ˆ
Rn
Aξζ(y) ∂ξy,s∂

m+k−1+ζ⊥
t EL(x, t, y, 0) ∂ζ‖(Ptf − f)(y) dy.

To establish the bound (9.15), we will want to bound
´
Q
|R̃3,ξ,ζ
t f |2 for 0 < t < `(Q).

Let S ⊂ Q be a dyadic subcube with t/2 < `(S) ≤ t. Let
∑∞
j=0 ηj be a smooth

partition of unity with ηj supported in Aj,1(S) and with |∇iηj | ≤ C2−ji`(S)−i.
Let fj = ηj f . Then

R̃3,ξ,ζ
t f(x) =

∞∑
j=0

tk
ˆ
Rn
Aξζ(y) ∂ξy,s∂

m+k−1+ζ⊥
t EL(x, t, y, 0) ∂ζ‖(Ptfj − fj)(y) dy.
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By the bound (9.9), if x ∈ S then∣∣∣∣tk ˆ
Rn
Aξζ(y) ∂ξy,s∂

m+k−1+ζ⊥
t EL(x, t, y, 0) ∂ζ‖(Ptfj − fj)(y) dy

∣∣∣∣2
≤ Ct−n−2ζ⊥2−j(n+2k+2ζ⊥)

ˆ
Aj,2(S)

|∂ζ‖(Ptfj − fj)(y)|2 dy.

Thus,

ˆ
Q

|R̃3,ξ,ζ
t f(x)|2 dx

≤
∑

S⊂Q dyadic
t/2<`(S)≤t

∞∑
j=0

Ct−2ζ⊥2−j(n+2k+2ζ⊥)

ˆ
Aj,2(S)

|∂ζ‖(Ptfj − fj)(y)|2 dy.

Summing carefully, we see thatˆ
Q

|R̃3,ξ,ζ
t f(x)|2 dx ≤ Ct−2ζ⊥

ˆ
Rn
|∂ζ‖(Ptf − f)(y)|2 dy.

Now, by Plancherel’s theorem,

ˆ ∞
0

t−2ζ⊥

ˆ
Rn
|∂ζ‖(Ptf − f)(y)|2 dy dt

t

≤
ˆ
Rn
|ω|2|ζ‖| |f̂(ω)|2

ˆ ∞
0

t−2ζ⊥(1− ψ̂(tω))2 dt

t
dω

where ψt(x) = t−nψ(x/t) is the convolution kernel of Pt. We require that ψ be
radial and make the change of variables s = t|ω|. Then

ˆ ∞
0

t−2ζ⊥

ˆ
Rn
|∂ζ‖(Ptf − f)(y)|2 dy dt

t

≤
ˆ
Rn
|ω|2|ζ| |f̂(ω)|2

ˆ ∞
0

s−2ζ⊥
(

1− ψ̂
(
s
ω

|ω|

))2 ds

s
dω.

We require that
´
ψ = 1, and that the higher moments are zero, that is, that´

xθ ψ(x) dx = 0 for all |θ| ≤ 2m. This implies that |1− ψ̂(sω/|ω|)| ≤ Cs2m+1

and so s−2ζ⊥−1(1 − ψ̂(sω/|ω|))2 is integrable near zero. Because ψ is smooth and

compactly supported, we have that ψ̂(s) is bounded. If ζ⊥ > 0 then the integral

in s converges. (We have that ψ̂(sω/|ω|) → 0 as s → ∞, and so the integral must

diverge if ζ⊥ = 0.) Because ‖∇m‖ f‖L2(Rn) ≤ C
√
|Q|, we have that

ˆ `(Q)

0

ˆ
Q

|R̃3,ξ,ζ
t f(x)|2 dx dt

t
≤ C|Q|

whenever ζ⊥ > 0.

We are left with the terms R̃3,ξ,ζ
t f for ζ⊥ = 0; recall that we need only consider

ζ⊥ + ξ⊥ ≥ 1 and so we may assume ξ⊥ ≥ 1. Because ζ⊥ = 0, we have that

R̃3,ξ,ζ
t f(x) = tk

ˆ
Rn
Aξζ(y) ∂ξy,s∂

m+k−1
t EL(x, t, y, 0) (∂ζPtf(y)− ∂ζf(y)) dy.
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Recall from Section 9.4 that the operator R̃2,ξ,ζ
t , given by formula (9.14), satisfies

Carleson measure estimates. Thus, we need only bound

R̃3,ξ,ζ
t f(x) + R̃2,ξ,ζ

t f(x)

= tk
ˆ
Rn
Aξζ(y) ∂ξy,s∂

m+k−1
t EL(x, t, y, 0) (∂ζPtf(x)− ∂ζf(y)) dy.

Let γ = ξ − ~e⊥. We use formula (2.24); we then see that

R̃3,ξ,ζ
t f(x) + R̃2,ξ,ζ

t f(x)

= −tk
ˆ
Rn
Aξζ(y) ∂γy,s∂

m+k
t EL(x, t, y, 0) (∂ζPtf(x)− ∂ζf(y)) dy.

We recognize the integrand as being much like the kernel of the single layer poten-
tial. By formula (4.2) for ΘS

t , we have that

R̃3,ξ,ζ
t f(x) + R̃2,ξ,ζ

t f(x) = −Pt(∂ζf)(x) ΘS
t (Aξζ ėγ)(x) + ΘS

t (Aξζ ∂
ζf ėγ)(x).

If γ 6= γ⊥, then the operator Θt given by Θtf = ΘS
t (f ėγ) satisfies the bound (5.4)

(see Section 8). If γ = γ⊥, then

ΘS
t (Aξζ ∂

ζf ėγ) = Θ⊥t (Aξζ ∂
ζf).

The operator Θδ
t = 1δ<t<1/δΘ

⊥
t satisfies the conditions of Theorem 5.2, albeit with

constants depending on ‖Θ⊥t 1‖C,δ, and so also satisfies the bound (5.4). Thus, in
either case, we have the boundˆ

Rn

ˆ 1/δ

δ

|ΘS
t (Aξζ ∂

ζf ėγ)(x)|2 dx dt
t
≤ (C + C‖Θ⊥t ‖C,δ)|Q|.

To bound Pt(∂
ζf)(x) ΘS

t (Aξζ ėγ)(x), recall Carleson’s lemma (see, for example,
[Ste93, Chapter II, Section 2.2]).

Lemma 9.4. Let F (x, t) be a function and dµ be a measure defined on Rn+1
+ . Then∣∣∣∣ˆ

Rn+1
+

F (x, t) dµ(x, t)

∣∣∣∣ ≤ C( sup
R⊂Rn

1

|R|

ˆ
R

ˆ `(R)

0

|dµ|
)(ˆ

Rn
sup
|x−y|<t

|F (y, t)| dx
)

provided the right-hand side is finite, where the supremum is taken over cubes R ⊂
Rn.

We wish to bound

1

|Q|

ˆ
Q

ˆ min(1/δ,`(Q))

δ

|Pt(∂ζf)(x)|2 |ΘS
t (Aξζ ėγ)(x)|2 1

t
dt dx

for δ small enough. Let F (x, t) = |Pt(∂ζf)(x)|2; because Pt is a smooth iden-
tity with a convolution kernel it is elementary to show that sup|x−y|<t|F (y, t)| ≤
CM(∂ζf)(x). Let

dµ(x, t) = 1δ<t<1/δ|ΘS
t (Aξζ ėγ)(x)|2 1

t
dt dx.

By Lemma 9.1 and the preceding remarks, we have that

sup
R

1

|R|

ˆ
R

ˆ `(R)

0

|dµ| ≤ C + C‖Θ⊥t 1‖2C,δ.

This establishes the desired bound on R̃3,ξ,ζ
t f .
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9.6. Terms with αn+1 = 0 and βn+1 > 0. We conclude this section by bounding

Θβ
t 1 for multiindices β with βn+1 > 0. Recall that

Θβ
t f(x) =

∑
|α|=m
αn+1=0

tk
ˆ
Rn
∂m+k−1
t ∂αyE

L(x, t, y, 0)Aαβ(y) f(y) dy.

By a well known argument of Fefferman and Stein [FS72], using decay of the

kernel of Θβ
t (that is, the bound (3.1)), we find that if k is large enough then

‖Θβ
t 1‖C ≤ C + sup

Q

C

|Q|

ˆ `(Q)

0

ˆ
Q

|Θβ
t (14Q)(x)|2 dx dt

t
.

Let (Fβ)α := Aαβ 14Q; then Ḟβ is an L2 array-valued function. More precisely,
let q be the number of multiindices ζ ∈ Nn of length m; alternatively, q is the
number of multiindices ζ ∈ Nn+1 of length m with ζn+1 = 0. We will think of Cq
as the vector space of arrays of numbers indexed by such multiindices. Then for
each β, Ḟβ is a function in L2(Rn 7→ Cq).

Now, observe that

(9.16) A‖∇m‖ L
−1
‖ divm,‖ : L2(Rn 7→ Cq) 7→ L2(Rn 7→ Cq)

is a bounded operator, where ∇m‖ is defined in Section 2, and where formally

divm,‖ Ḟ =
∑
|ζ|=m, ζ∈Nn ∂

ζFζ ; the weak definition is precisely analogous to the

definition (2.1) of divm Ḟ .

Thus, we have a Hodge decomposition of L2(Rn 7→ Cq). Specifically, if Ḟ ∈
L2(Rn 7→ Cq), then

Ḟ = Ḣ +A‖∇mΦ

for some Ḣ ∈ L2(Rn 7→ Cq) and some Φ ∈ Ẇ 2
m(Rn), with divm,‖ Ḣ = 0 and with

‖Ḣ‖L2(Rn 7→Cq) + ‖Φ‖Ẇm,2(Rn 7→C) ≤ C‖Ḟ ‖L2(Rn 7→Cq).

Applying the Hodge decomposition to Ḟβ , we see that

Θβ
t 14Q(x) =

∑
|α|=m
αn+1=0

tk
ˆ
Rn
∂m+k−1
t ∂αyE

L(x, t, y, 0)
(
Ḣβ +A‖∇m‖ Φβ

)
α
dy.

But because divm,‖ Ḣβ = 0, we have that

Θβ
t 14Q(x) =

∑
|α|=m
αn+1=0

tk
ˆ
Rn
∂m+k−1
t ∂αyE

L(x, t, y, 0)
(
A‖∇m‖ Φβ

)
α
dy.

We may extend Φβ to a function defined on Rn+1 by letting Φβ(y, s) = Φβ(y).
Observe that ∂ζΦβ = 0 unless ζn+1 = 0. Also, if αn+1 = 0, then (A‖∇m‖ Φβ)α =

(A∇mΦβ)α. Thus,

Θβ
t 14Q(x) =

∑
|α|=m
αn+1=0

∑
|ζ|=m

tk
ˆ
Rn
∂m+k−1
t ∂αyE

L(x, t, y, 0)Aαζ(y) ∂ζΦβ(y) dy.
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Recall from formulas (4.3) and (2.28) that

ΘD
t (Ṫrm,| Φβ)(x) = −

∑
|α|=|ζ|=m

tk
ˆ
Rn+1
−

∂m+k
t ∂αy,sE

L(x, t, y, s)Aαζ(y) ∂ζΦβ(y) dy ds.

Using the identity (2.24) and integrating in s, we see that

ΘD
t (Ṫrm,| Φβ)(x) =

∑
|α|=|ζ|=m

tk
ˆ
Rn
∂m+k−1
t ∂αy,sE

L(x, t, y, 0)Aαζ(y) ∂ζΦβ(y) dy.

Thus,

Θβ
t 14Q(x) = −

∑
|α|=m
αn+1>0

∑
|ζ|=m

tk
ˆ
Rn
∂m+k−1
t ∂αy,sE

L(x, t, y, 0)Aαζ(y) ∂ζΦβ(y) dy

+ ΘD
t (Ṫrm,| Φβ)(x).

If αn+1 > 0, then α = γ+~en+1 for some multiindex γ with |γ| = m−1. Conversely,
if |γ| = m− 1, let γ̃ = γ + ~en+1. We may write

Θβ
t 14Q(x) =

∑
|γ|=m−1

∑
|ζ|=m

tk
ˆ
Rn
∂m+k
t ∂γy,sE

L(x, t, y, 0)Aγ̃ζ(y) ∂ζΦβ(y) dy

+ ΘD
t (Ṫrm,| Φβ)(x).

By formula (4.2) for ΘS
t , we see that

Θβ
t 14Q(x) = ΘS

t Ġβ(x) + ΘD
t (Ṫrm,| Φβ)(x)

where (Gβ)γ =
∑
ζ Aγ̃ζ∂

ζΦβ .

Observe that Ġβ ∈ L2(Rn), and so by Theorem 5.2,
ˆ
Rn

ˆ 1/δ

δ

|ΘS
t Ġβ(x)|2 dt dx

t
≤ (C +C‖Θ⊥t 1‖2C,δ)‖Ġβ‖2L2(Rn) ≤ (C +C‖Θ⊥t 1‖2C,δ)|Q|.

Recall that ΘD
t acts on the space ẆA2

m,|(R
n), the completion of {Ṫrm,| ϕ : ϕ ∈

C∞0 (Rn+1)} under the L2 norm. Consider the subspace W , the completion of

{Ṫrm,| ϕ : ϕ ∈ C∞0 (Rn+1), ∂jn+1ϕ(x, 0) = 0 for all x ∈ Rn and all j ≥ 1}

under the L2 norm. We may let Θ
D‖
t denote the restriction of ΘD

t to the space W .

Notice that Ṫrm,| Φβ = ∇m‖ Φβ
∣∣
Rn , and so ΘD

t (Ṫrm,| Φβ)(x) = Θ
D,‖
t (Ṫrm,| Φβ)(x).

As we established in Sections 9.2–9.5,

‖ΘD‖
t 1‖C,δ ≤ C + C‖Θ⊥t 1‖C,δ

and so we may control Θ
D,‖
t (Ṫrm,| Φβ)(x). This completes the argument that ΘD

t 1
satisfies a Carleson estimate.

10. Test functions ḃQ

In this section we will choose test functions ḃQ such that we may apply Theo-
rem 5.4 to bound Θ⊥t and ΘD

t . (The remaining components of ΘS
t were bounded

in Section 8.) We will follow the example of [GdlHH16], which considers the case
m = 1.
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As in Section 9, we will make the assumption 2m > n. Again, by Morrey’s
inequality, this implies that functions locally in Ẇ 2

m(Rn) are locally Hölder con-
tinuous. By Lemma 3.2, if 2m > n then solutions to elliptic equations are locally
in L2(Rn × {t}) for constants t, and thus are also locally Hölder continuous. (See
also [AAA+11, Appendix B], in which a similar argument is made.)

Fix some dyadic cube Q. Let yQ be its midpoint. Let

Fs(x, t) = ∂m−1
s EL(x, t, yQ, s)(10.1)

and let F± = F±κ`(Q) for some small positive number κ to be chosen later. By
the bound (9.9) and the symmetry relation (2.19), we may see that if n+ 1 ≥ 3

then F±(x, t) ∈ Ẇ 2
m(Rn+1

∓ ); furthermore, by Theorem 2.1 we see that LF± = 0 in

Rn+1
∓ . Thus, by the higher-order Green’s formula (2.26) and the analogous formula

in Rn+1
− , if t > 0 then

∂mt F−(x, t) = −∂mt DA(Ṫr+
m−1 F−)(x, t) + ∂mt SL(Ṁ+

A F−)(x, t),

0 = ∂mt DA(Ṫr−m−1 F+)(x, t) + ∂mt SL(Ṁ−
A F+)(x, t).

Adding and applying the definition (2.29) of D̃, we see that

∂mt F−(x, t) = ∂mt D̃A(Ṫrm,| F+ − Ṫrm,| F−)(x, t) + ∂mt SL(Ṁ+
A F− + Ṁ−

A F+)(x, t).

Thus, by the definitions (4.1) and (4.3) of ΘS
t and ΘD

t ,

(10.2) tk∂m+k
t F−(x, t) = ΘD

t (Ṫrm,| F+−Ṫrm,| F−)(x)+ΘS
t (Ṁ+

A F−+Ṁ−
A F+)(x).

Let

(10.3) ḃDQ = |Q|(Ṫrm,| F+ − Ṫrm,| F−).

Recall that Ṁ+
A u is only defined as a linear functional on ẆA2

m−1/2(Rn), that

is, as an operator acting on m − 1th-order traces of Ẇ 2
m-functions. Let ḃSQ be a

representative of the operator |Q|(Ṁ+
A F− + Ṁ−

A F+); that is, ḃSQ is an array of
functions that satisfies

〈Ṫrm−1 ϕ, ḃ
S
Q〉Rn = |Q|〈Ṫrm−1 ϕ, Ṁ

+
A F− + Ṁ−

A F+〉Rn(10.4)

= |Q|〈∇mϕ,A∇mF−〉Rn+1
+

+ |Q|〈∇mϕ,A∇mF+〉Rn+1
−

for all ϕ smooth and compactly supported in Rn+1. In Section 10.2 we will show
that there is some such array of functions that in addition lies in L2(Rn).

Now, by formula (2.24) and by definition of ḃDQ , ḃSQ and F−,

Θt(ḃ
D
Q , ḃ

S
Q) = ΘD

t ḃ
D
Q(x) + ΘS

t ḃ
S
Q(x) = |Q|tk∂m+k

t F−(x, t)

= |Q|tk∂mt ∂m+k−1
s EL(x, t, yQ,−κ`(Q)).

An application of the bound (9.9), with the roles of x and y reversed, reveals that

the bound (5.10) is valid for this choice of ḃQ = (ḃSQ, ḃ
D
Q), albeit with constant C0

that depends on our choice of κ.
We thus need only show that this choice of ḃQ satisfies the bounds (5.11), (5.12)

and (5.13), with the distinguished component bp+1
Q = b⊥Q in (5.12) the ė⊥-component

of ḃSQ.
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Remark 10.1. Although we will not make use of this fact, we observe that by the
definition (10.1) of F±, the symmetry property (2.19), and formula (2.28) for the
double layer potential, we have that

〈ḃSQ, Ṫrm−1 ϕ〉Rn = |Q|∂m−1
n+1 DA∗(Ṫrm−1 ϕ)(yQ,−κ`(Q))

− |Q|∂m−1
n+1 DA∗(Ṫrm−1 ϕ)(yQ, κ`(Q)).

Thus, ḃSQ may be viewed as the kernel of the double layer potential. If m = 1,

then the classic jump relation Tr−DA∗f − Tr+DA∗f = f is well known. In the
higher-order case, the analogous jump relation (see [Bar16b]) is

Ṫr−m−1DA∗ḟ − Ṫr+
m−1DA∗ḟ = ḟ .

Thus, if κ is small enough and ϕ is smooth, then 〈ḃSQ, Ṫrm−1 ϕ〉Rn is approximately

|Q|∂m−1
n+1 ϕ(yQ, 0). Thus, we expect ḃSQ to be approximately equal to ė⊥ near Q,

and so it is reasonable to expect the bounds (5.12) and (5.13) to be valid for ḃSQ.

Remark 10.2. Recall from formula (2.23) that if 2m ≥ n+ 1, precisely the
case considered in Sections 9–10, then the fundamental solution EL in the defi-
nition (10.1) of Fs is only determined up to adding polynomials. However, note
the presence of the vertical derivative ∂m−1

s in the definition of Fs; this vertical
derivative suffices to remove the terms of the form fζ(x, t) (y, s)ζ in formula (2.23),
leaving Fs(x, t) well-defined up to adding polynomials in x and t. The function Fs
is a tool used to define ḃSQ and ḃDQ ; notice from formulas (10.3) and (10.4) that these
quantities depend only on the higher-order derivatives of Fs, and so the lower-order
terms in formula (2.23) do not affect our results.

Remark 10.3. The conclusions of this section are also valid if n+ 1 = 2; the
analysis is somewhat more complicated because F± is no longer in Ẇ 2

m(Rn+1
± ).

By Morrey’s inequality, Lemma 3.2, and the bound (2.21), we have that if
n+ 1 = 2 and R is a cube of side-length |s− t| with y ∈ R then

(10.5)

ˆ
Aj(R)

|∇mx,t∂m−1
s EL(x, t, y, s)|2 dx ≤ C(δ)

|s− t|
2−j(1−δ)

for any δ > 0. In particular,

ˆ
R1

|∇mFs(x, t)|2 dx ≤
C

|t− s|
.

The argument is similar to the proof of the bounds (3.1) and (9.9), but we must
use the bound (2.21) instead of the bound (2.20) in order to take m− 1 derivatives
in the variable s rather than the variables (x, t).

We may use the bound (9.9) with the roles of x and y reversed to show that if
t < s < σ or t > s > σ, then

ˆ
R1

|∇mFs(x, t)−∇mFσ(x, t)|2 dx ≤ C |σ − s|
2

|t− s|3
.
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Thus, if 0 < s < σ, then F±s−F±σ ∈ Ẇ 2
m(Rn+1

∓ ), and so we may apply the Green’s

formula (2.26) and the equivalent in Rn+1
− to see that

tk∂m+k
t F−s(x, t)− tk∂m+k

t F−σ(x, t)

= ΘD
t (Ṫrm,| Fs − Ṫrm,| F−s − Ṫrm,| Fσ + Ṫrm,| F−σ)(x, t)

+ ΘS
t (Ṁ+

A F−s + Ṁ−
A Fs − Ṁ+

A F−σ − Ṁ−
A Fσ)(x, t).

Fix some t > 0 and let s = κ `(Q). Observe that if we take the limit as σ →
∞, then the left-hand side approaches tk∂m+k

t F−s( · , t) in L2(Rn). Furthermore,

Ṫrm,| F±σ → 0 in L2(Rn). In Lemma 10.4 below, we will see that ḃSQ → 0 as

the implied constant κ → ∞; by definition of ḃSQ, this implies that Ṁ+
A F−σ +

Ṁ−
A F−σ → 0 in L2(Rn) as σ →∞. Thus, by the bound (5.5), we have that

tk∂m+k
t F−s( · , t) = ΘD

t (Ṫrm,| Fs − Ṫrm,| F−s)( · , t) + ΘS
t (Ṁ+

A F−s + Ṁ−
A Fs)( · , t)

as L2(Rn)-functions. Applying the Caccioppoli inequality, Lemma 3.2 and Mor-
rey’s inequality, we see that this equality must be true pointwise as well. Thus,
formula (10.2) is still valid if n+ 1 = 2 and we may proceed as above.

10.1. Bounds on ḃDQ. By the bounds (9.9) or (10.5), we have that

ˆ
Rn
|ḃDQ |2 ≤

C

κn
|Q|.

Thus, ḃDQ satisfies the bound (5.11) with constant C0 = Cκ−n.

We now show that ḃDQ satisfies the bound (5.13). Following [GdlHH16, Section 3],

we fix a small positive constant ω. Let φQ be supported on (1 + ω)Q with φQ = 1
on (1/2)Q. We may choose φQ such that |∇φQ(x)| < 2/`(Q) for all x, and such
that φQ > ω on Q. We then set dµQ = φQ dx. Observe that the conditions (5.9)
are valid for C0 = max(2, 1/ω).

Then by definition of ḃDQ , if we let FQ = F+ − F−, then

 
Q

ḃDQ dµQ =

ˆ
Q

Ṫrm,| FQ φQ

=

ˆ
Rn

Ṫrm,| FQ φQ −
ˆ
Rn\Q

Ṫrm,| FQ φQ.

Recall that each component of Ṫrm,| FQ may be written as ∂βFQ(x, 0) for some β
with βn+1 < |β| = m. In particular, β = ~ej + γ for some 1 ≤ j ≤ n and some
multiindex γ. Integrating by parts, we see that∣∣∣∣ˆ

Rn
Ṫrm,| FQ φQ

∣∣∣∣ ≤ ˆ
Rn
|Ṫrm−1 FQ| |∇φQ|.

Recalling the regions on which φQ and ∇φQ are supported, we see that∣∣∣∣ 
Q

ḃDQ dµQ

∣∣∣∣ ≤ C

`(Q)

ˆ
(1+ω)Q\(1/2)Q

|∇m−1FQ|+
ˆ

(1+ω)Q\Q
|∇mFQ|.
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Now, observe that LFQ = 0 away from (yQ,±κ`(Q)). Thus, we may apply Hölder’s
inequality and Lemma 3.2 to see that∣∣∣∣ 

Q

ḃDQ dµQ

∣∣∣∣ ≤ C|Q|1/2

`(Q)3/2

(ˆ
2Q\(1/4)Q

ˆ `(Q)

−`(Q)

|∇m−1FQ|2
)1/2

+ C
|Q|1/2

`(Q)1/2

(ˆ
(3/2)Q\(1/2)Q

ˆ `(Q)/2

−`(Q)/2

|∇mFQ|2
)1/2

.

We may use the Caccioppoli inequality (Lemma 3.1) to control the second term by
the first term. For ease of notation let S = (2Q\(1/4)Q)×(−`(Q), `(Q)). Recalling
the definition of FQ, we see that∣∣∣∣ 

Q

ḃDQ dµQ

∣∣∣∣2 ≤ C|Q|
`(Q)3

ˆ
S

∣∣∣∣ˆ κ`(Q)

−κ`(Q)

∇m−1
x,t ∂ms E

L(x, t, yQ, s) ds

∣∣∣∣2 dx dt.
Applying Hölder’s inequality again, we see that∣∣∣∣ 

Q

ḃDQ dµQ

∣∣∣∣2 ≤ C|Q|κ
`(Q)2

ˆ
S

ˆ κ`(Q)

−κ`(Q)

|∇m−1
x,t ∂ms E

L(x, t, yQ, s)|2ds dx dt

Using formula (2.24), (2.19) and the bound (9.9), we see that∣∣∣∣ 
Q

ḃDQ dµQ

∣∣∣∣2 ≤ Cκ2

Thus, if we choose κ small enough, then ḃDQ satisfies the bound (5.13). Notice that

κ may be chosen depending only on the constant C1 in the bound (5.8), that is,
on the numbers determined in Section 9. It is acceptable for the numbers C0 in
the bounds (5.9), (5.10) and (5.11) to grow as κ→ 0. In particular, recall that ḃDQ
satisfies the bound (5.11) with a constant C0(κ) = Cκ−n; this growth is acceptable.

Thus, ḃDQ satisfies all the conditions of Theorem 5.4.

10.2. Bounds on ḃSQ. To conclude the proof of Theorem 1.1, at least in the case

2m > n, we need only show that ḃSQ satisfies the bounds (5.11), (5.12) and (5.13).
The most involved argument of this section will be the proof of the following

lemma.

Lemma 10.4. Suppose that 2m > n. If ġ ∈ ẆA2
m−1(Rn), then

(10.6) |〈ġ, ḃSQ〉Rn | ≤
C

κn/2

√
|Q|‖ġ‖L2(Rn).

Furthermore, if ġ = 0 in (1/4)Q and κ < 1/16, then we have a better estimate:

(10.7) |〈ġ, ḃSQ〉Rn | ≤ C κ
√
|Q|‖ġ‖L2(Rn).

The bound (10.6) is valid even for κ large; recall that this bound was used in
Remark 10.3 to show that the bound (5.10) is valid even in dimension n+ 1 = 2.

Notice that this implies that ḃSQ is a bounded linear functional on ẆA2
m−1(Rn);

if m ≥ 2 then this is a proper subspace of L2(Rn). Thus, ḃSQ lies in a quotient

space of L2(Rn). Once this lemma is proven we may extend ḃSQ to a bounded linear

functional on L2(Rn) (establishing the bound (5.11)); we will need to select our

extension carefully to ensure that ḃSQ, after projection, satisfies the bound (5.13).
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Proof of Lemma 10.4. It suffices to prove this lemma for all ġ such that ġ =
Ṫrm−1 η for some smooth, compactly supported function η. Recall that

〈ġ, ḃSQ〉Rn = |Q|〈ġ, Ṁ+
A F−〉Rn + |Q|〈ġ, Ṁ−

A F+〉Rn
= |Q|〈∇mG,A∇mF−〉Rn+1

+
+ |Q|〈∇mG,A∇mF+〉Rn+1

−

for any extension G of ġ.
We will need to construct our extension G of ġ carefully. Let H be the extension

of ġ given by Lemma 3.3. Recall that H satisfies the estimates (3.3) and (3.5), and
that if ġ = 0 in (1/4)Q then ∇m−1H(x, t) = 0 whenever |t| < dist(x,Rn \ (1/4)Q).
Let ϕ be smooth, supported in B(0, 1/2) ⊂ Rn and integrate to 1. Suppose further
that the higher moments are zero, that is,

´
Rn x

ζ ϕ(x) dx = 0 for all 1 ≤ |ζ| ≤ m.
Let

G(x, t) =

ˆ
Rn

1

tn
ϕ

(
x− z
t

)
H(z, t) dz =

ˆ
Rn
ϕ(z)H(x− zt, t) dz.

To study the derivatives of G, observe that if ζ is a multiindex, then for some
constants Cζ,ξ,

∂ζG(x, t) =
∑

|ξ|=|ζ|, ξ‖≥ζ‖

Cζ,ξ

ˆ
Rn
zξ‖−ζ‖ϕ(z) ∂ξH(x− zt, t) dz

where ζ‖ denotes the horizontal part of ζ, that is, ζ‖ = (ζ1, . . . , ζn). Let Jζ,ξ(z) =

Cζ,ξz
ξ‖−ζ‖ϕ(z), so that

(10.8) ∂ζG(x, t) =
∑
|ξ|=|ζ|

ˆ
Rn

1

tn
Jζ,ξ

(
x− z
t

)
∂ξH(z, t) dz.

By our moment condition on ϕ, we have thatˆ
Rn
Jζ,ξ(z, t) dz = 1 if ζ = ξ,

ˆ
Rn
Jζ,ξ(z, t) dz = 0 otherwise.

Furthermore, Jζ,ξ is a smooth cutoff function, and so Ṫrm−1G = ġ. Thus,

〈ġ, ḃSQ〉Rn = |Q|〈∇mG,A∇mF−〉Rn+1
+

+ |Q|〈∇mG,A∇mF+〉Rn+1
−

for this choice of G.
We will need some special arguments to establish the bound (10.7). Arguing as

in the proof of Lemma 3.3, we see that if ġ = 0 in (1/4)Q then ∇m−1G(x, t) = 0
whenever 2|t| < dist(x,Rn \ (1/4)Q). In particular, if κ < 1/8 then ∇m−1G = 0
near (yQ,±κ`(Q)). (We require κ < 1/16 so that ∇m−1G = 0 everywhere within a
fixed radius of (yQ,±κ`(Q)).) Observe that LF+ = 0 away from these points, and
so

0 = 〈∇mG,A∇mF+〉Rn+1 = 〈∇mG,A∇mF+〉Rn+1
+

+ 〈∇mG,A∇mF+〉Rn+1
−

.

Thus, if ġ = 0 in (1/4)Q, then

〈ġ, ḃSQ〉Rn = |Q|〈∇mG,A∇m(F− − F+)〉Rn+1
+

.

We now introduce some notation. Let G = {(x, t) : t > (1/2) dist(x,Rn \
(1/4)Q)}, so if ġ = 0 in (1/4)Q then supp∇m−1G ∩ Rn+1

+ ⊂ G. If |α| = m,
let

wsα(x, t) = (A(x)∇mFs(x, t))α =
∑
|β|=m

Aαβ(x) ∂βFs(x, t)
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with w±α = w
±κ`(Q)
α . Let w̃α = w+

α − w−α . If ġ = 0 in (1/4)Q, then

〈ġ, ḃSQ〉Rn = |Q|
∑
|α|=m

ˆ
G
∂αG(x, t) w̃α(x, t) dx dt.

In general,

〈ġ, ḃSQ〉Rn = |Q|
∑
|α|=m

ˆ
Rn+1

+

∂αG(x, t)w−α (x, t) dx dt+

ˆ
Rn+1
−

∂αG(x, t)w+
α (x, t) dx dt.

The second integral is similar to the first integral; thus, we will present the argument
only for the first integral. In other words, we will work only in Rn+1

+ , not Rn+1
− ,

whether our goal is to establish the bound (10.6) or (10.7).
We will need to bound wsα; it will also help to bound vertical derivatives of wsα.

Let j ≥ 0 be an integer. Observe that by formula (2.24) and the definition of Fs,ˆ
Rn
|∂jtwsα(x, t)|2 dx =

ˆ
Rn
|∂m+j−1
s ∇mx,tEL(x, t, yQ, s)|2 dx.

By the bounds (9.9) or (10.5), if 2m > n and j ≥ 0 thenˆ
Rn
|∂jtwsα(x, t)|2 dx ≤ C|t− s|−n−2j .

Thus, we have the bounds

sup
t>0

ˆ
Rn
|w−α (x, t)|2 dx ≤ C

κn|Q|
,(10.9)

ˆ
Rn

ˆ ∞
0

|∂tw−α (x, t)|2 t dt dx ≤ C

κn|Q|
,(10.10)

ˆ ∞
0

(ˆ
Rn
|∂tw−α (x, t)|2 dx

)1/2

dt ≤ C√
|Q|κn/2

.(10.11)

Now, by formula (2.24), ∂jtw
s
α(x, t) = (−1)j∂jsw

s
α(x, t). Furthermore, if t > 0

|s| < κ`(Q), then by the bound (9.9)ˆ
Rn

1G(x, t) |∂swsα(x, t)|2 dx ≤ C(`(Q) + t)−n−2.

Thus, recalling that w̃α(x, t) = w+
α (x, t)− w−α (x, t), we have that

sup
t

ˆ
Rn

1G(x, t) |w̃α(x, t)|2 dx ≤ Cκ2

|Q|
,(10.12)

ˆ
Rn

ˆ ∞
0

1G(x, t) |∂tw̃α(x, t)|2 t dt dx ≤ Cκ2

|Q|
,(10.13)

ˆ ∞
0

(ˆ
Rn

1G(x, t) |∂tw̃α(x, t)|2 dx
)1/2

dt ≤ Cκ√
|Q|

.(10.14)

Recall that we wish to boundˆ
Rn+1

+

∂αG(x, t) w̃α(x, t) dx dt or

ˆ
Rn+1

+

∂αG(x, t)w−α (x, t) dx dt.

We will essentially proceed by integrating by parts to move one derivative from
G to wα; we will need separate arguments in the case where we integrate by parts
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in t (possible only if αn+1 > 0) and in the case where we integrate by parts in a
horizontal variable xj (possible only if αn+1 < m).

First, if αn+1 > 0, then α = γ + ~en+1 for some multiindex γ with |γ| = m − 1.
So ˆ

Rn+1
+

∂αG(x, t)w−α (x, t) dx dt =

ˆ
Rn+1

+

∂t∂
γG(x, t)w−α (x, t) dx dt.

Integrating by parts in t, we see thatˆ
Rn+1

+

∂αG(x, t)w−α (x, t) dx dt = − lim
t→0+

ˆ
Rn
∂γG(x, t)w−α (x, t) dx

−
ˆ
Rn+1

+

∂γG(x, t) ∂tw
−
α (x, t) dx dt.

Recall that H satisfies the uniform L2 bound (3.3); by formula (10.8), the same is
true of G. We may control the first term using the estimate (10.9) and the second
term using the estimate (10.11). This yields the bound∣∣∣∣ˆ

Rn+1
+

∂αG(x, t)w−α (x, t) dx dt

∣∣∣∣ ≤ C

κn/2
√
|Q|
‖ġ‖L2(Rn).

Similarly,ˆ
Rn+1

+

∂αG(x, t) w̃α(x, t) dx dt = − lim
t→0+

ˆ
Rn
∂γG(x, t) w̃α(x, t) dx

−
ˆ
Rn+1

+

∂γG(x, t) ∂tw̃α(x, t) dx dt.

If ġ = 0 in (1/4)Q then we may integrate over G rather than Rn+1
+ . By the bounds

(10.14) and (10.12) on w̃α and the uniform L2 estimate on ∇m−1G, we have thatˆ
Rn+1

+

∂αG(x, t) w̃α(x, t) dx dt ≤ Cκ√
|Q|
‖ġ‖L2(Rn).

Now, we turn to the case where αn+1 < |α| = m. We still integrate by parts
in t. We see that, if wα = w̃α or wα = w−α , then
ˆ
Rn+1

+

∂αG(x, t)wα(x, t) dx dt

= −
ˆ
Rn+1

+

t ∂t
(
∂αG(x, t)wα(x, t)

)
dx dt

= −
ˆ
Rn+1

+

t ∂α∂tG(x, t)wα(x, t) dx dt−
ˆ
Rn+1

+

t ∂αG(x, t) ∂twα(x, t) dx dt.

Recall that G as well as H satisfies the estimate (3.5), and so by the bounds (10.10)
and (10.13), ∣∣∣∣ˆ

Rn+1
+

t ∂αG(x, t) ∂tw
−
α (x, t) dx dt

∣∣∣∣ ≤ C

κn/2
√
|Q|
‖ġ‖L2(Rn),∣∣∣∣ˆ

G
t ∂αG(x, t) ∂tw̃α(x, t) dx dt

∣∣∣∣ ≤ Cκ√
|Q|
‖ġ‖L2(Rn).
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We are left with the termˆ
Rn+1

+

t ∂α∂tG(x, t)wα(x, t) dx dt, αn+1 < |α| = m.

We have square-function estimates on ∂n+1wα rather than wα; thus, we writeˆ
Rn+1

+

t ∂α∂tG(x, t)wα(x, t) dx dt =

ˆ
Rn+1

+

t ∂α∂tG(x, t)

ˆ ∞
t

∂rwα(x, r) dr dx dt.

Observe that if r > t > 0 and ġ = 0 in (1/4)Q, then 1G(x, r) ∂α∂tG(x, t) =
∂α∂tG(x, t); this is true because, if 1G(x, r) 6= 1, then ∇mG(x, t) = 0. Let
vα(x, r) = ∂rw

−
α (x, r) or 1G(x, r) ∂rw̃α(x, r), depending on whether we seek to

establish the bound (10.6) or (10.7). Thenˆ
Rn+1

+

t ∂α∂tG(x, t)wα(x, t) dx dt =

ˆ
Rn+1

+

t ∂α∂tG(x, t)

ˆ ∞
t

vα(x, r) dr dx dt.

If αn+1 < |α| = m, let j = jα be any integer such that j ≤ n and αj > 0, and let
ζ = ζα = α−~ej +~en+1. (For the sake of definiteness we may let jα be the smallest
such integer.) Thenˆ

Rn+1
+

t ∂α∂tG(x, t)wα(x, t) dx dt =

ˆ
Rn+1

+

t ∂jα∂
ζαG(x, t)

ˆ ∞
t

vα(x, r) dr dx dt.

For each pair of multiindices α and β with |α| = |β| = m, define the linear operator
Tα,β by the relation

Tα,βF (x, t) =

ˆ
Rn

1

tn
Jα,β

(
x− z
t

)
F (z, t) dz

where Jα,β is as defined above in the discussion of ∇mG and ∇mH. Then

ˆ
Rn+1

+

t ∂α∂tG(x, t)wα(x, t) dx dt

=
∑
|β|=m

ˆ
Rn+1

+

t ∂jαTζα,β∂
βH(x, t)

ˆ ∞
t

vα(x, r) dr dx dt.

We may rearrange the terms of the integral to see that

ˆ
Rn+1

+

t ∂jαTζα,β∂
βH(x, t)

ˆ ∞
t

vα(x, r) dr dx dt

=

ˆ ∞
0

ˆ
Rn

ˆ ∞
t

ˆ
Rn

1

tn
(∂jαJζα,β)

(
x− z
t

)
vα(x, r) dx dr ∂βH(z, t) dz dt.

We will use the Christ-Journé T1 theorem (Theorem 5.1 above) to bound

Wα,r(z, t) =

ˆ
Rn

1

tn
(∂jαJζα,β)

(
x− z
t

)
vα(x, r) dx.

Let ψt(z, x) = 1
tn (∂jαJζα,β)

(
x−z
t

)
. We then have that

|ψt(z, x)| ≤ C

tn
, |∇xψt(z, x)| ≤ C

tn+1
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and both terms are zero if |x− z| > t/2. Finally, observe that
´
ψt(z, x) dx = 0

and so Θt1(x) = 0; thus, we have the estimateˆ ∞
0

ˆ
Rn
|Wα,r(z, t)|2

dz dt

t
≤ C‖vα( · , r)‖2L2(Rn).

Thus,∣∣∣∣ˆ
Rn+1

+

t ∂jαTζα,β∂
βH(x, t)

ˆ ∞
t

vα(x, r) dr dx dt

∣∣∣∣
=

∣∣∣∣ˆ ∞
0

ˆ s

0

ˆ
Rn
Wα,r(z, t) ∂

βH(z, t) dz dt dr

∣∣∣∣.
By the bound (3.5) and the above bound on Wα,r,∣∣∣∣ˆ ∞

0

ˆ s

0

ˆ
Rn
Wα,r(z, t) ∂

βH(z, t) dz dt dr

∣∣∣∣ ≤ ˆ ∞
0

‖vα( · , r)‖L2(Rn)‖ġ‖L2(Rn) dr

and by the bounds (10.11) and (10.14),∣∣∣∣ˆ
Rn+1

+

t ∂α∂tG(x, t)w−α (x, t) dx dt

∣∣∣∣ ≤ C

κn/2
√
|Q|
‖ġ‖L2(Rn),∣∣∣∣ˆ

Rn+1
+

t ∂α∂tG(x, t) w̃α(x, t) dx dt

∣∣∣∣ ≤ Cκ√
|Q|
‖ġ‖L2(Rn)

as desired. �

We now have that ḃSQ is a bounded linear operator on ẆA2
m−1(Rn), a subspace

of L2(Rn). We extend ḃSQ to an operator on L2(Rn) using a similar projection as in
Section 6.1; the difference in this case is that we use only two projection operators
rather than countably many.

Let Wn and Wf be the closure in L2(Rn) of, respectively,

W̃n = {1(1/2)Q Ṫrm−1 ϕ+ (1− 1(1/2)Q)ḟ : ϕ ∈ C∞0 , ḟ ∈ L2(Rn)},

W̃f = {1(1/4)Qḟ + (1− 1(1/4)Q) Ṫrm−1 ϕ : ϕ ∈ C∞0 , ḟ ∈ L2(Rn)}.

Let On and Of denote orthogonal projection from L2(Rn) onto the subspaces Wn

and Wf ; observe that Onḟ = ḟ outside of (1/2)Q and that Of ḟ = ḟ inside (1/4)Q.
Furthermore, On(Ṫrm−1 ϕ) = Of (Ṫrm−1 ϕ) = Ṫrm−1 ϕ for any nice (e.g., smooth
and compactly supported) function ϕ.

Let η be smooth and satisfy

η ≡ 1 in (1/4)Q×(−`(Q)/8, `(Q)/8), η ≡ 0 outside (1/2)Q×(−`(Q)/4, `(Q)/4)

with |∇jη| ≤ Cj`(Q)−j for any j ≥ 0.

Define πn : Wn 7→ ẆA2
m−1(Rn) and πf : Wf 7→ ẆA2

m−1(Rn) as follows. Suppose

that ḟ = Ṫrm−1 ϕ in (1/2)Q or Rn \ (1/4)Q for some smooth function ϕ. We
may renormalize ϕ so that

´
(1/2)Q\(1/4)Q

Tr ∂ζϕ = 0 for all |ζ| ≤ m − 1. Let

πnḟ = Ṫrm−1(ηϕ) and let πf ḟ = Ṫrm−1((1 − η)ϕ). Observe that πn and πf are

well-defined, that πnḟ = 0 outside (1/2)Q and that πf ḟ = 0 in (1/4)Q, and that by

the Poincaré inequality πn : Wn 7→ ẆA2
m−1(Rn) and πf : Wf 7→ ẆA2

m−1(Rn) are
bounded operators. Finally, notice that πn(Ṫrm−1 ϕ) + πf (Ṫrm−1 ϕ) = Ṫrm−1 ϕ
for any smooth, compactly supported ϕ.
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We let ḃSQ satisfy

〈ḟ , ḃSQ〉Rn = 〈πnOnḟ + πfOf ḟ , ḃ
S
Q〉Rn

where the right-hand side is given by formula (10.4). Notice that if ḟ = Ṫrm−1 ϕ,

then Onḟ = Of ḟ = ḟ . Thus, this definition is consistent with formula (10.4).
By the bound (10.6) and boundedness of πn and πf , we see that

|〈ḟ , ḃSQ〉Rn | ≤
C

κn/2
‖ḟ‖L2(Rn)

√
|Q|

and so the bound (5.11) is established with C0 = Cκ−n. We are left with the
bounds (5.12) and (5.13).

Observe that by the bound (10.7),

|〈πfOf ḟ , ḃSQ〉Rn | ≤ C‖ḟ‖L2(Rn)κ
√
|Q|.

Furthermore, if ḟ = 0 in (1/2)Q then πnOnḟ = 0; thus, we have that

(10.15) ‖ḃSQ‖L2(Rn\(1/2)Q) ≤ Cκ
√
|Q|.

Fix some γ with |γ| = m − 1, and let bγQ = (bSQ)γ for some |γ| = m − 1. Then

b⊥Q = bγ⊥Q . We seek to show that

Re
1´

Q
φQ

ˆ
Q

bγQ(x)φQ(x) dx ≥ σ or

∣∣∣∣ 1´
Q
φQ

ˆ
Q

bγQ(x)φQ(x) dx

∣∣∣∣ ≤ ησ
for some constant σ independent of Q and some η depending on C1. Notice that´
Q
φQ = c|Q| for some constant c depending on φQ, with 1/2 ≤ c ≤ (1 + ω)n.

Let

ΦγQ(x, t) =
1

γ!
(x− yQ, t)γφQ(x) ρ(t)

where ρ(t) = 1 for |t| < `(Q) and ρ(t) = 0 for |t| > 2`(Q).
Notice that if x ∈ (1/2)Q and |t| < `(Q), then ∇m−1ΦγQ(x, t) = ėγ = φQ(x)ėγ .

In particular, bγQφQ = Ṫrm−1 ΦγQ · ḃQ in (1/2)Q. Furthermore, bγQ φQ = 0 and

Ṫrm−1 ΦγQ · ḃQ = 0 outside of (1 + ω)Q. Thus, by the bound (10.15),∣∣∣∣ 1

|Q|

ˆ
Q

bγQ(x)φQ(x) dx− 1

|Q|

ˆ
Rn

Ṫrm−1 ΦγQ · ḃQ
∣∣∣∣ ≤ C

|Q|

ˆ
(1+ω)Q\(1/2)Q

|ḃQ| ≤ Cκ.

Thus, to establish the bounds (5.12) and (5.13), it suffices to bound the quantity

1

|Q|

ˆ
Rn

Ṫrm−1 ΦγQ · ḃ
S
Q

from above or from below.
Applying the definition of ḃSQ, we see that

1

|Q|

ˆ
Rn

Ṫrm−1 ΦγQ · ḃQ =

ˆ
Rn+1

+

∇mΦγQ(x, t) ·A(x)∇mF−(x, t) dx dt

+

ˆ
Rn+1
−

∇mΦγQ(x, t) ·A(x)∇mF+(x, t) dx dt.
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Now, observe that ∇mΦγQ = 0 in (1/2)Q× (−`(Q), `(Q)). Applying the definition

of F± and the bounds (9.9) or (10.5), we see that∣∣∣∣ˆ
Rn+1
−

∇mΦγQ(x, t) ·A(x)
(
∇mF+(x, t)−∇mF−(x, t)

)
dx dt

∣∣∣∣ ≤ Cκ
and so we may considerˆ

Rn+1
+

∇mΦγQ ·A∇
mF− +

ˆ
Rn+1
−

∇mΦγQ ·A∇
mF− =

ˆ
Rn+1

∇mΦγQ ·A∇
mF−.

Now, recall that
ˆ
Rn+1

∇mΦγQ(x, t) ·A∇mF−(x, t) dx dt

=

ˆ
Rn+1

∇mΦγQ(x, t) ·A(x)∇mx,t∂m−1
s EL(x, t, yQ,−κ`(Q)) dx dt.

Applying the symmetry property (2.19), we see that
ˆ
Rn+1

∇mΦγQ(x, t) ·A∇mF−(x, t) dx dt

=

ˆ
Rn+1

∂m−1
s ∇mx,tEL

∗(yQ,−κ`(Q), x, t) ·A∗(x)∇mΦγQ(x, t) dx dt.

By formula (2.22),ˆ
Rn+1

∇mΦγQ(x, t) ·A∇mF−(x, t) dx dt = ∂m−1
s ΠL∗(A∗∇mΦγQ)(yQ,−κ`(Q)).

Recall (formula (2.17)) that ΠL∗(A∗∇mΦγQ) = ΦγQ. Thus
ˆ
Rn+1

∇mΦγQ(x, t) ·A∇mF−(x, t) dx dt = ∂m−1
s ΦγQ(yQ,−κ`(Q)).

The right-hand side is equal to one if γ = γ⊥ and is zero otherwise, and so the
bounds (5.12) and (5.13) are established.

11. Reduction to operators of higher order

We have now shown that ΘD
t and ΘS

t satisfy the bounds (5.1) and (5.2). We
have established that whenever 2m > n, the condition (5.8) is valid, and there exist

functions ḃQ such that the conditions (5.10), (5.11), (5.12) and (5.13) are valid.
Thus, if 2m > n, then by Theorem 5.4, ΘD

t and ΘS
t satisfy the bound (5.14);

this implies that the bounds (1.8) and (2.30) are valid.
We now must establish these bounds for operators of order 2m ≤ n. We use

a fairly standard technique in the theory of higher-order differential equations;
see [AHMT01, Section 2.2] and [Bar16a, Section 5.4].

Fix some operator L of order 2m ≤ n, and choose some number M such that
2m+ 4M > n. Now, there are constants aζ such that

∆M =
∑
|ζ|=M

aζ ∂
2ζ .

In fact, aζ = m!/ζ!, and so we have that aζ ≥ 1 for all |ζ| = M .
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Define the differential operator L̃ = ∆ML∆M ; that is, 〈ϕ, L̃ψ〉 = 〈∆Mϕ,L∆Mψ〉
for all nice test functions ϕ and ψ. We remark that L̃ is associated to coefficients Ã
that satisfy

(11.1) Ãδε(x) =
∑

α+2ζ=δ
β+2ξ=ε

aζ aξ Aαβ(x) =
∑

|ζ|=M, 2ζ<δ
|ξ|=M, 2ξ<ε

aζ aξ A(δ−2ζ)(ε−2ξ)(x)

for all |δ| = |ε| = m+ 2M .

Observe that Ã is t-independent and satisfies the bounds (2.4) and (2.5). It was
shown in the proof of [Bar16a, Theorem 62] that

EL(x, t, y, s) =
∑

|ζ|=|ξ|=M

aζ aξ ∂
2ζ
x,t∂

2ξ
y,sE

L̃(x, t, y, s).

Now, by formula (2.32), if |α| = m then

∂αSLġ(x, t) =
∑

|γ|=m−1

ˆ
Rn
∂αx,t∂

γ
y,sE

L(x, t, y, 0) gγ(y) dy

=
∑

|γ|=m−1

∑
|ζ|=M

∑
|ξ|=M

aζ

ˆ
Rn
∂α+2ζ
x,t ∂γ+2ξ

y,s EL̃(x, t, y, 0) aξ gγ(y) dy.

Let g̃ε(x) =
∑
γ+2ξ=ε aξ gγ(x). Notice that | ˙̃g(x)| ≤ C|ġ(x)|. Then

∂αSLġ(x, t) =
∑
|ζ|=M

aζ∂
α+2ζSL̃ ˙̃g(x, t).(11.2)

Thus, because the bound (1.8) is valid for operators L̃ of order 2m + 4M for M
large enough, we have thatˆ

Rn

ˆ ∞
0

|∇m∂tSLġ(x, t)|2 t dt dx ≤ C
ˆ
Rn

ˆ ∞
0

|∇m+2M∂tSL̃ ˙̃g(x, t)|2 t dt dx

≤ C‖ ˙̃g‖2L2(Rn) ≤ C‖ġ‖
2
L2(Rn)

and so the bound (1.8) is valid even for operators of order 2m ≤ n.
The argument for DA is somewhat more involved. In this case we will use

Theorem 5.2; observe that ΘD
t satisfies the bounds (5.1) and (5.2), and so we need

only establish the bound (5.3), that is, to bound ΘD
t ėβ for multiindices β with

|β| = m.
Recall from formula (9.1) that

ΘD
t ėβ(x) = −

∑
|α|=m

tk
ˆ
Rn+1
−

∂m+k
t ∂αy,sE

L(x, t, y, s)Aαβ(y) ds dy

and so

ΘD
t ėβ(x) = −

∑
|ζ|=M

aζ
∑

|δ|=m+2M

tk
ˆ
Rn+1
−

∂m+k
t ∂2ζ

x,t∂
δ
y,sE

L̃(x, t, y, s)Bδβ(y) ds dy

where

Bδβ(y) =
∑

α+2ξ=δ

aξ Aαβ(y) =
∑

|ξ|=M, 2ξ<δ

aξ A(δ−2ξ)β(y).
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We would like to write the right-hand side in terms of Ã rather than A and B.

Recall our formula (11.1) for the coefficients Ã of L̃. We then have that

Ãδε(y) =
∑

|ξ|=m, 2ξ<ε

aξ Bδ(ε−2ξ)(y).

Let Ψ(Ḟ )ε =
∑
|ξ|=M, 2ξ<ε aξ Fε−2ξ. Then Ãδε = Ψ(Bδ), where (Bδ)ξ = Bδξ. We

claim that Ψ has a left inverse; this means that there exists a matrix of constants
bβε such that

Bδβ =
∑

|ε|=m+2M

bβε Ãδε.

To establish this, we need only show that Ψ is one-to-one. Suppose that Ψ(Ḟ ) =

0. Because Ψ is a linear operator, it suffices to show that Ḟ = 0. Begin with
indices α such that αj ≤ 1 for all but one value j0 of j. Let ξ = M~ej0 and let
ε = α + 2ξ. Then ξ is the only multiindex with |ξ| = M and with 2ξ < ε. Thus

0 = Ψ(Ḟ )ε = aξ Fα = Fα. Next, consider indices α with αj0 arbitrary, 2 ≤ αj1 ≤ 3,
and αj ≤ 1 for all other values of j. Let ξ be as before and let ε = α + 2ξ. Then

0 = Ψ(Ḟ )ε = aξ Fα + aζ Fε−2ζ , where ζ = ~ej1 + (M − 1)~ej0 . Since Fε−2ζ = 0,
we also have that Fα = 0. Continuing in this fashion, we see that Fα = 0 for all
multiindices α.

Thus

ΘD
t ėβ(x) = −

∑
|ζ|=M

aζ
∑

|δ|=m+2M
|ε|=m+2M

bβε t
k

ˆ
Rn+1
−

∂m+k
t ∂2ζ

x,t∂
δ
y,sE

L̃(x, t, y, s) Ãδε(y) ds dy.

By formula (2.28) for D and (2.29) for D̃, this equals

ΘD
t ėβ(x) =

∑
|ζ|=M

aζ
∑

|ε|=m+2M

bβε t
k∂m+k
t ∂2ζ

x,tD̃
Ãėε(x, t).

Recall from formula (4.3) that ΘD
t ḟ(x) = tk∂m+k

t D̃Aḟ(x, t). Define

Θ̃D
t ḟ(x) = tk

′
∂m+2M+k′

t D̃Ãḟ(x, t)

for some k′ to be chosen momentarily.

Because m + 2M > n, if k′ is large enough then we have that Θ̃D
t satisfies the

estimates (5.14) and (5.1), and so by Lemma 9.1,

sup
Q

1

|Q|

ˆ
Q

ˆ `(Q)

0

|tk
′
∂m+2M+k′

t D̃Ãėε(x, t)|2
dt dx

t
≤ C.

Fix some cube Q and observe that
ˆ `(Q)

0

ˆ
Q

|ΘD
t ėβ(x)|2 dx dt

t
≤ C

∑
|ε|=m+2M

ˆ `(Q)

0

ˆ
Q

|tk∂m+k
t ∇2M D̃Ãėε(x, t)|2

dx dt

t
.

Applying the Caccioppoli inequality in Whitney boxes, we see that
ˆ `(Q)

0

ˆ
Q

|ΘD
t ėβ(x)|2 dx dt

t
≤ C

∑
|ε|=m+2M

ˆ 2`(Q)

0

ˆ
2Q

|tk−2M∂m+k
t D̃Ãėε(x, t)|2

dx dt

t
.
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If we let k = 2M + k′, we see that
ˆ `(Q)

0

ˆ
Q

|ΘD
t ėβ(x)|2 dx dt

t
≤ C|Q|

and so ΘD
t satisfies the bound (5.3). Thus, by Theorem 5.2 we have that ΘD

t satisfies

the bound (5.4). Thus, by Lemma 4.2 we have that D̃A satisfies the bound (2.30),
as desired.
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operators and related topics, Astérisque (1998), no. 249, viii+172. MR 1651262

(2000c:47092) 37
[Bar13] Ariel Barton, Elliptic partial differential equations with almost-real coefficients,

Mem. Amer. Math. Soc. 223 (2013), no. 1051, vi+108. MR 3086390 3, 4

[Bar16a] , Gradient estimates and the fundamental solution for higher-order elliptic
systems with rough coefficients, Manuscripta Math. 151 (2016), no. 3-4, 375–418.

MR 3556825 6, 15, 17, 20, 58, 59

[Bar16b] , Perturbation of well-posedness and layer potentials for higher-order elliptic
systems with rough coefficients, arXiv:1604.00062v1 [math.AP], March 2016. 3, 7,

14, 19, 49

[BM13] Ariel Barton and Svitlana Mayboroda, The Dirichlet problem for higher order equa-
tions in composition form, J. Funct. Anal. 265 (2013), no. 1, 49–107. MR 3049881

3, 4, 6
[BM16a] , Higher-order elliptic equations in non-smooth domains: a partial sur-

vey, Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach

Spaces, and Operator Theory (Volume 1). Celebrating Cora Sadosky’s life, Associa-
tion for Women in Mathematics Series, vol. 4, Springer-Verlag, 2016, pp. 55–121. 2,

3

[BM16b] , Layer potentials and boundary-value problems for second order elliptic op-
erators with data in Besov spaces, Mem. Amer. Math. Soc. 243 (2016), no. 1149,

v+110. MR 3517153 3, 4

[Cam80] S. Campanato, Sistemi ellittici in forma divergenza. Regolarità all’interno, Quader-
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