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Abstract. In this paper we study boundary value problems for higher order

elliptic differential operators in divergence form. We establish well posedness
for problems with boundary data in Besov spaces Ḃp,p

s , p ≤ 1, given well

posedness for appropriate values of s and p > 1. We work with smoothness

parameter s between 0 and 1; this allows us to consider inhomogeneous differ-
ential equations.

Combined with results of Maz’ya, I. Mitrea, M. Mitrea, and Shaposhnikova,

this allows us to establish new well posedness results for higher order opera-
tors whose coefficients are in or close to the space VMO, for the biharmonic

operator, and for fourth-order operators close to the biharmonic operator.
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1. Introduction

In [5], we studied higher order boundary value problems for elliptic differential
operators L of the form

(1.1) (L~u)j =

N∑
k=1

∑
|α|=|β|=m

∂α(Ajkαβ ∂
βuk)

of arbitrary even order 2m, for variable bounded measurable coefficients A. In
particular, we studied the fully inhomogeneous Dirichlet problem

(1.2) L~u = divm Ḣ in Ω, ṪrΩ
m−1 ~u = ḟ ,

‖~u‖Ẇp,s
m,av(Ω) ≤ C‖ḟ‖ẆApm−1,s(∂Ω) + C‖Ḣ‖Lp,sav (Ω)
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and the Neumann problem

(1.3) L~u = divm Ḣ in Ω, ṀΩ
A,Ḣ

~u = ġ,

‖~u‖Ẇp,s
m,av(Ω) ≤ C‖ġ‖ṄApm−1,s−1(∂Ω) + C‖Ḣ‖Lp,sav (Ω)

for p, s with 0 < s < 1 and (d− 1)/(d− 1 + s) < p ≤ ∞.
In this paper we will extrapolate well posedness from the range p > 1 to the range

p ≤ 1; this will yield new well posedness results in the case where A lies in the
space VMO and in the case of the biharmonic operator L = ∆2. See Section 1.1.

The Dirichlet boundary values ṪrΩ
m−1 ~u of ~u in the problem (1.2) are given by

ṪrΩ
m−1 ~u = TrΩ∇m−1~u, where Tr is the standard trace operator of Sobolev spaces;

see [6, Definition 2.4]. The Neumann boundary values ṀΩ
A,Ḣ

~u are given by

(1.4) 〈∇m~ϕ,A∇m~u− Ḣ〉Ω = 〈ṪrΩ
m−1 ~ϕ, Ṁ

Ω
A,Ḣ

~u〉∂Ω for all ~ϕ ∈ C∞0 (Rd)

where 〈 · , · 〉Ω denotes the standard L2 inner product in Ω. The standard weak
formulation of the operator L given by formula (1.1) is

(1.5) L~u = divm Ḣ in Ω if 〈∇m~ϕ,A∇m~u〉Ω = 〈∇m~ϕ, Ḣ〉Ω for all ~ϕ ∈ C∞0 (Ω).

It may readily be seen that if ∂Ω is connected and if L~u = divm Ḣ in Ω in the
weak sense, then the left-hand side of formula (1.4) depends only on ṪrΩ

m−1 ~ϕ
and not on the interior values of ~ϕ, and so ṀΩ

A,Ḣ
~u is a well defined operator on

{ṪrΩ
m−1 ~ϕ : ~ϕ ∈ C∞0 (Rd)}. This was the notion of Neumann boundary values used

in [5, 9, 8], and is similar to but subtly different from that of [14, 26, 2, 23]; see
[27, 10, 9] for a more extensive discussion of various notions of Neumann boundary
values.

The boundary spaces ẆApm−1,s(∂Ω) and ṄApm−1,s−1(∂Ω) are subspaces and
quotient spaces, respectively, of the vector-valued Besov spaces (Ḃp,ps (∂Ω))Nq and
(Ḃp,ps−1(∂Ω))Nq, where q denotes the number of multiindices in Nd0 of length m− 1.

Specifically, ẆApm−1,s(∂Ω) is the closure in (Ḃp,ps (∂Ω))Nq of {ṪrΩ
m−1 ~ϕ : ~ϕ ∈

C∞0 (Rd)}, while ṄApm−1,s−1(∂Ω) = (Ḃp,ps−1(∂Ω))Nq/ ∼ is a quotient space under the

equivalence relation ġ ∼ γ̇ if 〈ṪrΩ
m−1 ~ϕ, ġ〉∂Ω = 〈ṪrΩ

m−1 ~ϕ, γ̇〉∂Ω for all ~ϕ ∈ C∞0 (Rd).
See [6] for a more detailed definition of these function spaces.

The space Ẇ p,s
m,av(Ω) is the set of (equivalence classes of) functions ~u for which

the Ẇ p,s
m,av(Ω)-norm given by

‖~u‖Ẇp,s
m,av(Ω) = ‖∇m~u‖Lp,sav (Ω),(1.6)

‖Ḣ‖Lp,sav (Ω) =

(ˆ
Ω

( 
B(x,dist(x,∂Ω)/2)

|Ḣ|2
)p/2

dist(x, ∂Ω)p−1−ps dx

)1/p

(1.7)

is finite. (Two functions are equivalent if their difference has norm zero; if Ω is open
and connected then two functions are equivalent if they differ by a polynomial of
degree at most m− 1.) Here

ffl
denotes the averaged integral

ffl
B
H = 1

|B|
´
B
H.

We refer the reader to [5, Section 1.1] for a more extensive discussion of the his-
torical significance of these function spaces. Here we will merely mention that the
spaces ẆApm−1,s(∂Ω) and ṄApm−1,s−1(∂Ω) are commonly studied spaces of bound-

ary data with fractional orders of smoothness (that is, smoothness parameters be-
tween zero and one). The theory of boundary value problems with data in integer
smoothness spaces (that is, in Lebesgue or Sobolev spaces) is extensive; however,
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this theory is tightly focused on homogeneous differential equations L~u = 0 rather
than the inhomogeneous equations L~u = divm Ḣ considered here, and to study
inhomogeneous problems we generally must consider boundary data in fractional
smoothness spaces. The spaces Ẇ p,s

m,av(Ω) and Lp,sav (Ω) are connected by trace and

extension theorems to the spaces ẆApm−1,s(∂Ω) and ṄApm−1,s−1(∂Ω); see [6]. More-
over, these spaces are well adapted to the theory of operators with rough coeffi-
cients; see [11, Remark 10.9]. We refer the reader also to [18, 1] for some early
appearances of weighted Sobolev norms

´
Ω
|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx, [20] for

well posedness results given explicitly in terms of weighted Sobolev norms, and [5,
Section 1.1] for a discussion of the significance of averaged norms.

The main result of the present paper is the following theorem extrapolating well
posedness from p > 1 to p ≤ 1. In Section 1.1, we will combine this result with
known results from the literature to derive new well posedness results.

Theorem 1.8. Let Ω ⊂ Rd be a Lipschitz domain with connected boundary. Let
L be an operator of the form (1.1), defined in the weak sense of formula (1.5),
associated to coefficients A that satisfy the bound

‖A‖L∞(Rd) ≤ Λ(1.9)

and the G̊arding inequality

Re
〈
∇m~ϕ,A∇m~ϕ

〉
Rd ≥ λ‖∇

m~ϕ‖2L2(Rd) for all ~ϕ ∈ Ẇ 2
m(Rd).(1.10)

Suppose that there exists a σ− and q− with

(1.11) 0 < σ− < 1, 1 < q− <
d− 1

d− 2 + σ−
, q− ≤ 2

such that the Dirichlet problem

(1.12) L~u = divm Φ̇ in Ω, ṪrΩ
m−1 ~u = 0, ‖~u‖

Ẇ
q−,σ−
m,av (Ω)

≤ C0‖Φ̇‖Lq−,σ−av (Ω)

is well posed.
Let M be the primary Lipschitz constant of Ω. Suppose that there are some

constants M0, σ̃+, and q̃+ such that

(1.13) M0 > M, σ− + (d− 1)

(
1− 1

q−

)
< σ̃+ < 1, 1 < q̃+ ≤ 2

and such that, if T is a bounded simply connected Lipschitz domain with primary

Lipschitz constant at most M0, and if ~u ∈ Ẇ q̃+,σ̃+
m,av (T ) with L~u = 0 in T , then

(1.14) ‖~u‖
Ẇ
q̃+,σ̃+
m,av (T )

≤ C1‖ṪrTm−1 ~u‖ẆAq̃+
m−1,σ̃+

(∂T )

where C1 depends only on q̃+, σ̃+, L, and the (full) Lipschitz character of T .
Finally, suppose that there are positive numbers σ+ and q+ that satisfy

(1.15) σ̃+ ≤ σ+ < 1, 1 < q+ <∞, σ̃+ −
d− 1

q̃+
≤ σ+ −

d− 1

q+
,

and if σ̃+ = σ+ then q+ = q̃+,

such that the Dirichlet problem

(1.16) L~u = divm Φ̇ in Ω, ṪrΩ
m−1 ~u = 0, ‖~u‖

Ẇ
q+,σ+
m,av (Ω)

≤ C0‖Φ̇‖Lq+,σ+av (Ω)

is well posed. If Ω is unbounded we impose the additional assumption that the prob-
lems (1.12) and (1.16) are compatibly well posed in the sense of [5, Lemma 1.22].
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Figure 1.1. Theorem 1.8: On the left, we show the acceptable
values of (s, 1/p), given (σ−, 1/q−) and (σ̃+, 1/q̃+). In the middle,
we show the acceptable values of (σ−, 1/q−) and (σ̃+, 1/q̃+), given
(s, 1/p). Finally, on the right, we show the acceptable values of
(σ+, 1/q+), given (σ̃+, 1/q̃+).

Then there exist numbers p and s that satisfy the condition

(1.17) σ− < s < σ̃+, 0 < p ≤ 1, σ− −
d− 1

q−
< s− d− 1

p

and for every such s and p the Dirichlet problem (1.2) is well posed, where C
depends only on λ, Λ, the Lipschitz character of Ω, p, s, q±, σ±, q̃+, σ̃+, C0, M0,
and C1.

Similarly, suppose that A satisfies the bound (1.9) and the local G̊arding inequal-
ity

Re
〈
∇m~ϕ,A∇m~ϕ

〉
Ω
≥ λ‖∇m~ϕ‖2L2(Ω) for all ~ϕ ∈ Ẇ 2

m(Ω).(1.18)

Let M0, q±, σ±, q̃+, and σ̃+ satisfy the conditions (1.11), (1.13) and (1.15). Sup-
pose that the two Neumann problems

(1.19) L~u = divm Φ̇ in Ω, ṀΩ
A,Φ̇

~u = 0, ‖~u‖
Ẇ
q±,σ±
m,av (Ω)

≤ C0‖Φ̇‖Lq±,σ±av (Ω)

are compatibly well posed. Suppose that there is some M0 > M such that, if T is
a bounded simply connected Lipschitz domain with primary Lipschitz constant at

most M0, and if ~u ∈ Ẇ q̃+,σ̃+
m,av (T ) and L~u = 0 in T , then

(1.20) ‖~u‖
Ẇ
q̃+,σ̃+
m,av (T )

≤ C1‖ṀA,0 ~u‖
ṄA

q̃+
m−1,σ̃+−1

(∂T )

where C1 depends only on q̃+, σ̃+, L, and the Lipschitz character of T . Then for
any p and s that satisfy the bounds (1.17), the Neumann problem (1.3) is well posed,
where C has the same dependencies as before.

We will define the primary Lipschitz constant of Ω in Definition 2.1.
The problems (1.12) and (1.16) (or the two problems (1.19)) are compatibly

well posed if, for every Ḣ ∈ L
q−,σ−
av (Ω) ∩ Lq+,σ+

av (Ω), there is a single function

~u ∈ Ẇ
q−,σ−
m,av (Ω) ∩ Ẇ q+,σ+

m,av (Ω) that is a solution to both of the problems (1.12)
and (1.16) (or both of the problems (1.19)). Compatibility of solutions is not
trivial; the main result of [4] is an example of a second order operator L such that
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the Dirichlet problems

Lu = 0 in R2
+, Tru = f, ‖u‖Tp∞ ≤ ‖f‖Lp(∂R2

+),

Lv = 0 in R2
+, Tr v = f, ‖v‖Ẇ 2

1 (R2
+) ≤ ‖f‖Ḃ2,2

1/2
(∂R2

+)

are both well posed, but for which u 6= v for some f ∈ Lp(∂R2
+)∩ Ḃ2,2

1/2(∂R2
+). Here

T p∞ is the tent space defined in [15].
The proof of Theorem 1.8 (see in particular Section 3) uses many techniques

from the proofs of [16, Lemma 1.6] and [24, Theorem 9.6]. Both of these papers
treat specific operators L (the Lamé system in [16], the biharmonic operator in [24])
and establish well posedness of the homogeneous Dirichlet problem with boundary
data in the Hardy space Ḣ1

1 (∂Ω); this space is closely related to the p = 1, s = 1

endpoint of the spaces ẆApm−1,s(∂Ω) used in this paper. ([16, Lemma 1.6] also

considered the traction boundary problem, that is, the Neumann problem.) We

have adapted their proofs to the case of inhomogeneous equations L~u = divm Ḣ,
and thus to the case of boundary data in fractional smoothness spaces.

We now turn to the history of the boundary value problems

L~u = divm Ḣ in Ω, Ṫrm−1 ~u = ḟ , ‖~u‖X ≤ C‖ḟ‖ẆApm−1,s(∂Ω) + C‖Ḣ‖Y(1.21)

L~u = divm Ḣ in Ω, ṀΩ
A,Ḣ

~u = ġ, ‖~u‖X ≤ C‖ġ‖ṄApm−1,s−1(∂Ω) + C‖Ḣ‖Y(1.22)

for some appropriate spaces X and Y, with 0 < s < 1 and with p ≤ 1.
In [19], well posedness was established in the case L = ∆ (that is, for Laplace’s

and Poisson’s equations) in Lipschitz domains for 1 − κ < s < 1 and (d− 1)/(d −
2 + κ+ s) < p ≤ 1. In the case d = 2 they showed that κ > 1/2, but if d ≥ 3 then
they showed only κ > 0. In dimensions d = 2 and d = 3, this is the range of p,
s such that well posedness of the problems (1.2) and (1.3) may be established via
Theorem 1.8 and earlier results in [18, 17, 28]. If d ≥ 4, then the results of [19] are
stronger; in fact in this case Theorem 1.8 does not yield any well posedness results.

In [21], well posedness of the Dirichlet problem (1.21) for the biharmonic operator
L = ∆2 was established in three-dimensional Lipschitz domains, again for 1− κ <
s < 1 and (d− 1)/(d − 2 + κ + s) < p ≤ 1. In Section 1.1.2, we will establish
well posedness results for the two-dimensional biharmonic problems and the three-
dimensional Neumann problem, working from Theorem 1.8 and known results of
[22]; the results for the three-dimensional Dirichlet problem derived in the same
way are essentially equivalent to those of [21].

If Ω is a two dimensional VMO domain, then well posedness of the biharmonic
Dirichlet problem for 0 < s < 1 and 1/(1 + s) < p ≤ 1 was established in [23,
Theorem 6.35]. (The case of C1 domains was also considered in [19]; in that case
the parameter κ may be taken to be 1 and so the range of well posedness is again
(d− 1)/(d− 1 + s) < p ≤ 1.)

We turn to the case of variable coefficients. In [11], Mayboroda and the author of
the present paper investigated well posedness in the case where N = m = 1, where
A is real and t-independent in the sense that A(x′, t) = A(x′, s) for all s, t ∈ R
and all x′ ∈ Rd−1, and where Ω is upper half space, or more generally a Lipschitz
graph domain Ω = {(x′, t) : x′ ∈ Rd−1, t > ψ(x′)} for a Lipschitz function ψ. In
this case, the Dirichlet problem (1.2) is well posed whenever 1 − κ < s < 1 and
(d− 1)/(d− 2 +κ+ s) < p ≤ 1, for some κ > 0. If in addition A is symmetric then
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the Neumann problem is well posed for the same range of s and p. As observed in
[5, Remark 1.33], if A is symmetric and d = 2 then κ > 1/2.

Finally, in [5], we established stability of well posedness under L∞ perturbation
of the coefficients. As a consequence, if d = 3 and A is close (in L∞) to the
coefficients of the biharmonic operator, or if m = 1 and A is close to being t-
independent, then the Dirichlet problem (1.2) is well posed for 1−κ+ε < s < 1−ε
and (d− 1)/(d − 2 + κ − ε + s) < p ≤ 1, for some 0 < ε < κ/2. (Corresponding
results are valid for the Neumann problem if A is close to being symmetric.)

1.1. New well posedness results derived from Theorem 1.8. In this section
we review some known well posedness results from the literature, and we discuss how
these well posedness results combine with Theorem 1.8 to yield new well posedness
results.

1.1.1. Systems with VMO coefficients. In [20], Maz’ya, Mitrea and Shaposhnikova
investigated the Dirichlet problem for coefficients in (or close to) the space VMO.
In the terminology of the present paper, their results may be shown to be equivalent
to the following. See Section 5.

Suppose that A is bounded and elliptic in the sense of satisfying the conditions
(1.9) and (1.10), and that A ∈ VMO(Rd). Suppose furthermore that Ω ⊂ Rd is
a bounded Lipschitz domain with connected boundary, and that the unit outward
normal ν to ∂Ω lies in VMO(∂Ω). Then the Dirichlet problem (1.2) is well posed
for any 0 < s < 1 and any 1 < p <∞.

More generally, let

(1.23) δ(A,Ω) = lim
δ→0+

sup
x∈Ω

sup
0<r<δ

 
B(x,r)∩Ω

 
B(x,r)∩Ω

|A(y)−A(z)| dz dy

+ lim
δ→0+

sup
x∈∂Ω

sup
0<r<δ

 
B(x,r)∩∂Ω

 
B(x,r)∩∂Ω

|ν(y)− ν(z)| dσ(z) dσ(y).

There is some constant c such that, if 1 < p <∞ and 0 < s < 1, and if

δ(A,Ω) < cmin(s, 1− s, 1/p, 1− 1/p)2

then the Dirichlet problem (1.2) is well posed.
We remark that by Definition 2.1, if r is small enough then 

B(x,r)∩∂Ω

 
B(x,r)∩∂Ω

|ν(y)− ν(z)| dσ(z) dσ(y) ≤ 2M

where M is the primary Lipschitz constant of Ω mentioned in Theorem 1.8.
Combined with Theorem 1.8 (for p ≤ 1), [5, Lemma 1.22] (for 1 < p < 1/(1− ε),

and [5, Lemma 1.21] (for 1/ε < p ≤ ∞), we have the following well posedness
result.

Theorem 1.24. Fix some ε with 0 < ε < 1/2. Then there is some δ0 > 0 such
that, if A is bounded and satisfies the ellipticity condition (1.10), if Ω is a bounded
simply connected Lipschitz domain with primary Lipschitz constant M , and if

2M + lim
δ→0+

sup
x∈Rd

sup
0<r<δ

 
B(x,r)

 
B(x,r)

|A(y)−A(z)| dz dy < δ0,
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Figure 1.2. Theorem 1.24: If A is sufficiently close to VMO
and Ω is sufficiently close to a VMO domain, well posedness was
established in [20] whenever (s, 1/p) lies in the square on the left.
Theorem 1.8 allows us to extrapolate to well posedness whenever
(s, 1/p) lies in the triangle in the middle, and [5, Lemmas 1.21
and 1.22] allow us to establish well posedness whenever (s, 1/p)
lies in the pentagon on the right.

then the Dirichlet problem (1.2) is well posed whenever

ε < s < 1− ε, 0 < p ≤ ∞, s− 1 + dε

d− 1
<

1

p
< 1 +

s− dε
(d− 1)

.

In particular, if A ∈ VMO(Rd) and ν ∈ VMO(∂Ω), then the Dirichlet problem
(1.2) is well posed whenever 0 < s < 1 and (d− 1)/(d− 1 + s) < p ≤ ∞.

The acceptable values of s and p are shown in Figure 1.2.
Recall that in the special case where L = ∆ and Ω is C1, or where L = ∆2 is the

biharmonic operator and the ambient dimension d = 2, this result is very similar
to a known result; see [19, Section 3] and [23, Theorem 6.35].

1.1.2. The biharmonic equation and perturbations. In [22], I. Mitrea and M. Mitrea
established well posedness of boundary value problems for the biharmonic operator
∆2 in bounded Lipschitz domains. Their results improved upon previous results
of Adolfsson and Pipher [1]. They worked with solutions u in Besov and Triebel-
Lizorkin spaces. We prefer to work with solutions u in the weighted averaged spaces
Ẇ p,s

2,av(Ω); thus, we will use the following result (derived from the results of [22] in

[5, Section 6.1]).

Theorem 1.25 ([22, 5]). Let Ω ⊂ Rd be a bounded Lipschitz domain with connected
boundary. Let −1/(d− 1) < θ < 1. Then there is some κ > 0 depending on Ω and
θ such that if d ≥ 4 and

0 < s < 1, 1 < p <∞, 1

2
− 1

d− 1
− κ < 1

p
− s

d− 1
<

1

2
+ κ,(1.26)

or if d = 2 or d = 3 and

0 < s < 1, 1 < p <∞, 0 <
1

p
−
(

1− κ
2

)
s <

1 + κ

2
,(1.27)
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then the biharmonic Dirichlet problem

(1.28)


∆2u = div2 Ḣ in Ω,

ṪrΩ
1 u = ḟ ,

‖u‖Ẇp,s
2,av(Ω) ≤ C‖ḟ‖ẆAp1,s(∂Ω) + C‖Ḣ‖Lp,sav (Ω)

and the biharmonic Neumann problem

(1.29)


∆2u = div2 Ḣ in Ω,

ṀΩ
Aθ,Ḣ

u = ġ,

‖u‖Ẇp,s
2,av(Ω) ≤ C‖ġ‖ṄAp1,s−1(∂Ω) + C‖Ḣ‖Lp,sav (Ω)

are both well posed.

Here Aθ is the symmetric constant coefficient matrix such that

(1.30) 〈∇2ψ(x),Aθ∇2ϕ(x)〉 = θ∆ψ(x) ∆ϕ(x)+(1−θ)
d∑
j=1

d∑
k=1

∂j∂kψ(x) ∂j∂kϕ(x).

If d = 2 or d = 3, then Theorems 1.8 and 1.25 imply that the problems (1.28)
and (1.29) are well posed for all p ≤ 1 and s satisfying the condition (1.26) (and not
only the stronger condition (1.27)). As in Section 1.1.1, we may use [5, Lemma 1.22]
and [5, Lemma 1.21] to show that if d = 2 or d = 3, then the problems (1.28)
and (1.29) are well posed for all 0 < p ≤ ∞ and s satisfying the condition (1.26).
That is, we have the following theorem.

Theorem 1.31. Let Ω ⊂ Rd be a bounded Lipschitz domain with connected bound-
ary and let −1/(d− 1) < θ < 1. Let κ be as in Theorem 1.25.

Suppose that p and s satisfy the condition (1.26). If d = 2, then the Dirichlet
problem (1.28) and the Neumann problem (1.29) are well posed. If d = 3, the
Neumann problem (1.29) is well posed.

To the author’s knowledge, the results of Theorem 1.31 are new. Turning to the
case of the three-dimensional Dirichlet problem, as mentioned above, well posedness
of the Dirichlet problem

(1.32) ∆2u = h in Ω ⊂ R3, ṪrΩ
1 u = ḟ ,

‖u‖Fp,q
s+1/p+1

(Ω) ≤ C‖h‖Fp,q
s+1/p−3

(Ω) + C‖ḟ‖WAp1,s(∂Ω)

was established by I. Mitrea, M. Mitrea and Wright in [21] for p and s satisfying the
condition (1.26). It is often possible to pass between the F p,qs+1/p+1(Ω)-norm and the

W p,s
2,av(Ω)-norm; see, for example, [1, Proposition S]. Thus, in the three-dimensional

Dirichlet case Theorem 1.8 yields no novel results.
We mention one final class of new well posedness results. In [5, Theorem 1.47],

we established well posedness results for operators close to the biharmonic operator
for p, s as in Theorem 1.25. The same technique allows us to establish perturbative
results for p, s as in Theorem 1.31.

Theorem 1.33. Let N ≥ 1 be an integer, and for each 1 ≤ j ≤ N , let θj ∈ R; in
the case of the Neumann problem we additionally require −1/(d− 1) < θj < 1. Let
Ω ⊂ R2 or Ω ⊂ R3 be a bounded simply connected Lipschitz domain, and let κj be
as in Theorem 1.25. Let 0 < δ < κ = minj κj.
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s

1/p

◦1

◦1/2

s

1/p

◦1

◦1/2

s

1/p

◦1

◦1/2

Earlier results in dimension d = 2 (the Dirichlet problem)
or dimension d = 2 or d = 3 (the Neumann problem)

s

1/p

◦1

◦1/2

Figure 1.3. The Dirichlet and Neumann problems (1.28) and
(1.29) for the biharmonic operator ∆2 are well posed whenever
the point (s, 1/p) lies in the black or dark gray regions. The black
region depends only on the dimension d; the gray regions also de-
pend on Ω. If d ≥ 3 (the Dirichlet problem), if d ≥ 4 (the Neumann
problem), or if (s, 1/p) lies in the region shown below, then the re-
sult is known from [1, 21, 22]; the extended range in the case d = 2
or d = 3 is due to Theorem 1.8 in the present paper.

Let L be an operator of the form (1.1), with m = 2 and defined in the weak sense
of formula (1.5), associated to coefficients A. Then there is some ε > 0 such that,
if

sup
j,α,β,x

|Ajjαβ(x)− (Aθj )αβ |+ sup
j,k,α,β,x
j 6=k

|Ajkαβ(x)| < ε

then the Dirichlet problem (1.2) and the Neumann problem (1.3), with m = 2, are
well posed whenever

δ ≤ s ≤ 1− δ, 0 < p ≤ ∞, 1

2
− 1

d− 1
− (κ− δ) ≤ 1

p
− s

d− 1
≤ 1

2
+ (κ− δ).

1.2. Outline of the paper. The paper is organized as follows. We will prove
Theorem 1.8 in Sections 2–4. In Section 2 we will begin the proof of Theorem 1.8;
we will establish uniqueness of solutions, provide some preliminary arguments, and
will construct a solution to L~u = divm Φ̇ in Ω provided Φ̇ is supported in a Whitney
ball. In Section 3 we will bound ~u; it is this section that contains most of the
technical arguments of the paper. In Section 4 we will pass from data Φ̇ supported
in a Whitney ball to data Ḣ supported in all of Ω. Finally, in Section 5, we will
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resolve some differences between well posedness results as stated in the literature,
and the well posedness results required by Theorem 1.8; the results of Section 5
were used in Section 1.1.1 above.

Acknowledgements. The author would like to thank Steve Hofmann and Svit-
lana Mayboroda for many useful discussions concerning the theory of higher-order
elliptic equations. The author would also like to thank the American Institute of
Mathematics for hosting the SQuaRE workshop on “Singular integral operators and
solvability of boundary problems for elliptic equations with rough coefficients,” at
which many of these discussions occurred, and the Mathematical Sciences Research
Institute for hosting a Program on Harmonic Analysis, during which substantial
parts of this paper were written.

2. Preliminaries

We will take our notation for multiindices and our definitions of function spaces
and Lipschitz domains from [6], and our notions of elliptic operators and well posed-
ness from [5]. We remark that throughout the paper, C will denote a positive con-
stant whose value may change from line to line. We say that A ≈ B if A ≤ CB
and B ≤ CA.

There remains to define the primary Lipschitz constant mentioned in Theo-
rem 1.8.

Definition 2.1. If Ω is a Lipschitz domain, as defined by [6, Definition 2.2], let
(M,n, c0) be the Lipschitz character of Ω given therein. We refer to M as the
primary Lipschitz constant of Ω.

In this section we will begin the proof of Theorem 1.8. We begin by establishing
uniqueness of solutions. This follows from well posedness of the problems (1.12),
(1.14) or (1.19) and certain embedding and interpolation results of [5].

Lemma 2.2. Suppose that the conditions of Theorem 1.8 are valid. Then for each
Ḣ ∈ Lp,sav (Ω) and each ḟ ∈ ẆApm−1,s(∂Ω) or ġ ∈ ṄApm−1,s−1(∂Ω), there is at most

one solution to the problem (1.2) or (1.3).

Proof. If Ω is bounded, then the numbers r = p, ω = s, q = q− and σ = σ−
satisfy the conditions of [5, Lemma 3.7]. Thus, by [5, Corollary 3.8], solutions to
the problems (1.2) and (1.3) are unique.

Otherwise, let q and σ satisfy (d− 1)/q − σ = (d− 1)/p − s and 1/q = θ/q+ +
(1 − θ)/q−, σ = θσ+ + (1 − θ)σ− for some θ ∈ R. See Figure 2.1. By the given
bounds on q± and σ±, we have that 0 < σ < s and 1 < q < ∞, and furthermore
0 < θ < 1.

By the interpolation result [5, Lemma 1.22], we have well posedness of the Dirich-
let or Neumann problem (1.2) or (1.3) with p = q, s = σ. Observe that q, σ, and
ω = s, r = p satisfy the conditions of [5, Lemma 3.7] even if Ω is unbounded. The
conclusion follows from [5, Corollary 3.8]. �

We now recall the following theorem; this theorem will be useful throughout the
paper. In the interior case Ω = B(x, 2r), the result may be found in [13, 3, 7]. The
case of Dirichlet boundary values was established in [7], while the case of Neumann
boundary values may be established using [25, Lemma 5.3] and the proof of [7,
Theorem 36].
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σ

1/q

◦
1

•(s, 1/p)
•(σ−, 1/q−)

•(σ+, 1/q+)•
(σ, 1/q)

Figure 2.1. Lemma 2.2: the point (σ, 1/q) lies on the line through
(σ−, 1/q−) and (σ+, 1/q+), and on the line σ − (d− 1)(1/q) =
s − (d− 1)(1/p). The quantity σ − (d− 1)/q is constant on each
of the dashed lines.

Theorem 2.3. Let L be an operator of the form (1.1), defined in the weak sense
of formula (1.5), of order 2m and associated to coefficients A that satisfy the

bound (1.9) and the ellipticity condition (1.10). Suppose that L~u = divm Ḣ in
B(x, 2r) for some x ∈ Rd and some r > 0. If 0 ≤ j ≤ m, 0 < p < ∞, and
0 < q ≤ 2, then(ˆ

B(x,r)

|∇ju|q
)1/q

≤ C

rd/p−d/q

(ˆ
B(x,2r)

|∇ju|p
)1/p

+ Crm−j
(ˆ

B(x,2r)

|Ḣ|q
)1/q

for some constant C depending only on p, q, the dimension d, the constants λ and
Λ in the bounds (1.9) and (1.10), and the Lipschitz character of Ω.

Let Ω ⊂ Rd be a Lipschitz domain, let x ∈ ∂Ω, and let ~u ∈ Ẇ 2
m(B(x, 2r))

with L~u = 0 in Ω ∩ B(x, 2r). Suppose that either A satisfies the ellipticity condi-

tion (1.10) and ṪrΩ
k ~u = 0 on ∂Ω ∩ B(x, 2r) for all 0 ≤ k ≤ m − 1, or A satisfies

the ellipticity condition (1.18) and ṀΩ
A,0 ~u = 0 on ∂Ω ∩B(x, 2r).

Then if 0 ≤ j ≤ m, 0 < p <∞, and 0 < q ≤ 2, then(ˆ
B(x,r)∩Ω

|∇ju|q
)1/q

≤ C

rd/p−d/q

(ˆ
B(x,2r)∩Ω

|∇ju|p
)1/p

.

As a consequence we have the following equivalence between the averaged norms
Ẇ q,σ
m,av(T ) and unaveraged norms.

Lemma 2.4. Let T be an open set. If 0 < q ≤ 2 and σ ∈ R, then

(2.5)

ˆ
T

|Ψ̇(x)|q dist(x, ∂T )q−1−qσ dx ≤ C‖Ψ̇‖q
Lq,σav (T )

for all Ψ̇ ∈ Lq,σav (T ), where C depends only on q and σ.

Conversely, suppose that ~u ∈ Ẇ 2
m,loc(T ) (that is, suppose that ∇m~u is locally

square-integrable in T ). Let 0 < q ≤ ∞ and let σ ∈ R. Let L be an operator of the
form (1.1), defined in the weak sense of formula (1.5), associated to coefficients A

that satisfy the bounds (1.9) and (1.10). Suppose that L~u = divm Ḣ in T for some
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Ḣ ∈ Lq,σav (Ω). Then

‖~u‖q
Ẇ q,σ
m,av(T )

=

ˆ
T

( 
B(x,dist(x,∂T )/2)

|∇m~u|2
)q/2

dist(x, ∂T )q−1−qσ dx

≤ C
ˆ
T

|∇m~u(x)|q dist(x, ∂T )q−1−qσ dx+ C‖Ḣ‖q
Lq,σav (T )

for some constant C depending only on q, σ and the quantities mentioned in The-
orem 2.3.

Proof. It is straightforward to establish that
ˆ
T

|Ψ̇(x)|q dist(x, ∂T )q−1−qσ dx ≈
ˆ
T

( 
B(x,a dist(x,∂T ))

|Ψ̇|q
)

dist(x, ∂T )q−1−qσ dx

for any 0 < a < 1, with comparability constants depending only on a, q and σ. By
Hölder’s inequality, if q ≤ 2 then the inequality (2.5) is valid.

Conversely, by Theorem 2.3,( 
B(x,dist(x,∂T )/2)

|∇m~u|2
)1/2

≤ C
( 

B(x,(3/4) dist(x,∂T ))

|∇m~u|q
)1/q

+ C

( 
B(x,(3/4) dist(x,∂T ))

|Ḣ|2
)1/2

.

It may easily be shown (see [6, Section 3]) that

‖Ḣ‖q
Lq,σav (T )

≈
ˆ
T

( 
B(x,a dist(x,∂T ))

|Ḣ|2
)q/2

dist(x, ∂T )q−1−qσ dx

for any 0 < a < 1, and so the proof is complete. �

We now establish existence of solutions. By [5, Lemma 4.1], we need only con-

sider the case of homogeneous boundary data ḟ = 0 or ġ = 0.
We begin by considering boundary value problems for the differential equation

L~u = divm Φ̇, where Φ̇ is supported in a Whitney ball.

Lemma 2.6. Let L, Ω, p, s, q−, and σ− satisfy the conditions of Theorem 1.8.

Let Φ̇ ∈ L2(Ω) and suppose that supp Φ̇ ⊂ B(x0,dist(x0, ∂Ω)/2) for some x0 ∈ Ω.

Let ~u ∈ Ẇ q−,σ−
m,av (Ω) be the solution to the problem (1.12) or (1.19). Let 0 < h <

1, and let Γ(x0) = Γh(x0) = {x ∈ Ω : |x0 − x| < 1
h dist(x, ∂Ω)}.

Then ~u satisfies the estimate
ˆ

Γ(x0)

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx ≤ C‖Φ̇‖p
Lp,sav (Ω)

where C depends on h, p, s, q−, σ− and the standard parameters.

Proof. We have that p ≤ 2. Thus, by the bound (2.5),
ˆ

Γ(x0)

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx ≤ ‖1Γ(x0)∇m~u‖pLp,sav (Ω)
.
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If x ∈ Ω and B(x,dist(x, ∂Ω)/2) ∩ Γ(x0) 6= ∅, then there is some y such that

|x− x0| < |x0 − y|+
1

2
dist(x, ∂Ω) <

1

h
dist(y, ∂Ω) +

1

2
dist(x, ∂Ω)

≤ 1

h
(dist(x, ∂Ω) + |x− y|) +

1

2
dist(x, ∂Ω) <

3 + h

2h
dist(x, ∂Ω)

and so x ∈ Γ̃(x0) = Γ2h/(3+h)(x0).
Because q− > p, we may use Hölder’s inequality to see that

‖1Γ(x0)∇m~u‖pLp,sav (Ω)

≤
(ˆ

Γ̃(x0)

( 
B(x,dist(x,∂Ω)/2)

|∇m~u|2
)q−/2

dist(x, ∂Ω)q−−1−q−σ− dx

)p/q−
×
(ˆ

Γ̃(x0)

dist(x, ∂Ω)(σ−−s)pq−/(q−−p)−1 dx

)1−p/q−
.

The exponent (σ− − s)pq−/(q− − p)− 1 is negative, and in particular is less than

−d. Applying the definition of Γ̃(x0) yields that (for δ = dist(x0, ∂Ω)),ˆ
Γ̃(x0)

dist(x, ∂Ω)(σ−−s)pq−/(q−−p)−1 dx

≤ Cδd−1+(σ−−s)pq−/(q−−p) + C

ˆ
Rd\B(x0,δ/2)

(h|x− x0|)(σ−−s)pq−/(q−−p)−1 dx

≤ Cδd(hδ)(σ−−s)pq−/(q−−p)−1.

By assumption, ‖~u‖
Ẇ
q−,σ−
m,av (Ω)

≤ C‖Φ̇‖
L
q−,σ−
av (Ω)

. But because Φ̇ is supported in

B(x0, δ/2), we have that

(2.7) ‖Φ̇‖Lq,σav (Ω) ≈ δ1−d/2+(d−1)/q−σ‖Φ̇‖L2(B(x0,δ/2))

for any σ ∈ R and any 0 < q ≤ ∞, and soˆ
Γ(x0)

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx ≤ C(h)‖Φ̇‖p
Lp,sav (Ω)

as desired. �

We now come to the remaining region.

Lemma 2.8. Suppose that the conditions of Theorem 1.8 are valid and let p, s be
as in Theorem 1.8. Let Φ̇ and ~u be as in Lemma 2.6.

If h > 0 is small enough (depending only on the Lipschitz character of Ω and
not on the choice of x0), then

(2.9)

ˆ
Ω\Γ(x0)

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx ≤ C(h)‖Φ̇‖p
Lp,sav (Ω)

.

We will prove this lemma in the next section, and complete the proof of Theo-
rem 1.8 in Section 4.

3. Proof of Lemma 2.8

We will begin (Section 3.1) by treating the case where x0 is far from ∂Ω; we will
treat the more useful but much more intricate case of x0 near ∂Ω in Section 3.2.

Throughout this section we will let δ = dist(x0, ∂Ω).
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3.1. The case of x0 far from ∂Ω. If ∂Ω is bounded but Ω is not, we must consider
the case where δ = dist(x0, ∂Ω) ≥ diam ∂Ω.

Recall that if x ∈ Ω \ Γ(x0), then dist(x, ∂Ω) < h|x− x0|. An elementary
argument involving the triangle inequality yields that |x− x0| < 1

1−h (diam(∂Ω) +

dist(x0, ∂Ω)). Thus,

(3.1) Ω ⊂ Γ(x0) ∪B
(
x0,

diam Ω + dist(x0, ∂Ω)

1− h

)
.

Thus, we wish to bound ~u in a ball.
We begin with the following lemma.

Lemma 3.2. Let Ω ⊂ Rd be an open set, let s < σ, and let 0 < p ≤ 2. Suppose that
0 < q ≤ ∞ is such that s − d−1

p ≤ σ − d−1
q . Let x0 ∈ Ω and let R > dist(x0, ∂Ω).

Thenˆ
Ω∩B(x0,R)

|Ψ̇(x)|p dist(x, ∂Ω)p−1−ps dx ≤ CR(d−1)(1−p/q)+pσ−ps‖Ψ̇‖p
Lq,σav (Ω)

.

Proof. If x ∈ Ω, let B(x,Ω) = B(x, dist(x, ∂Ω)/2). Let V = Ω∩B(x0, 7R); observe
that if x ∈ B(x0, R), then dist(x, ∂Ω) = dist(x, ∂V ). Thus,ˆ

Ω∩B(x0,R)

|Ψ̇(x)|p dist(x, ∂Ω)p−1−ps dx =

ˆ
V

|1B(x0,R)Ψ̇(x)|p dist(x, ∂V )p−1−ps dx.

By the bound (2.5), and because p ≤ 2,ˆ
V

|1B(x0,R)Ψ̇(x)|p dist(x, ∂V )p−1−ps dx ≤ C‖1B(x0,R)Ψ̇‖pLp,sav (V )
.

By [5, Lemma 3.7], and because diamV ≤ 14R, we have that

‖1B(x0,R)Ψ̇‖Lp,sav (V ) ≤ CR(d−1)(1/p−1/q)+σ−s‖1B(x0,R)Ψ̇‖Lq,σav (V ).

If x ∈ Ω and B(x,dist(x, ∂Ω)/2) ∩ B(x0, R) 6= ∅, then we may show using the
triangle inequality that dist(x, ∂Ω) ≤ dist(x, ∂B(x0, 7R)) and so dist(x, ∂Ω) =
dist(x, ∂V ). Thus,

‖1B(x0,R)Ψ̇‖Lq,σav (V ) = ‖1B(x0,R)Ψ̇‖Lq,σav (Ω) ≤ ‖Ψ̇‖Lq,σav (Ω)

as desired. �

Let ~u+ ∈ Ẇ q+,σ+
m,av (Ω) be the solution to the problem (1.16) or (1.19). Because Ω

is unbounded, by assumption ~u+ = ~u. By Lemma 3.2 with Ψ̇ = ∇m~u, q = q+ and
σ = σ+, we have that

ˆ
Ω∩B(x0,2δ/(1+h))

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx

≤ C(h) δ(d−1)(1−p/q)+pσ−ps‖~u‖p
Ẇ
q+,σ+
m,av (Ω)

.

By assumption ‖~u‖
Ẇ
q+,σ+
m,av (Ω)

≤ ‖Φ̇‖
L
q+,σ+
av (Ω)

, and so by the bound (2.7) we have

that ˆ
Ω∩B(x0,2δ/(1−h))

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx ≤ C(h)‖Φ̇‖p
Lp,sav (Ω)

.

By Lemma 2.6 and the inclusion (3.1), we have that Lemma 2.8 is valid whenever
dist(x0, ∂Ω) ≥ diam ∂Ω.
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3.2. The case of x0 near ∂Ω. Throughout this section we will assume that δ =
dist(x0, ∂Ω) < diam ∂Ω. (If Ω is a Lipschitz graph domain then diam ∂Ω =∞ and
so this is true for all x0 ∈ Rd; if Ω is bounded then this is true for all x0 ∈ Ω.)

Let Ξ = Ω \ Γ(x0). Observe that Ξ is a set of points lying near ∂Ω and far
from x0. We wish to cover Ξ by simply connected regions T ⊂ Ω with primary
Lipschitz constant M0, and then use well posedness of the problem (1.14) or (1.20)
in T to bound ~u in T .

We define the regions T as follows.

Definition 3.3. Recall from Definition 2.1 and [6, Definition 2.2] that V is a
Lipschitz graph domain with primary Lipschitz constant M if there is some system
of coordinates and some Lipschitz function ψ : Rd−1 7→ R with ‖∇ψ‖L∞(Rd−1) ≤M
and with V = {(x′, t) : x′ ∈ Rd−1, t > ψ(x′)}. Furthermore, if Ω is a Lipschitz
domain, then either Ω = V for some Lipschitz graph domain V or there is some
c0 > 0 and some rΩ > 0 such that, if z ∈ ∂Ω, then there is a Lipschitz graph
domain V such that B(z, rΩ/c0) ∩ Ω = B(z, rΩ/c0) ∩ V .

Choose some z ∈ ∂Ω. In the coordinates associated with the Lipschitz graph
domain V , we write z = (z′, t0).

If ρ > 0, then let K(z, ρ) be the cone {(y′, t) : M0|y′ − z′| < t− t0 +M0ρ} with
vertex at (z′, t0 −M0ρ) and with slope M0. Because ‖∇ψ‖L∞(Rd−1) ≤M , we have
that

V ⊃ {(y′, t) : t > t0 +M |y′ − z′|}
and it is straightforward to establish that if M < M0 then

{(y′, t) : t > t0 +M |y′ − z′|} ⊃ K(z, ρ) ∩ {(y′, t) : t > t0 +MM0ρ/(M0 −M)}.

Let B be the ball with center on the axis of K such that ∂B is tangent to ∂K and
such that

∂B ∩ ∂K = {(y′, t0 +MM0ρ/(M0−M) + ρ) : |y′ − z′| = M0ρ/(M0−M) + ρ/M0}.

We let

K̃(z, ρ) = K(z, ρ) ∩ {(y′, t) : t < t0 +MM0ρ/(M0 −M) + ρ},

T̃ (z, ρ) = K̃(z, ρ) ∪B, T (z, ρ) = T̃ (z, ρ) ∩ V.(3.4)

See Figure 3.1.

Then T (z, ρ) is a bounded, simply connected domain with primary Lipschitz
constant M0, and so the Dirichlet problem (1.14) or Neumann problem (1.20) in
T (z, ρ) is well posed.

We now cover Ξ by tents of this form.

Lemma 3.5. Let Ω be a Lipschitz domain, let x0 ∈ Ω with dist(x0, ∂Ω) < diam ∂Ω,
and let Ξ be as given above. If h > 0 is small enough, depending only on the
Lipschitz character of Ω and not on our choice of x0 ∈ Ω, then there exist constants
C1 > 0, C2 > 0 and a (finite or countable) set of points {zj} ⊂ ∂Ω such that the
following conditions hold.

• Ξ ⊂
⋃
j T (zj , |zj − x0|/2C1).

• if x ∈ Ξ then x ∈ T (zj , |zj − x0|/C1) for at most C2 values of j.
• If k is an integer, then 2k ≤ |zj − x0| ≤ 2k+1 for at most C2 values of j.
• T (zj , |zj − x0|/C1) ⊂ Ω for all j, and so ~u is defined in T (zj , |zj − x0|/C1).
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z

ρ

ρ

slope M

slope M0

T (z, ρ)

∂V

Figure 3.1. The tent T (z, ρ).

• If T = T (zj , |zj − x0|/C1) and T̃ = T̃ (zj , |zj − x0|/C1), then ∂T ∩ ∂V =

∂T ∩ ∂Ω = ∂T \ ∂T̃ .
• T (zj , |zj − x0|/C1)∩B(x0, δ/2) = ∅, and so L~u = 0 in T (zj , |zj − x0|/C1).

Proof. We may ensure T (zj , |zj − x0|/C1) ∩ B(x0, δ/2) = ∅ by choosing C1 large
enough that T (z, ρ/C1) ⊂ B(z, ρ/2) for all z ∈ ∂Ω and all ρ > 0.

Let x ∈ Ξ = {x ∈ Ω : dist(x, ∂Ω) ≤ h|x− x0|}. An elementary argument
involving the triangle inequality shows that, if z ∈ ∂Ω with |x− z| = dist(x, ∂Ω),
then |x− z| ≤ (h/(1 − h))|z − x0|. Thus, x ∈ B(z, (h/(1 − h))|z − x0|) ∩ Ω. For
any given C1 > 0, we may choose h small enough that B(z, (h/(1− h))|z − x0|) ⊂
T̃ (z, |z − x0|/4C1). Thus,

Ξ ⊂
⋃
z∈∂Ω

T̃ (z, |z − x0|/4C1) ∩ Ω,

and we may choose zj such that

Ξ ⊂
∞⋃
j=1

T̃ (zj , |zj − x0|/2C1) ∩ Ω

and such that if x ∈ Rd then x ∈ T̃ (zj , |zj − x0|/C1) for at most C3 values of j, for
some large constant C3; thus, |zj − x0| ≈ 2k for at most C2 = C3C4 values of j,
where C4 ≥ 1.

It remains to choose C1 large enough that

T̃ (zj , |zj − x0|/C1) ∩ Ω = T̃ (zj , |zj − x0|/C1) ∩ V = T (zj , |zj − x0|/C1)

for any such j.
If Ω is a Lipschitz graph domain then V = Ω and there is nothing to do. Oth-

erwise, observe that |zj − x0| < 2 diam ∂Ω. We may choose C1 large enough that

T̃ (z, 2 diam ∂Ω/C1) ∩ Ω = T (z, 2 diam ∂Ω/C1) for all z ∈ ∂Ω. This completes the
proof. �
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Thus, given the above choices of C1 and h, if dist(x0, ∂Ω) < diam ∂Ω then the
right-hand side of

(3.6)

ˆ
Ξ

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx

≤ C2

∑
j

ˆ
T (zj ,|zj−x0|/2C1)

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx

is meaningful and the inequality is valid. We need only bound the sum on the right
hand side.

Fix some such j. Let R = |zj − x0|/C1, and let Tµ = T (zj , µR) and T̃µ =

T̃ (zj , µR) for any 1/2 ≤ µ ≤ 1. Recall that T1 ⊂ Ω and that Φ̇ = 0 in T1. We wish
to bound the integral over T1/2. By Hölder’s inequality and because p < q̃+,

ˆ
T1/2

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx

≤
(ˆ

T1/2

|∇m~u(x)|q̃+ dist(x, ∂Ω)q̃+−1−q̃+σ̃+ dx

)p/q̃+
×
(ˆ

T1/2

dist(x, ∂Ω)(σ̃+−s)pq̃+/(q̃+−p)−1 dx

)1−p/q̃+
.

Evaluating the second integral, we have that

ˆ
T1/2

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx

≤ CR(d−1)(1−p/q̃+)+(σ̃+−s)p
(ˆ

T1/2

|∇m~u(x)|q̃+ dist(x, ∂Ω)q̃+−1−q̃+σ̃+ dx

)p/q̃+
.

We wish to bound the right-hand side.

Lemma 3.7. If x ∈ T1/2 and 3/4 ≤ µ ≤ 1, then dist(x, ∂Ω) ≈ dist(x, ∂Tµ).

Proof. Observe that T1 ⊂ Ω, and so if x ∈ T1/2 and 1/2 ≤ µ ≤ 1 then dist(x, ∂Ω) ≥
dist(x, ∂Tµ).

Conversely, suppose that x ∈ T1/2 and 3/4 ≤ µ ≤ 1. Then either dist(x, ∂Tµ) =

dist(x, ∂Tµ ∩ ∂Ω) ≥ dist(x, ∂Ω) or dist(x, ∂Tµ) = dist(x, ∂Tµ ∩ ∂T̃µ).

If dist(x, ∂Tµ) = dist(x, ∂Tµ∩∂T̃µ), then dist(x, ∂Tµ) ≥ dist(T1/2, ∂T̃3/4) = R/C.
But dist(x, ∂Ω) < RC for all x ∈ T1/2, and so dist(x, ∂Ω) ≤ C dist(x, ∂Tµ) for all
x ∈ T1/2 and all 3/4 ≤ µ ≤ 1, as desired. �

Thus, if 3/4 ≤ µ ≤ 1 then(ˆ
T1/2

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx

)q̃+/p
≤ CR(d−1)(q̃+/p−1)+(σ̃+−s)q̃+

ˆ
Tµ

|∇m~u(x)|q̃+ dist(x, ∂Tµ)q̃+−1−q̃+σ̃+ dx.

We now wish to apply the bounds (1.14) and (1.20) to bound the right hand

side. Thus, we must show that ~u ∈ Ẇ q̃+,σ̃+
m,av (Tµ) for some 3/4 ≤ µ ≤ 1. Because
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~u ∈ Ẇ q−,σ−
m,av (Ω), we have that ~u ∈ Ẇ 2

m,loc(Tµ) for any 0 < µ < 1. Furthermore,
L~u = 0 in Tµ, and so by Lemma 2.4,

‖~u‖q̃+
Ẇ
q̃+,σ̃+
m,av (Tµ)

≈
ˆ
Tµ

|∇m~u(x)|q̃+ dist(x, ∂Tµ)q̃+−1−q̃+σ̃+ dx.

Observe that

 5/6

3/4

ˆ
Tµ

|∇m~u(x)|q̃+ dist(x, ∂Tµ)q̃+−1−q̃+σ̃+ dx dµ

≤ 12

ˆ
T5/6

|∇m~u(x)|q̃+
ˆ 5/6

3/4

dist(x, ∂Tµ)q̃+−1−q̃+σ̃+ dµ dx

≤ C
ˆ
T5/6

|∇m~u(x)|q̃+ dist(x, ∂Ω)q̃+−1−q̃+σ̃+ dx.

As in Section 3.1, let ~u+ ∈ Ẇ
q+,σ+
m,av (Ω) be the solution to the problem (1.16)

or (1.19). By [5, Corollary 3.8] or by assumption, we have that ~u = ~u+ and so

~u ∈ Ẇ q+,σ+
m,av (Ω). If σ̃+ = σ+ and q̃+ = q+, then by the bound (2.5),ˆ

T5/6

|∇m~u(x)|q̃+ dist(x, ∂Ω)q̃+−1−q̃+σ̃+ dx ≤ C‖~u‖q+
Ẇ
q+,σ+
m,av (Ω)

<∞

and so for almost every µ ∈ (3/4, 5/6) we have that

(3.8) ‖~u‖q̃+
Ẇ
q̃+,σ̃+
m,av (Tµ)

≤ C
ˆ
Tµ

|∇m~u(x)|q̃+ dist(x, ∂Tµ)q̃+−1−q̃+σ̃+ dx <∞.

Thus, we may apply the bounds (1.14) or (1.20) to ~u in Tµ.
If σ̃+ < σ+, then by Lemma 3.2 with p = q̃+, s = σ̃+, and because T5/6 ⊂

B(zj , CR), we have that

(3.9)

ˆ
T5/6

|∇m~u(x)|q̃+ dist(x, ∂Ω)q̃+−1−q̃+σ̃+ dx

≤ CR(d−1)(1−q̃+/q+)+q̃+σ+−q̃+σ̃+‖~u‖q̃+
Ẇ
q+,σ+
m,av (Ω)

<∞

and we may still apply the bounds (1.14) or (1.20).

Thus, if ṪrΩ
m−1 ~u = 0 and the inequality (1.14) is valid, then

(3.10)

(ˆ
T1/2

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx

)q̃+/p
≤ CR(d−1)(q̃+/p−1)+(σ̃+−s)q̃+

ˆ 5/6

3/4

‖Ṫr
Tµ
m−1 ~u‖

q̃+

ẆA
q̃+
m−1,σ̃+

(∂Tµ)
dµ.

If ṀΩ
A,Φ̇

~u = 0 and the inequality (1.20) is valid, then

(3.11)

(ˆ
T1/2

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx

)q̃+/p
≤ CR(d−1)(q̃+/p−1)+(σ̃+−s)q̃+

ˆ 5/6

3/4

‖ṀTµ
A,0 ~u‖

q̃+

ṄA
q̃+
m−1,σ̃+−1

(∂Tµ)
dµ.
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By the bounds (3.8) and (3.9) and by [6, Theorems 5.1 and 7.1], Ṫr
Tµ
m−1 ~u ∈

ẆA
q̃+
m−1,σ̃+

(∂Tµ) and Ṁ
Tµ
A,0 ~u ∈ ṄA

q̃+
m−1,σ̃+−1(∂Tµ) for almost every µ with 3/4 ≤

µ ≤ 5/6.
To complete the bounds on ∇m~u in T1/2, we must bound the respective right

hand sides.

Lemma 3.12. Let 0 < σ < 1 and let 1 < q < ∞, and let T be a bounded simply
connected Lipschitz domain.

If ḟ ∈ ẆAqm−1,σ(∂T ), and if ∇τ ḟ ∈ Lq(∂T ), where ∇τ denotes the gradient
along ∂T , then

‖ḟ‖ẆAqm−1,σ(∂T ) ≤ C (diamT )1−σ‖∇τf‖Lq(∂T ).

Proof. Recall from [6, Section 2.2] that if 0 < σ < 1 and q ≥ 1, then

‖ḟ‖q
ẆAqm−1,σ(∂T )

= ‖ḟ‖q
Ḃq,qσ (∂T )

≈
ˆ
∂T

ˆ
∂T

|ḟ(x)− ḟ(y)|q

|x− y|d−1+qσ
dσ(x) dσ(y).

We may assume without loss of generality that
´
∂T
ḟ dσ = 0. By rescaling, it

suffices to prove this theorem in the case where diamT = 1.
Recall that Ẇ q

1 (∂T ) denotes a homogeneous Sobolev space. Let W q
1 (∂T ) denote

the inhomogeneous Sobolev space with norm

‖f‖W q
1 (∂T ) = ‖f‖Lq(∂T ) + ‖f‖Ẇ q

1 (∂T ) = ‖f‖Lq(∂T ) + ‖∇τf‖Lq(∂T ).

It is well known (see, for example, [23, formulas (2.401), (2.421), (2.490)]) that

‖f‖(Lq(∂T ),W q
1 (∂T ))σ,q ≈ ‖f‖Lq(∂T ) + ‖f‖Ḃq,qσ (∂T )

where ( · , · )σ,q denotes the real interpolation functor of Lions and Peetre defined
in, for example, [12, Chapter 3]. By standard properties of interpolation spaces,

‖f‖(Lq(∂T ),W q
1 (∂T ))σ,q ≤ C‖f‖

1−σ
Lq(∂T )‖f‖

σ
W q

1 (∂T ).

By the Poincaré inequality, ‖f‖Lq(∂T ) ≤ C‖∇τf‖Lq(∂T ). Thus, ‖f‖Ḃq,qσ (∂T ) ≤
C‖∇τf‖Lq(∂T ), as desired. �

Lemma 3.13. Let z ∈ ∂Ω and ρ > 0, and let T = T (z, ρ). Recall the Lipschitz
graph domain V in the definition of T . Suppose that ∇m~u ∈ L1(T ), that L~u = 0

in T , and that ṀT
A,0 ~u = 0 on ∂T ∩ ∂V .

If 1 < q ≤ ∞ and 0 < σ < 1, then

‖ṀT
A,0 ~u‖

q

ṄAqm−1,σ−1(∂T )
≤ C

ˆ
T

|∇m~u(x)|q dist(x, ∂T \ ∂V )q−1−qσ dx.

Proof. By the duality characterization of ṄAqm−1,σ−1 (see [6, Section 2.2]), we have
that

‖ṀT
A,0 ~u‖ṄAqm−1,σ−1(∂T ) ≈ sup

ϕ̇∈ẆAq
′
m−1,1−σ(∂T )

1

‖ϕ̇‖
ẆAq

′
m−1,1−σ(∂T )

|〈ϕ̇, ṀT
A,0 ~u〉∂T |

where 1/q + 1/q′ = 1.

Choose some ϕ̇ ∈ ẆAq
′

m−1,1−σ(∂T ). By [6, Theorem 4.1], there are functions

~Φi ∈ Ẇ q′,1−σ,∞
m,av (T ) and ~Φe ∈ Ẇ q′,1−σ,∞

m,av (Rd\T ) such that ṪrTm−1
~Φi = Ṫr

Rd\T
m−1

~Φe =
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ϕ̇. Here Ẇ q′,1−σ,r
m,av (T ) and Lq

′,1−σ,r
av (T ) are defined analogously to Ẇ q′,1−σ

m,av (T ) and

Lq
′,1−σ
av (T ), with the norm

‖Ψ̇‖q
′

Lq
′,1−σ,r
av (T )

=

ˆ
T

(
‖Ψ̇‖Lr(B(x,dist(x,∂T )/2))

)q′
dist(x, ∂T )q

′−1−q′(1−σ)−dq′/r dx.

Recall the region T̃ = T̃ (z, ρ) of formula (3.4). Observe that T̃ is also a bounded,

simply connected Lipschitz domain. Furthermore, if x ∈ T , then ∂T ∩∂T̃ = ∂T \∂V
and so dist(x, ∂T \ ∂V ) ≈ dist(x, ∂T̃ ). Let

~Φ(x) =

{
~Φi(x), x ∈ T,
~Φe(x), x ∈ T̃ \ T .

Claim 3.14. We claim that ~Φ ∈ Ẇ q′,1−σ,1
m,av (T̃ ), and that its norm depends only on

‖~Φi‖Ẇ q′,1−σ,∞
m,av (T )

and ‖~Φe‖Ẇ q′,1−σ,∞
m,av (Rd\T )

.

Suppose that this claim is true. Again by [6, Theorem 4.1], there is some ~F ∈
Ẇ q′,1−σ,∞
m,av (T̃ ) with ṪrT̃m−1

~F = ṪrT̃m−1
~Φ. Let

Ġ(x) =

{
A(x)∇m~u(x), x ∈ T,
0 otherwise.

Then

〈ϕ̇, ṀT
A,0 ~u〉∂T = 〈∇m~Φ,A∇m~u〉T = 〈∇m~Φ, Ġ〉T̃ = 〈∇m ~F , Ġ〉T̃

and so

|〈ϕ̇, ṀT
A,0 ~u〉∂T | ≤ C‖∇m ~F‖Lq′,1−σ,∞av (T̃ )

‖Ġ‖Lq,σ,1av (T̃ )

≤ C‖ϕ̇‖
ẆAq

′
m−1,1−σ(∂T )

‖1T∇m~u‖Lq,σ,1av (T̃ ).

Because q ≥ 1, arguing analogously to the proof of the bound (2.5), we may show
that

‖1T∇m~u‖qLq,σ,1av (T̃ )
≤ C

ˆ
T

|∇m~u(x)|q dist(x, ∂T \ ∂V )q−1−qσ dx

and so the proof is complete.
We now must establish the claim; that is, we must bound

ˆ
T̃

( 
B(x,T̃ )

|∇m~Φ|
)q′

dist(x, ∂T̃ )q
′−1−q′(1−σ) dx

where B(x, T̃ ) = B(x, adist(x, ∂T̃ )) for some 0 < a < 1.
Let 0 < η < 1. Let

T1 = {x ∈ T̃ : η dist(x, ∂T̃ ) ≤ dist(x, ∂T ) ≤ 1

η
dist(x, ∂T̃ )},

T2 = {x ∈ T̃ : dist(x, ∂T ) < η dist(x, ∂T̃ )},

T3 = {x ∈ T̃ : dist(x, ∂T̃ ) < η dist(x, ∂T )}.



EXTRAPOLATION OF WELL POSEDNESS 21

If x ∈ T1, then dist(x, ∂T ) ≈ dist(x, ∂T̃ ). Thus,

ˆ
T1∩T

( 
B(x,T̃ )

|∇m~Φ|
)q′

dist(x, ∂T̃ )q
′−1−q′(1−σ) dx ≤ C‖∇m~Φi‖Lq′,1−σ,∞av (T )

,

ˆ
T1\T

( 
B(x,T̃ )

|∇m~Φ|
)q′

dist(x, ∂T̃ )q
′−1−q′(1−σ) dx ≤ C‖∇m~Φe‖Lq′,1−σ,∞av (Rd\T )

.

We now consider T2. Let ∆ = {x′ ∈ Rd−1 : (x′, ψ(x′)) ∈ ∂T ∩ ∂V }. We may
choose η small enough that, if (x′, t) ∈ T2, then x′ ∈ ∆O, where ∆O is the interior
(in Rd−1) of ∆.

Let G be a decomposition of ∆O into Whitney cubes, so ∆O = ∪Q∈GQ, `(Q) ≈
dist(Q,Rd−1 \ ∆O), and if Q and R are distinct cubes in G then Q and R have
disjoint interiors.

Let τ(Q) = {(x′, t) : x′ ∈ Q,ψ(x′)− c0`(Q) < t < ψ(x′) + c0`(Q)} be two-sided
versions of the tents in [6, Lemma 3.7]. By the bound [6, formula (3.8)], we have

that if Ψ̇
∣∣
V
∈ Lq′,s,1av (V ) and Ψ̇

∣∣
Rd\V ∈ L

q′,s,1
av (Rd \ V ), then

∑
Q∈G

( 
τ(Q)

|Ψ̇|
)q′

`(Q)d−1+q′−q′s ≤ C‖Ψ̇‖
Lq
′,s,1
av (V )

+ ‖Ψ̇‖
Lq
′,s,1
av (Rd\V )

.

If a and η are small enough, then

ˆ
T2

( 
B(x,T̃ )

|∇m~Φ|
)q′

dist(x, ∂T̃ )q
′−1−q′(1−σ) dx

≤ C
∑
Q∈G

( 
τ(Q)

|∇m~Φ|
)q′

`(Q)d−1+q′−q′(1−σ)

which by the above remarks is at most

C‖∇m~Φi‖Lq′,1−σ,∞av (T )
+ C‖∇m~Φe‖Lq′,1−σ,∞av (Rd\T )

.

Finally, we come to T3. Observe that T3 ⊂ T̃ \ T is a region lying near ∂T̃ . We
may write T3 ⊂ ∪R∈HR, where H is a collection of pairwise-disjoint cubes in Rd
(not Rd−1) that satisfy `(R) ≈ dist(R, ∂T ).

Then

ˆ
T3

( 
B(x,T̃ )

|∇m~Φ|
)q′

dist(x, ∂T̃ )q
′−1−q′(1−σ) dx

≤ C
∑
R∈H

ˆ
R

( 
B(x,T̃ )

|∇m~Φe|2
)q′/2

dist(x, ∂T̃ )q
′−1−q′(1−σ) dx

and by [6, Lemma 3.6],

ˆ
R

( 
B(x,T̃ )

|∇m~Φ|2
)q′/2

dist(x, ∂T̃ )q
′−1−q′(1−σ) dx ≤ C‖∇m~Φe‖q

′

L∞(R)`(R)d−1+q′σ.

But ∑
R∈H
‖∇m~Φe‖q

′

L∞(R)`(R)d−1+q′σ ≤ C‖∇m~Φe‖Lq′,1−σ,∞av (Rd\T )
.

This completes the proof. �
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By Lemma 3.12 or Lemma 3.13, we may bound the integrands on the right hand
sides of formulas (3.10) and (3.11); evaluating the integrals yields the bound

ˆ
T1/2

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx ≤ CRd+p−1−ps−dp/q̃+‖∇m~u‖p
Lq̃+ (T5/6)

.

Because q̃+ ≤ 2, we may use Hölder’s inequality to see that
ˆ
T1/2

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx ≤ CRd+p−1−ps−dp/2‖∇m~u‖pL2(T5/6).

We now apply [7, Lemmas 9 and 16]; these lemmas are boundary Caccioppoli
inequalities, with Dirichlet or Neumann boundary conditions. This yields the bound
ˆ
T1/2

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx ≤ CRd−1−ps−dp/2‖∇m−1(~u− ~P )‖pL2(T6/7)

where ~P = 0 if ṪrΩ
m−1 ~u = 0, and where ~P is an arbitrary polynomial of degree

m− 1 (and so ∇m−1 ~P is an arbitrary constant array) if ṀΩ
A,Φ̇

~u = 0.

By Theorem 2.3, we have that

(3.15)

ˆ
T1/2

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx

≤ CRd−1−dp/q−−sp‖∇m−1(~u− ~P )‖p
Lq− (T7/8)

.

We must now bound ∇m−1(~u− ~P ) in T7/8. We will use the following lemma.

Lemma 3.16. Let Ω be a Lipschitz domain and let T = T (z, ρ) for some z ∈ ∂Ω
and some ρ > 0 small enough that T (z, (8/7)ρ) ⊂ Ω and ∂T ∩ ∂V = ∂T ∩ ∂Ω. Let
v be a function defined in T and let 0 ≤ τ ≤ ρ(M0 −M)/M0.

Suppose that 1 ≤ q <∞ and σ > 0. Then(ˆ
T

|v(x)|q dx
)1/q

≤ Cρ1/q+σ

(ˆ
T

|∇v(x)|q dist(x, ∂Ω)q−1−qσ dx

)1/q

+ Cρ1/q

(ˆ
(∂V+(0,τ))∩T

|v(x)|q dσ(x)

)1/q

.

Here ∂V + (0, τ) = {x+ (0, τ) : x ∈ ∂V }.

Proof of Lemma 3.16. Let xT be the vertex of the cone T̃ (z, ρ), and let S = {ω ∈
Rd : |ω| = 1, xT + sω ∈ T for some s > 0}. Then there is some a(ω) and b(ω) so
that T = {xT + sω : ω ∈ S, a(ω) < s < b(ω)}. Thus,

ˆ
T

|v(x)|q dx =

ˆ
S

ˆ b(ω)

a(ω)

|v(xT + rω)|q dr rd−1 dσ(ω)

where dσ(ω) denotes surface measure on the unit sphere in Rd.
If ω ∈ S and τ ≥ 0 then there is a unique µ(ω) > 0 such that xT +µ(ω)ω ∈ ∂V +

(0, τ). If 0 ≤ τ ≤ ρ(M0−M)/M0, then xT +µ(ω)ω ∈ T and so a(ω) ≤ µ(ω) ≤ b(ω);
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furthermore, (∂V + (0, τ)) ∩ T = {xT + µ(ω)ω : ω ∈ S}. Then(ˆ
T

|v(x)|q dx
)1/q

≤
(ˆ

S

ˆ b(ω)

a(ω)

∣∣∣∣ˆ r

µ(ω)

|∇v(xT + sω)| ds
∣∣∣∣q rd−1 dr dσ(ω)

)1/q

+

(ˆ
S

|v(xT + µ(ω)ω)|q
ˆ b(ω)

a(ω)

rd−1 dr dσ(ω)

)1/q

.

The second term on the right hand side is at most

C

(
ρ

ˆ
(∂V+(0,τ))∩T

|v(x)|q dσ(x)

)1/q

where dσ(x) denotes surface measure on ∂V + (0, τ).
Let I denote the first term. If q > 1, then by Hölder’s inequality,

Iq ≤ C
ˆ
S

ˆ b(ω)

a(ω)

ˆ b(ω)

a(ω)

|∇v(xT + sω)|q(s− a(ω))q−1−qσ ds

×
(ˆ r

µ(ω)

(s− a(ω))−1+q′σ ds

)q/q′
rd−1 dr dσ(ω).

If σ > 0 and q′ > 0, then the second integral ds converges. Evaluating, we see that

Iq ≤ Cρd+qσ

ˆ
S

ˆ b(ω)

a(ω)

|∇v(xT + sω)|q(s− a(ω))q−1−qσ ds dσ(ω).

If q = 1 and σ > 0, then q − 1 − qσ = −σ < 0 and it is straightforward to show
that this inequality is still valid.

Observe that if a(ω) < s < b(ω), then s ≈ ρ and s − a(ω) ≈ dist(xT + sω, ∂Ω).
Thus,

Iq ≤ Cρ1+qσ

ˆ
T

|∇v(x)|q dist(x, ∂Ω)q−1−qσ dx.

This completes the proof. �

If ṪrΩ
m−1 ~u = 0, then applying the bound (3.15) and Lemma 3.16 with v =

∇m−1~u and τ = 0 yields that

(3.17)

ˆ
T1/2

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx

≤ CR(d−1)(1−p/q−)−sp+pσ−
(ˆ

T7/8

|∇m~u(x)|q− dist(x, ∂Ω)q−−1−q−σ−
)p/q−

.

If ṀΩ
A ~u = 0, then averaging over a range of τ yields that

ˆ
T1/2

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx

≤ CR(d−1)(1−p/q−)−sp+pσ−
(ˆ

T7/8

|∇m~u(x)|q− dist(x, ∂Ω)q−−1−q−σ− dx

)p/q−
+ CRd−1−dp/q−−sp

(ˆ
U

|∇m−1~u(x)−∇m−1 ~P (x)|q− dx
)p/q−
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for an open set U ⊂ T7/8 with dist(U, ∂Ω) ≥ R/C. Choosing ~P appropriately and
applying the Poincaré inequality, we see that the bound (3.17) is still valid.

Because q− ≤ 2, by the bound (2.5) we have thatˆ
T7/8

|∇mu(x)|q− dist(x, ∂Ω)q−−1−q−σ− dx ≤ C‖~u‖q−
Ẇ
q−,s−
m,av (Ω)

.

By the bounds (3.6) and (3.17), we have thatˆ
Ξ

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx

≤ C‖∇m~u‖p
Ẇ
q−,s−
m,av (Ω)

∑
j

|zj − x0|d−1−sp−(d−1)p/q−+pσ− .

Observe that d− 1− sp− (d− 1)p/q− + pσ− < 0. Recall that for any k ≥ 0, there
are at most C points zj with 2k ≤ |zj − x0| ≤ 2k+1. Thus, the sum may be bounded
by a convergent geometric series, and we have thatˆ

Ξ

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx

≤ C‖∇m~u‖p
Ẇ
q−,σ−
m,av (Ω)

dist(x0, ∂Ω)d−1−sp−(d−1)p/q−+pσ− .

Recall that ‖∇m~u‖
Ẇ
q−,s−
m,av (Ω)

≤ C‖Φ̇‖
L
q−,s−
av (Ω)

. Thus, by the bound (2.7),ˆ
Ξ

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx ≤ C‖Φ̇‖p
Lp,sav (Ω)

.

This completes the proof of Lemma 2.8.

4. Proof of Theorem 1.8

Let G be a grid of Whitney cubes in Ω; then Ω = ∪Q∈GQ, the cubes in G have
pairwise-disjoint interiors, and if Q ∈ G then the side-length `(Q) of Q satisfies

`(Q) ≈ dist(Q, ∂Ω). As observed in [6, Section 3], if 0 < p <∞ and Ḣ ∈ Lp,sav (Ω),
then

‖Ḣ‖Lp,sav (Ω) ≈
(∑
Q∈G

( 
Q

|Ḣ|2
)p/2

`(Q)d−1+p−ps
)1/p

where the comparability constants depend on p, s, and the comparability constants
for Whitney cubes in the relation `(Q) ≈ dist(Q, ∂Ω).

Choose some Ḣ ∈ Lp,sav (Ω). For each Q ∈ G, let ~uQ ∈ Ẇ
q−,σ−
m,av (Ω) be as in

Lemma 2.8 with Φ̇ = 1QḢ.
Because p ≤ 1, we have that∥∥∥∑

Q∈G
~uQ

∥∥∥p
Ẇp,s
m,av(Ω)

≤
∑
Q∈G
‖~uQ‖pẆp,s

m,av(Ω)
≤
∑
Q∈G

‖~uQ‖pẆp,s
m,av

‖1QḢ‖pLp,sav
‖1QḢ‖pLp,sav (Ω)

.

By Lemmas 2.4 and 2.8, we have that

‖~uQ‖Ẇp,s
m,av(Ω) ≤ C‖1QḢ‖Lp,sav (Ω)

for all Q, and so∥∥∥∑
Q∈G

~uQ

∥∥∥p
Ẇp,s
m,av(Ω)

≤ C
∑
Q∈G
‖1QḢ‖pLp,sav (Ω)

≤ C2‖Ḣ‖p
Lp,sav (Ω)

.
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Thus, for any Ḣ ∈ Lp,sav (Ω) there exists a solution ~u =
∑
Q ~uQ to the problem

(1.2) or (1.3) with boundary data ḟ = 0 or ġ = 0. By [5, Lemma 4.1], we may
extend to arbitrary boundary values. Finally, recall that by Lemma 2.2, we have
uniqueness of solutions to the problems (1.2) or (1.3). This completes the proof of
Theorem 1.8.

5. Known results in the notation of the present paper

In Section 1.1, we described new well posedness results arising from Theorem 1.8
and from known results from [20] and from [21, 22]. However, the results of [20]

and [21, 22] were stated not in terms of the spaces Lp,sav (Ω) and Ẇ p,s
m,av(Ω) of the

present paper, but in terms of other, related spaces. In [5, Section 6.1], results in

terms of Lp,sav (Ω) and Ẇ p,s
m,av(Ω) were derived from the results of [22]; in this section,

we shall similarly derive results in terms of Lp,sav (Ω) and Ẇ p,s
m,av(Ω) from the results

of [20].
We begin by recalling the following result from [20].

Theorem 5.1 ([20, Theorem 8.1]). Let Ω ⊂ Rd be a bounded Lipschitz domain and
let L be an elliptic differential operator of order 2m of the form (1.1), defined in the
weak sense of formula (1.5), associated to coefficents A that satisfy the ellipticity
conditions (1.9) and (1.10).

Then there is some c > 0 such that, if 0 < s < 1, 1 < p <∞, and

(5.2) δ(A,Ω) ≤ c s
2(1− s)2(1/p)(1− 1/p)

s(1− s) + (1/p)(1− 1/p)

where δ(A,Ω) is as in formula (1.23), then the Dirichlet problem{
L~u = F in Ω, ∂kν~u = gk on ∂Ω for 0 ≤ k ≤ m− 1,

‖~u‖Wp,s
m (Ω) ≤ C‖~g‖Wp

m−1+s(∂Ω) + C‖F‖V p,s−m(Ω)

is well posed.

Here V p,s−m(Ω) is the dual space V p
′,1−s

m (Ω)
∗

to V p
′,1−s

m (Ω), and

‖~u‖Wp,s
m (Ω) =

( ∑
|α|≤m

ˆ
Ω

|∂α~u(x)|p dist(x, ∂Ω)p−1−ps dx

)1/p

,

‖~u‖V p,sm (Ω) =

( ∑
|α|≤m

ˆ
Ω

|∂α~u(x)|p dist(x, ∂Ω)p−1−ps+p|α|−pm dx

)1/p

.

For convenience, we will treat the case ~g = 0, avoiding the W p
m−1+s(∂Ω) norms,

and use [5, Lemma 4.1] to contend with boundary values. By [20, Theorem 7.8],

(5.3) V p,sm (Ω) = {~u ∈W p,s
m (Ω) : ṪrΩ

k ~u = 0 for all 0 ≤ k ≤ m− 1}.

We remark that, if 0 < s < 1 and 0 < 1/p < 1, then

1

8
min(s, 1− s, 1/p, 1− 1/p)2 ≤ s2(1− s)2(1/p)(1− 1/p)

s(1− s) + (1/p)(1− 1/p)

and that a bound on min(s, 1− s, 1/p, 1− 1/p) (rather than the more complicated
condition (5.2)) is more convenient to apply in the context of Theorem 1.8.

In this section we will derive the following well posedness result.
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Theorem 5.4. Let Ω and A be as in Theorem 5.1. Suppose furthermore that ∂Ω
is connected. If 1 < p <∞, 0 < s < 1 and the condition (5.2) is satisfied, then the
Dirichlet problem (1.2) is well posed.

Proof. By [5, Theorems 4.7 and 4.12], we need only consider the case p ≤ 2. By [5,

Lemma 4.1], we need only consider the case ḟ = 0.

We begin with uniqueness. Suppose that L~u = 0 in Ω, that ṪrΩ
m−1 ~u = 0, and

that ~u ∈ Ẇ p,s
m,av(Ω). We may normalize ~u so that ṪrΩ

k ~u = 0 for all 0 ≤ k ≤ m− 1.
It suffices to show that ~u ∈ V p,sm (Ω), for then ~u ∈ W p,s

m (Ω) and so by Theorem 5.1
must be zero.

Let V = {(x′, t) : t > ψ(x′)} be a Lipschitz graph domain and suppose that

ṪrVk ~v = 0 for any 0 ≤ v ≤ m− 1. We may write

ˆ
V

|∇k~v(x)|p dist(x, ∂V )p−1−ps+pk−pm dx

≈
ˆ
Rd−1

ˆ ∞
0

|∇k~v(x′, t+ ψ(x′))|ptp−1−ps+pk−pm dt dx′.

If 0 ≤ k ≤ m− 1, then

ˆ
V

|∇k~v(x)|p dist(x, ∂V )p−1−ps+pk−pm dx

≤ C
ˆ
Rd−1

ˆ ∞
0

∣∣∣∣ˆ t

0

|∇k+1~v(x′, r + ψ(x′))| dr
∣∣∣∣ptp−1−ps+pk−pm dt dx′.

By Hölder’s inequality, for any θ ∈ R with p′θ < 1, we have that

ˆ
V

|∇k~v(x)|p dist(x, ∂V )p−1−ps+pk−pm dx′

≤ C
ˆ
Rd−1

ˆ ∞
0

ˆ t

0

|∇k+1~v(x′, s+ ψ(x′))|prpθ dr tp−1−ps+pk−pm+p/p′−pθ dt dx′.

Changing the order of integration, we see that if p−ps+pk−pm+p/p′ < pθ, then

ˆ
V

|∇k~v(x)|p dist(x, ∂V )p−1−ps+pk−pm dx′

≤ C
ˆ
Rd−1

ˆ ∞
0

|∇k+1~v(x′, r + ψ(x′))|prp−ps+pk−pm+p/p′ dr dx′

≈
ˆ
V

|∇k+1~v(x)|p dist(x, ∂V )p−1−ps+p(k+1)−pm dx.

If s > 0 and k ≤ m− 1, then there is a θ that satisfies both of the conditions given
above. By induction, we have that

‖~v‖V p,sm (V ) ≤ C
ˆ
V

|∇m~v(x)|p dist(x, ∂V )p−1−ps dx.

A standard patching argument shows that if Ω is a bounded Lipschitz domain and
ṪrΩ

k ~u = 0 for all 0 ≤ k ≤ m− 1, then

‖~u‖V p,sm (Ω) ≤ C
ˆ

Ω

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx.
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Finally, by the bound (2.5), if p ≤ 2 thenˆ
Ω

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx ≤ C‖~u‖p
Ẇp,s
m,av(Ω)

as desired. This completes the proof of uniqueness.
We now establish existence of solutions. By [5, Lemma 4.1], we need only con-

sider the case ḟ = 0.
Choose some Ḣ ∈ Lp,sav (Ω). Again by the bound (2.5), and because p ≤ 2, we

have that ˆ
Ω

|Ḣ(x)|p dist(x, ∂Ω)p−1−ps dx ≤ C‖Ḣ‖p
Lp,sav (Ω)

.

Let divm Ḣ be the distribution given by〈
~ϕ, divm Ḣ

〉
Ω

= (−1)m
〈
∇m~ϕ, Ḣ

〉
Ω
.

If ~ϕ ∈ V p′,1−sm (Ω), then

〈~ϕ, divm Ḣ〉Ω = (−1)m
ˆ

Ω

〈∇m~ϕ(x), Ḣ(x)〉 dx

and by Hölder’s inequality and because 1− 1/p− s = −(1− 1/p′ − (1− s)),

|〈~ϕ, Ḣ〉Ω| ≤
(ˆ

Ω

|∇m~ϕ(x)|p
′
dist(x, ∂Ω)1−1/p′−(1−s) dx

)1/p′

×
(ˆ

Ω

|Ḣ(x)|p dist(x, ∂Ω)p−1−ps dx

)1/p

≤ C‖~ϕ‖
V p
′,1−s

m (Ω)
‖Ḣ‖Lp,sav (Ω).

Thus, divm Ḣ ∈ V p,s−m(Ω). Thus, by Theorem 5.1 there is some ~u ∈ V p,sm (Ω) with

L~u = divm Ḣ in V and with ‖~u‖Wp,s
m (Ω) ≤ ‖Ḣ‖Lp,sav (Ω).

It is clear thatˆ
Ω

|∇m~u(x)|p dist(x, ∂Ω)p−1−ps dx ≤ ‖~u‖p
Wp,s
m (Ω)

≤ C‖Ḣ‖p
Lp,sav (Ω)

.

By Lemma 2.4, we may improve to a Ẇ p,s
m,av(Ω)-norm on ~u, as desired. �
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