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ABSTRACT. We establish the Caccioppoli inequality, a reverse Holder inequal-
ity in the spirit of the classic estimate of Meyers, and construct the fundamental
solution for linear elliptic differential equations of order 2m with certain lower
order terms.
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1. INTRODUCTION

There is at present a very extensive theory for second order linear elliptic dif-
ferential operators without lower order terms. Such an operator L may be written
as

N d d
(1) (Lii); ==Y > > Ol AL Oyuy)

k=1a=1

—

b
where i is a function defined on a subset of R%. Two important generalizations are
higher order operators

(2) (LiD); = Z Z 1) (ALY,0P uy,)

k=1lal=|8|=

and operators with lower order terms

N d d d d
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where « and 8 denote multiindices.

Operators of higher order (2) with variable coefficients AP kﬂ have been investi-
gated in many recent papers, including [MMS10, CMY16, CMY17, Tol18, NSX18,
NX19, Zat20, XN21], and the first author’s papers with Hofmann and Mayboroda
[Barl6, Barl7, BHM17, BHM19a, BHM19b, BHM18, BHM20, Bara, Barb]. (The
theory of higher order operators with constant coefficients is older and more de-
veloped; we refer the interested reader to the references in the above papers or to
the survey paper [BM16a] for more details.) Harmonic analysis of second order
operators with general lower order terms (3) has been done in a number of recent
papers, including [CMY17, DHM18, MP19, KS19, Sak19, Dav20, DW20, Bai2l,
BMR21, Sak21, Mou, BHLG™, DI].

In this paper we will combine the two approaches and investigate operators L of
order 2m > 2 with certain lower order terms

(4) (Ld); = Z Z 1)1*19% (AR 0% uy,).

Specifically, three of the foundational results of the theory of elliptic operators of the
form (1), which have all received considerable study in the cases of operators of the
forms (2) and (3), are Caccioppoli’s inequality, Meyers’s reverse Holder inequality
for gradients, and the fundamental solution. In this paper we investigate these
three topics in the case of operators of the form (4) under certain assumptions on
the coefficients.
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For operators (1) or (2) without lower order terms, it is usual to require that all
coefficients be bounded. Applying Holder’s inequality yields the bound

N _
> X [ e allon

J,k=1|al=m
|Bl=m

< HAHLOO(]Rd)”vaEHLP'(Rd)vaﬁ”LP(Rd)

(L, §)| =

for any 1 < p < oo. Thus, under these assumptions L is a bounded linear operator
from the Sobolev space W™P(R?) (with norm @l yirmomaey = IV Lrra)) to

the dual space W—?(R%) = (W™? (R%))* for any 1 < p < oo. This is a useful
property we would like to preserve.

Observe that elements of W™P (RY) are, strictly speaking, equivalence classes
of functions with the same mth order gradient. Their lower order derivatives may
differ by polynomials. In investigating operators with lower order terms (3) and (4),
the spaces WP (R?) are not satisfactory; we will need the lower order derivatives
of functions in the domain of L to be well defined.

The Gagliardo-Nirenberg-Sobolev inequality gives a natural normalization con-
dition on WP(R%) if p < d. Specifically, if p < d then every element (equivalence
class of functions) in Whe (R%) contains a representative that lies in a Lebesgue
space LP" (R9) for a certain p* with p < p* < co. This representative is unique as
a LP" function (that is, up to sets of measure zero).

In [HKO07], the authors introduced the function space Y%(Q) with norm

[ullyrz@) = llull Lo () + IVullz2().-

The Gagliardo-Nirenberg-Sobolev inequality gives a natural isomorphism between
Y12(R?) and the space W12(R%). This space (and its natural generalization Y-
based on LP" and LP norms) has been further used in other papers, including
[KK10] and in the papers [DHM18, BHLG™, Sak21, Mou] concerning second order
operators of the form (3) with lower order terms.

We wish to consider higher smoothness spaces. An induction argument shows
that, if u € W™P(R%), then there is a representative of u such that d®u lies in a
Lebesgue space for all o with m —d/p < |a| < m. This representative is unique (as
a locally integrable function) up to adding polynomials of degree at most m — d/p.
(Specifically, 0%u € LPmd.a(R%), where p,, 4. is given by formula (23) below.)

We define the Y™P(R%) norm by

ymop(Rd) i= > 0% ul| Lrm.a.o (Ray-

m—d/p<|a|]<m

[l

Y™P(R%) is thus a space of equivalence classes of functions up to adding polynomi-
als of degree at most m — d/p. The Gagliardo-Nirenberg-Sobolev inequality gives
a natural isomorphism between Y™P(R?) and the space W™ (R9).

Remark 5. If |o| < m — d/p then the Gagliardo-Nirenberg-Sobolev inequality
fails: if u € WmP (R9), then 0%u need mnot satisfy global decay estimates and
so there may not be any normalization that lies in any Lebesgue space. It is
for this reason that the spaces Y™P(R9), unlike the traditional inhomogeneous
Holder spaces W™P(R%), impose norm estimates on only some, but not all, of the
derivatives of order at most m.
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We will consider operators that satisfy, for all suitable test functions 1/7 and ¢,
the Garding inequality (or ellipticity or coercivity condition)

) Re Y. [ 0% A0 2 Aelmaras

jk=1a<|a|<m
b<|B|<m

and the bound
o S Y 0w Ao
k=1 a<|a|<m
b<|B|<m
for a range of p near 2.

(In Section 4, following [AQO0], we will consider operators satisfying a slightly
weaker form (34) of the Garding inequality (6).)

Note that if d = 2 and p > 2, then m — d/p > m — 1 and so ||ullym.»(ra) =
||u||Wm,p(Rd). In this case the Gagliardo-Nirenberg-Sobolev inequality provides no
normalization and so the bound (7), for p = 2, can only be expected to hold if
a = b =m. Thus, in dimension 2, the results of the present paper do not represent
a generalization of previous results such as [Bar16]. We will include the case d = 2
in our results, but only for the sake of completeness and ease of reference.

There are many possible conditions that can be imposed on the coefficients Ai’fg
that yield the bound (7). Following (or modifying) [DHM18, KS19, Sak19, DW20,

BMR21, Sak21, BHLG™], we will focus our attention on operators of the form (4)
in which the constants a, b and the coefficients Akaﬁ satisfy

< A €llym.r may 19 [lym.r ey

d d ke
(8) a>m-— g, b>m— 3 a<r‘r(1lzlu<{m ||A£7BHL2Q,[3(R4) <A,
b<[8l<m
where
2 4 € (1,00] for all a < || < b <o <
aB = , 00| Tor a ol < m, Qs m.
P 2m—la] - 8]

Remark 9. Recall from Remark 5 that if u € Y™P(R?) and |a| < m — d/p, then
0% may not lie in any Lebesgue space. The conditions a, b > m — d/2 ensure
that, if p = 2, then all of the summands on the left hand side of the bound (7) are
products of three functions in Lebesgue spaces. In fact, this is true of all p in a
certain open range containing 2; see Lemma 56 below.

The number 2, 3 has been chosen such that the bound (7) follows from Hélder’s
inequality, as may be readily verified using the definition (23) below of P, 4,0
Observe that the conditions a, b > m — d/2 again ensure that, for all «, § of
interest, we have that 2, 3 € (1, 00].

Note that if 2m = 2 and d > 3, the condition a, b > m — £ holds fora=b=0
and so we may ignore this condition.
We will also consider coefficients satisfying Bochner norm estimates
; d—1
10 ax || A%E 5 <A, ab>m-———,
( ) aSIEXI)S(mH a,B”LtwLia,/%(Rd) — m 9
b<[Bl<m
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where
. d-1
0" om — o] - [B]"

Again, for second order operators (2m = 2), if d > 4 then we may take a = b = 0.
For example, this includes the case where coefficients are constant in a specified
direction, ‘Fhat is,~where Ai’,kﬁ(:c,t) = akaﬁ(x) for all z € R?1, ¢t € R, and some
function afx’kﬁ € L%«#(R971). This is the case studied in [BHLG*]. Operators of

the form (1) and (3) that satisfy A" (x,t) = a2 (z) (for |a| = |B| = m) have
been studied in the higher order case in [BHM17, BHM19a, BHM19b, BHM18,
BHM20, Bara, Barb], and in the second order case in many papers, including but
not limited to [JK81, KP93, KKPT00, Rul07, AAH08, KR09, AAM10, Axel0,
AAAT11, Rosl3, AM14, HKMP15b, HMM15b, HKMP15a, AS16, BM16b, MM17,
AA18, AM19, AE20, HZ21]. Nontrivial coefficients constant in a specified direction
cannot lie in LP (Rd) for any p < 0o, but can easily lie in Bochner spaces.

Like the condition (8), the condition (10) implies the bound (7) for a range of p
including 2; see Lemma 56 below.

We note that the conditions (8) and (10) differ from those of [CMY17, Wan20], in

which the authors investigate the system (3) or (4) for coefficients Ai’fcﬁ € L>(R%)
for all a and . (Our conditions imply Ai’fcﬂ € L*(R%) only for |a| = |B] = m.)

2

1.1. The Caccioppoli inequality and Meyers’s reverse Holder inequality.
The Caccioppoli inequality (established in the early twentieth century) is valid for
all operators L of the form (1) where the coefficients A{{,IZ are bounded and satisfy
the Garding inequality (6), and is often written as

C
/ Vil)? < —/ |@|*>  whenever Lii = 0 in B(X,2r).
B(Xo,r) B(Xo,2r)

r2

It can be generalized to the case Li# # 0 by adding an appropriate term on the
right hand side; a very general form is

c
VA< S [ R Ll pr
/B(X(M) 2 J B(x0.20) W—12(B(Xo,2r))

where W~12(B(Xy, 2r)) is the dual space to W, *(B(Xo, 2r)), the closure in W2(B(X,, 2r))
of the set of smooth functions compactly supported in B(Xy, 2r). By the Poincaré

or Gagliardo-Nirenberg-Sobolev inequality, W, (B (Xo,2r)) is (with equivalence of

norms) the closure of the same set in Y12(B(Xo, 2r)).

Remark 11. It is common to formulate the Caccioppoli inequality (and Meyers’s
reverse Holder inequality below) for solutions to Li = f — divF (that is, (La@); =
fi— 22:1 04 Fy,. ;). This is equivalent to our formulation in terms of operator norms
of Lu if appropriate norms on f, F are used.

Specifically, if Lé = — divF, then (L, g)| = |(F, V@)| for all test functions & €
W01’2(B(X0, 2r)), and so by Holder’s inequality, ||Lﬁ\|W,1,2(B(XO72T,)) < ¥ L2 (B(x0,2r))-
By the Gagliardo-Nirenberg-Sobolev inequality, if d > 3 and p = 2d/(d — 2) then
1G]l Lo (B(xo0,2r) < ClIVEIlL2(B(x0,20) for all G € Wy*(B(Xo,2r)), and so if Lii = f

then ||L6HW*1=2(B(X0,27~)) < C”fHLP’(B(Xo,%))'
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Conversely, if Li € W—12(B(Xy,2r)), then by the Hahn-Banach theorem there
is some F € LQ(B(X(),QT)) with HFHLQ(B(XO.,QT)) ~ HL/L_I:||W71’2(B(X072"")) such that
Li = divF.

Remark 12. In the case of equations (N = 1) with real-valued coefficients, a
Caccioppoli inequality can also be established for subsolutions; that is, instead
of a norm ||Lu|| appearing on the right hand side, it is required that Lu > 0 in
B(Xo,2r). See, for example, [Mou, Section 3]. This approach is not available in
the case of systems or complex coefficients, and has received little study in the case
of higher order equations.

The Caccioppoli inequality has been generalized to operators of the form (2)
(higher order equations without lower order terms) in [Cam80] and with some
refinements in [AQO0, Barl6]. It has been extended to operators of the form (3)
(second order operators with lower order terms) in [DHM18] (see also [BHLG™]).
In the case of higher order operators with lower order terms of the form (2), a
parabolic Caccioppoli inequality was established in [CMY17] under the assumption
that all coefficients (including the lower order coefficients) are bounded; this is
different from the assumptions of this paper.

In [Mey63], Meyers established a reverse Holder estimate. Specifically, he estab-
lished that for equations (N = 1) with bounded and elliptic coefficients, for all p
and ¢ sufficiently close to 2 (and, in particular, for some p > 2 and ¢ < 2) we have
the estimate

1/p 1/q
(/ |Vu|p> < Crd/v=d/a (/ |Vu|q> + CHLUHW%J)(B(XO ")
B(Xo,r) B(Xo,r) 7

The exponent ¢ on the right hand side can be lowered if desired; see [FS72, Section 9,
Lemma 2] in the case of harmonic functions, and [Barl6, Lemma 33] for more
general functions. Meyers’s results have been generalized to second order systems
(even nonlinear systems) without lower order terms (see [Gia83, Chapter V]), and
to higher order equations without lower order terms (see [Cam80, AQO00, Bar16]).

Caccioppoli’s inequality is still valid for systems of the form (4), that is, higher
order equations with lower order terms. The argument is largely that of [Cam80,
Barl6] and is presented in Section 4.

The obvious generalization of Meyers’s reverse Holder inequality is not valid in
the case of operators (even second order operators) with lower order terms. That
is, for any given positive integers m, d and nonnegative integers a € (m — d/2,m],
b € (m —d/2,m), there exists an operator L of the form

Lu= Y (=1)0°(4q 50%0)
a<|a|<m
b<|8|<m

with coefficients satisfying the conditions (6) and (8), and a function u : Qo — R
with Lu = 0 in @, such that for any p > 2 and any natural number k, there is a
ball B(X},r,) with B(Xy,2r,) C Qo and with

1/p 1/2
(/ Vmﬁlp) 2 k.rz/p*d/z (/ |Vmﬁ|2>
B(Xk,rk) B(Xk,2rk)
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and, indeed, the stronger bound

1/p m ] 1/2
(13) ( / mep) >k Y Ay ( / |Viﬁ|2) .
B(Xk,rk) B(X,2r5)

i=b+1
See Section 6.2.

Weaker generalizations have been investigated in [BHLG™] and the argument
of Section 6 takes many ideas therefrom. The following theorem is the first main
result of this paper. It will be proven in Sections 4 (the case p = ¢ = p = 2)
and Section 6 (the general case), and represents a simultaneous statement of the
Caccioppoli and Meyers inequalities for systems of the form (4).

Theorem 14. Let m > 1 and d > 2 be integers. Let L be an operator of the
form (4) for some coefficients A that satisfy the ellipticity condition (6) and one
of the bounds (8) or (10).

Then there is a § > 0 depending on m, d and the constants A and A in the
bounds (6) and (8) or (10) with the following significance.

Letp € 2,24 96), u € (2—10,2490), and let 0 < g < oo. Let j and w be
integers with 0 < j <m and 0 < w < min(j,b). If p =2, we impose the additional
requirement that either ¢ > 2 or w > 1 (and thus j > 1).

Let Q@ C R? be a cube with sides parallel to the coordinate azes. Let @ € Y™ H(0Q)
be such tha.t (L] im0y < O©-

Then Viu € LP(Q), and there exist positive constants k and C depending on p,
q, m, d, \, and A such that

1 .
=7V ulr @

C B C|Q|1/p71/q7(m7w)/d .
< N L —-m, w q
> (9_ 1),%“ U”Y P(0Q) + (0_ 1)& ||V U”L (0Q\Q)

forall1 <6< 2.

Here 6Q is the cube concentric to @ with volume |#Q| = 6%|Q|. Note that
the condition @ € Y #(0Q) is stronger than the condition V¥4 € LI(0Q \ Q),
that is, that the right hand side of the given bound be finite. The assumption
V™ € L*(0Q) implies that L# is a bounded linear functional on Wén’”/ 0Q) =
{¢ : V™) € LM (RY), ¢ = 0in R?\ 6Q}; we require Li to be a bounded linear
functional on Wé”’p,(GQ) (or, more precisely, on the space V'V(;"’“,(0Q) ﬂWg”’p,(HQ)
equipped with the V.Vm’p,-norm).

If Lii € WP (Q) for some p < 2 but sufficiently close to 2, a weaker result is
still available; see Theorem 66 below.

1.2. The fundamental solution. The fundamental solution E')L(J for the oper-

ator L is, formally, the solution to Lﬁf(’j = 0x¢€j;, where dx denotes the Dirac
mass at X. The fundamental solution has proven to be a very useful tool in the
theory of differential equations without lower order terms (that is, of the forms (1)
and (2)). By definition, integrating against the fundamental solution allows one to
solve the Poisson problem Lu = f in R%. The fundamental solution is also used
in the theory of layer potentials, an essential tool in the theory of boundary value
problems; for example, layer potentials based on the fundamental solution for cer-
tain variable coefficient operators of the form (1) were used in [KR09, Rul07, Agr09,
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AAA*11, MM11, Barl3, BM16b, Ros13, AM14, HKMP15a, HMM15a, HMM15b,
AS16, AA18, AM19] and of the form (2) in [BHM18, BHM20, Bara, Barb].

Formally, the fundamental solution can be written as E§] = L~ 1(6x¢€;), where
0x€; is the element of a dual space given by (6x€}, @) = ¢;(X). In the case of con-
stant coefficient operators, one can directly solve the equation E}L{ ;= L=Y(éxe;)
using the Fourier transform. For some well behaved variable coefficients, L is an
invertible map from some function space into a space containing dx€;, and so this
approach is still valid. In case (1) of second order operators without lower order
terms, see [LSW63] (N = 1 and real symmetric coefficients), [KN85] (N = 1, real
nonsymmetric coefficients, and d = 2) or [Fuc86, DM95] (N > 1 and continuous
coefficients).

This is the approach taken in both [Barl6] and the present paper for general
higher order operators of the form (2) or (4). By the assumptions (6) and (7)
and the Lax-Milgram lemma, L is invertible Y2(R?) — Y ~™2(R%). If 2m > d,
then by Morrey’s inequality, all representatives of elements of Y?(R%) are Holder
continuous. Recall that elements of Y™ 2(R?) are equivalence classes of functions
up to adding polynomials of degree at most m — d/2. If a suitable (although
somewhat artificial) normalization condition is applied, then dxé€; is a well defined
and bounded linear functional on Y™ 2(R%), that is, an element of Y ~"2(R%).
We therefore may construct E_')LM as E_')LQ = L7 1(6xé;) if 2m > d. If 2m <
d, then the above argument yields a fundamental solution for the operator L=
(=AYM L(—A)M of order 4M + 2m if M is large enough; the fundamental solution
for L may be then derived from that for L.

This approach, with some attention to the details and use of the Caccioppoli
and Meyers inequalities, yields the following theorem. This theorem is the second
main result of the present paper.

Theorem 15. Let L be an operator of order 2m of the form (4) that satisfies the
ellipticity condition (6) and one of the bounds (8) or (10).

Then there exists a number § > 0 and an array of functions EJLk for pairs of
integers j, k in [1, N] and defined on R? x R? with the following properties. This
array of functions is unique up to adding functions P;y defined on R x R that
satisfy 8§(8§Pj7k(Y, X) =0 whenever m —d/2 < |(| <m, m—d/2 <|¢] <m, and
(ICl, lel) # (m — d/2,m — d/2).

Suppose that o and B are two multiindices with m — d/2 < |a| <m, m — d/2 <
Bl <m, and (|al,|8]) # (m = d/2,m —d/2).

Suppose further that Q and T are two cubes in R? with |Q| = |T| and T C 8Q\4Q.
Then the partial derivative 8}8€E£k(Y,X) erists as a L*(Q x T') function and
satisfies the bounds

(16) //lc‘)XaﬁELk (Y, X)2dX dy < C|Q|“m—2ll=218D/d,
If2—-85<p<2+6, andif p <2 or|B| >m —d/2, then

2/ps
(17) /(/ 0% 0y EL,. (Y, X) [P dY> dX < C|Q*m/d-1+2/p=2lal

where - =1 ™=
2 P d
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Furthermore, we have the symmetry property
a a8 L _ 9a qB *
(18) (‘3X8YEJ-),€(Y,X) = 8X8YEI£,]'(X’ Y).
Finally, suppose that 2 — 6 < q¢ < 2+ 0 and that m — d/q < || < m. Let
Fe L(qs)’(Rd) be compactly supported, where — =1— % + m%m. Let1 <¢<N.

(qe)”
For each 8 with m > |B| > m —d/q and each 1 <k < N, let

(19) (ua)h(X) = [ OROYBE(X. V) F(Y) Y.

The integral converges absolutely for almost every X € R\ supp F for all such f3
and &; if |B] < m or |&] < m then the integral converges absolutely for almost every
X eR%.

Then there is a function @ € Y™9(R?) with 0°d = g for all such B almost
everywhere (if | B3|+ €| < 2m) or almost everywhere in R4\ supp F' (otherwise) and

such that N
FopeF=> Y 0%p; AL 0P
/Rd ot /]Rd ¥ o Uk

kj=1a<|a|<m
b<|B|<m

for all g e Y™d (RY).

Many assumptions on the coefficients other than (8) and (10) are reasonable.
We construct the fundamental solution in Section 7. In that section, we will not
explicitly use the assumptions (8) and (10); instead we will use their consequences,
the Caccioppoli and Meyers inequalities, for the operator L = AMLAM_ The
results in Section 7, and in particular Theorem 122, will allow the interested reader
to construct the fundamental solution for other classes of coefficients once a suitable
higher order Caccioppoli inequality has been established.

1.2.1. Other approaches. The approach of this paper and of [Barl6] uses higher
order operators, and in particular the higher order Caccioppoli and Meyers inequal-
ities, to construct the fundamental solution, and as such has only been available
since the development of a strong theory of higher order operators. The funda-
mental solution for second order operators has been of interest for a long time and
other approaches to its construction have been used.

If d > 2, then §x¢; is not an element of Y ~1#(R?). Specifically, elements of
Y12(R?) are elements of Lebesgue spaces (or of BMO) and so their value at a single
point is not well defined. In some special cases (discussed above), L is invertible
from Yol’p(B) to Y 1P (B) for open balls B and p large enough to apply Morrey’s
inequality, and so the fundamental solution can be constructed using the approach
discussed above and some attention to the behavior outside of B. However, this
approach is not available in other cases.

In some cases, solutions to L# = 0 may be locally Holder continuous even if
general Y12 functions are not. In this case, the fundamental solution may be
constructed as a limit of L_lTp, where T, — dx€; as p — 07 and each T, is
in Y~12(R?). Careful application of the Caccioppoli inequality, the local Holder
continuity, and other arguments yields that L='T p converges to a fundamental
solution.

This approach was used to construct the fundamental solution for operators
of the form (1) ([GW82, HKO07]) and (3) ([DHM18, Sak21, Mou]) in dimension
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d > 3 under the assumption that solutions are locally Holder continuous. Green’s
functions in domains (rather than in all of R%) were constructed using this method
in the above papers, and also in [KS19].

A different approach involving kernels for the heat semigroup e™*" was used
in [AMT98] to construct the fundamental solution in dimension 2; as observed in
[DKO09] their approach is valid for systems of the form (1) with N > 1 and with
complex nonsymmetric coefficients. The papers [DK09, CDK12] establishes results
analogous to those of [AMT98] for the Green’s function of a domain rather than all
of R?.

Considerably more work must be expended to apply the semigroup approach in
dimension d > 3; heat semigroups were used in [MP19] to construct the fundamental
solution for the magnetic Schrodinger operator, and a different form of semigroup
was used in [Rosl3] to construct the fundamental solution assuming only local
boundedness, not local Holder continuity.

This approach does require the De Giorgi-Nash property of elliptic operators,
or a condition, such as real coefficients, that implies this property. However, this
approach often yields stronger estimates than those of the present paper, and indeed
stronger estimates than those true of the fundamental solution for the Laplace
operator. See, for example, [She99, MP19, DI].

tL

1.3. Outline. The outline of this paper is as follows. In Section 2 we will define our
terminology. We will give some results concerning function spaces (in particular,
Sobolev spaces) in Section 3.

We will prove the Caccioppoli inequality in Section 4. We will prove our gen-
eralization of Meyers’s reverse Holder inequality in Section 6.1, and construct the
counterexample of the inequality (13) in Section 6.2.

We will construct the fundamental solution in Section 7.

Some results concerning invertibility of the operator L between certain function
spaces will be used both in Section 6 and Section 7; we will give these results in
Section 5.

2. DEFINITIONS

2.1. Basic notation. We consider divergence-form elliptic systems of N partial
differential equations of order 2m in d-dimensional Euclidean space R?, d > 2.

When © C R? is a set of finite measure, we let f, f = ﬁ [ f, where |Q| denotes
the Lebesgue measure of €.

As mentioned in Theorem 14, if Q is a cube in R? or R4~! and 6 > 0 is a positive
real number, we let #Q denote the concentric cube with [0Q| = 6¢|Q| (so the side
length of 6Q) is 6 times the side length of Q).

We employ the use of multiindices in (No)¢. We will define

d
|’Y|:Z’7i and ! =1!- vl 94!
i—1

for any multiindex v = (71, ...,74). When § is another multiindex in (Ny)?¢ we say
that § < v if §; < ; for each 1 < i < d. Furthermore, we say § < « if §; < ~; for
at least one such 1.
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We will use the Leibniz Rule for multiindices, that is, that for all suitably dif-
ferentiable functions u and v and a multiindex «, we have that

|
0% (wv) = Z L!mu 0% Tv.

o Ma=7)

2.2. Function spaces. Let  C R? be a domain. We denote by LP(2) and L*°(Q)
the standard Lebesgue spaces with respect to Lebesgue measure, with norms given

by
1/p
el oy = ( / |u|P)
Q

lu|| Lo () = ess supg|ul.

If 1 < p < oo, we let p’ be the extended real number that satisfies 1/p + 1/p’ = 1.
Ift € R, let [ = {z € RI! : (2,¢) € Q}). We define the Bochner norm
L{LZ(Q) by

00 q/p 1/q
(20) lull ez = ( / < /{mt |u(x,t)|pd;z:> dt)

with a suitable modification in the case p = oo or ¢ = oc.
We define the inhomogeneous Sobolev norm as

if 1 <p<oo,and

k
lillwery =D IV oo
7=0

where derivatives are required to exist in the weak sense. We then define the
homogeneous Sobolev norm as

(21) 1) = IV @l o ()

Observe that by the Poincaré inequality, if @ € W#?(Q) and Q is bounded, then
Viu € LP(Q) for all 0 < j < k; however, the Poincaré inequality does not yield
finiteness of |[V7u| 1»(q) in the case where © is unbounded.

The Sobolev spaces are then the spaces of equivalence classes of locally inte-
grable functions that have weak derivatives whose Sobolev norm is finite, with the
equivalence relation @ ~ ¥ if || — ¥]| = 0. Observe that elements of inhomogeneous
Sobolev spaces, like elements of Lebesgue spaces, are defined up to sets of measure
zero, while elements of homogeneous Sobolev spaces (in connected domains) are
defined up to sets of measure zero and also up to adding polynomials of degree at
most k — 1.

Recall that for 1 < p < d, the Sobolev conjugate of p is defined to be

. _ _dp
p = d—p
See, for example, [Eval0, Section 5.6]. Notice that
1 1 1

22 — =z,
(22) p* p d
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We will now generalize equation (22). Let k be an integer so that m — % <k<m.
We then define pyy, g1 so that
(23) P _1_ L_k
Pm.d.k p d

When considering elliptic operators of order 2m in dimension d, and the numbers
m and d are clear from context, we will let py, = pp,.q.%. If o is a multiindex, we
will let po = Pm.d,0 = Pm.d,|a|- Notice that when |a| = m we have that 2, = 2,
when |a] = m — 1 then 2, = 2* and so on. This definition for 2, will help keep
the notation throughout this paper relatively clean and help us to avoid backwards
summation.

If @ C R? is a domain, m > 1 is an integer, and 1 < p < oo, we define the
Y"P(Q)) norm as

(24) lullyme@) == Y 10%UllLrmta (-
m—d/p<|a|]<m

We then define Y?(Q) analogously to W™?(Q). Observe that elements of Y7 ((2)
are defined up to adding polynomials of degree at most m — d/p. We let

Yo"P(Q) = {F € Y™P(R?) : @ = 0 outside Q}.

Then Y,"""(£2) is the space of functions in Y"™?(§2) which are zero near the boundary
in an appropriate sense. Note that Y;"'P(R%) = Y™P?(R4). Conversely, if R4\ Q has
nonempty interior, then elements of Y;"*(2) have a natural normalization condition
(that is, nonzero polynomials are not representatives of elements of Yy (Q)).

We will generally write bounded linear functionals on Y;"*(£2) (that is, bounded
linear operators from Y;"*(Q) to C) as (T, - )q; if @ = R? we will omit the
subscript. We define the antidual space Y ="' (Q) = (Y™ (Q))/, for 1/p+1/p’ =1,
by
(25)

(T, -)q is a bounded linear functional on Y™"(€2) if and only if T € Y~ ().

Note that if @ € C then (aT, ®)q = a(T, D)q.

2.3. Elliptic operators. Let m be a positive integer. Let A = (Aflkﬂ) be an array

of measurable real or complex coefficients defined on R? indexed by integers j and
k such that 1 < j < N and 1 < k < N and multiindices o and 8 with |a| < m and
18] < m.

We define the differential operator L with coefficients A as follows. If 4 is a
Sobolev function, we let (L, - )q be the linear functional that satisfies

N —
(20 S X S [0 A0k = (15 de
k=1 al<m|8l<m ¢
for all appropriate test functions .

Remark 27. If A, @, and @ are sufficiently smooth and decay sufficiently rapidly
at infinity, we may integrate by parts to see that

N N ‘
(L, ) =Z/R ©i> 3 > (=D)ledge (ALY 0Buy).

k=1a|<m |B|<m
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Thus, in this case we may write

Z Z Z |0é\aa AJ’ aﬁuk)

k=1|a|<m |B|<m

as a classically defined linear differential operator; this coincides with formula (26)
if (-, -)q denotes the usual (complex) inner product in L2(R%; CV).

We define
(28) a=ay = min{|«| AkaB(X) # 0 for some j,k, 3, X'},
(29) b= by = min{|5| :Ai’f@(X)#Ofor some j, k, o, X }.
Definition 30. We let II;, be the largest interval with
m—b 1 d—m+a
M Clp: <« - c 20T 8
b {p i “pT T d }

and such that if p € Iz, then there is a A(p) € [0,00) such that the bound (7) is
valid, that is, such that

w L5 5 reE

Jk=1a<|a|<m
for all g € Y™# (RY), 4 € Y™P(RY).

< A( ) ”SEHYmup’(Rd) H'(/_;Hym,p(Rd)

b<|BI<m

We consider singleton sets to be intervals, so {2} = [2,2] is a possible value
of II. We will usually assume that 2 € Ilp; in particular, this implies that a,
b>m—d/2.

Remark 32. If p € I, then [(Ld, §)| < Ap)||@llyms ga)ll@llymrra) and the
integral in the definition of (L, ) converges absolutely for such @ and g; thus,
if @ € Y™P(RY) then the given integral is a linear functional on Y;™” / (RY), and
so Lii € Y~™P(RY). Our conventions for Y ~"™7 yield that L is a bounded linear
operator (and not a conjugate linear operator) from Y™P(R%) to Y ™7 (R%).

Remark 33. The condition d/(d +a —m) < p < d/(m — b) ensures that the
derivatives 9°@, 9P1) appearing in the bound (31) satisty |a| > m — d/p and
18] > m—d/p. By the definition (24) of Y™ p(Rd) this means that 9@ € LPa(R%),
9P € LP#(RY). Derivatives of Y™P(R%) or Y™? (R?) functions of lower order are
defined only up to adding constants or polynomials, which would preclude validity
of the bound (31). It might be possible to consider the case a < m — d/2 or
b < m —d/2 by considering more delicate cancellation conditions or Hilbert spaces
other than Y2(R%), but such constructions are beyond the scope of this paper.

As noted in the introduction, if m = 1 and d > 3, then the condition a, b >
m — d/2 is vacuous, as m — d/2 < 0 and so there are no multiindices a € (Ng)?
with |a] < m — d/2. Conversely, if d = 2, then A,z # 0 only in the case when
|a] = |8] = m, and so the present paper does not represent a generalization of
previous results such as [Cam80, AQ00, DHM18, Bar16].

We will consider coefficients which satisfy the Garding inequality (6). In [AQO0],
Auscher and Qafsaoui consider higher order elliptic systems in divergence form in
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which ellipticity is in the sense of the following weaker Garding inequality

N
3 Red X X [ T 000> AV Al — 318w

Jk=1]al<m B]<m

where A > 0 and 6 > 0 are real numbers, for all ¢ which are smooth and compactly
supported in R%. The standard Garding inequality (6) is thus the weak inequal-
ity (34) with 6 = 0. In Section 4, we will prove results in the generality of the
bound (34) instead of (6).

Throughout we will let C' denote a positive constant whose value may change
from line to line, but that depends only on the dimension d, the order 2m of our
differential operators, the size N of our system of equations, the constant A in the
bound (6) (or (34)), and the constant A(2) in the bound (7). A constant depending
on a number p € II;, may also depend on A(p).

A standard argument involving the Lax-Milgram lemma (see Lemma 58 below)
shows that if L satisfies the condition (6) and 2 € Iy, then L is not only bounded
but invertible Y2(R9) — Y ~™:2(R%).

Definition 35. If L : Y™2(R?) — Y ~™2(R?) is bounded and invertible, then we
define
(36)

Yr = {p: L is bounded and compatibly invertible Y"*?(R?) — Y ~™P(R9)}.

By compatibly invertible, we mean that L : Y™P(R%) — Y~™P(R%) is invert-
ible with bounded inverse and that if T € Y ~™P(R%) N Y ~™2(R%) then L™T €
ymP(RY)NY™2(RY). (Thus, L~'T has the same value whether we regard L as an
operator on Y™2(R%) or Y™P(R%).)

Compatibility is not automatically true; see [Axel0] for an example of operators
which are invertible, but not compatibly invertible, in some sense.

We will conclude this section by reminding the reader that our main focus is on
coefficients that satisfy the bound (8), that is,

j ke .
||Aiﬁ\|Lzaﬁ(Rd) <A ifm>|af>m—%andm> |8 >m-— 4,
A]akﬁ =0 otherwise,

or the bound (10), that is,

||Akaﬁ IL“LEQ’B(Rd) <A ifm>lal>m— %t and m > 8] > m — 4L,
. t z
Aikﬁ =0 otherwise.
where
d ~ d—1
D L S Y S —
“0 7 2m — o] - 18] @7 2m — o] - |8]

Elementary computations involving Holder’s inequality (see Lemma 56) shows
that the conditions (8) and (10) both imply that II;, contains an interval around 2
whose radius depends only on the dimension d.
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3. THE GAGLIARDO-NIRENBERG-SOBOLEV AND POINCARE INEQUALITIES AND
THEIR CONSEQUENCES

In this section we will collect some results regarding Sobolev functions that will
be useful throughout the paper. These results are mainly consequences of the
Gagliardo-Nirenberg-Sobolev inequality and induction arguments.

We will begin with Section 3.1, in which we will consider the global function
spaces WP (R%) and Y™ ?(R%). In Section 3.2 we will study Y™ (Q) for a cube Q.

We will often wish to consider the behavior of functions in thin annuli. Thus,
in Section 3.3 we will establish results in (possibly thin) annuli rather than cubes.
We will sometimes need different forms of estimates, and so will also investigate
the Poincaré inequality in thin annuli.

Finally, in Section 3.4, we will investigate the behavior of Sobolev functions when
multiplied by cutoff functions; since our standard cutoff functions have gradients
supported in an annulus, this will build on the results of Section 3.3.

3.1. Global Sobolev spaces. In this section we will establish some basic proper-
ties of the spaces W™P(R?) and Y"™P(R9).
The global Gagliardo-Nirenberg-Sobolev inequality

[ull Lo ey < CpallVullLpra

is true for functions u in the inhomogeneous Sobolev space W1P(R?) = LP(R?) N
WP(RY) (see, for example, [Eval0, Section 5.6.1]), and also for functions u €
WP(RY) satisfying weaker decay estimates at infinity (see [Mih21]). We would
like to establish an analogue to the global Gagliardo-Nirenberg-Sobolev inequality
for arbitrary elements of W'?(R%). Recalling that elements of W17 (R?) are equiv-
alence classes of locally L' functions up to additive constants, we find the following
theorem suitable.

Theorem 37. Let1 <p < d, d € N. Then there is a C}, 4 > 0 depending only on p
and d such that, if u € L}, . (R?) and Vu € LP(R?), then there is a unique constant

loc

¢ such that u — c € LP (R?) and
lw = cll o= ray < C[Vul| Lrgay-

Proof. Uniqueness of ¢ is clear. Let @ C R? be the unit cube and let j € N.
Applying [GT01, Theorem 7.26] and scaling arguments, we see that, if ¢ is any
constant, then

lu = ell 1o 2i@) < Cp.a2 /|u = cll o2 0) + Cpal Vull Lo 210)-
Choosing ¢ = ( f2j 0 u), we have that by the Poincaré inequality,
flu— (fng U)HLP*(ZJ'Q) < CHVU||LP(21'Q)~
We may then compute that
|(f2.7Q u) - (fzj+1Q u)| =27 /P (f2.iQ u) — (fzj+1Q )|l Lo (21 Q)

< 279 ||y — (fng )|l 2o 210
+ 2—jd/p*

U= (JCZJ'JrlQ u) Lo (210
< Cpa2 7P|V 1o (2541 ).
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Summing, we see that if £ < k, ¢, k € N, then
|(f2@Q u) — (fsz u)| < Cp a2~ P

and so ¢ = lim;_, (fQjQ u) exists. We then see that

Vul| e 2k q)

l[u—cll e~ @2Q) < 2td/p

c— (J[QZQ U)| + |lu— (fng U)HLP*(QZQ) <C ,d”vu”LP(QkQ)'
Taking the limit as £ — oo completes the proof. O
We now generalize to higher order.

Corollary 38. Suppose that m > 1, d > 2 are integers and that 1 < p < oo.
Then there exists a constant ¢ depending only on d, m and p with the following
significance. Suppose U is a representative of an element of Wm’p(Rd). Then there
is a polynomial P of order at most m—1, unique up to adding polynomials of order
at most m — d/p, such that

[|lu — P||Y"l=P(Rd) < CHUHWm,p(Rdy
In particular ||u — P|lym.pga) is finite.

Proof. Recall the definition (23) of py, q4%. Because (Dm.dk+1)" = Dm.ak, if m —
d/p < k < m, the bound

||Vk(u — P)HLPm,,d,l«(]Rd) S C]g||vk+1u‘|LPm,d,k+1(Rd)
for some C}, follows from Theorem 37. By induction, and because pp, q4,m = D,
V¥ (u — Pl gpm.argay < CillV™ul| Lo may-

Applying the definitions (21) and (24) of W™?(R%) and Y™P?(R%) completes the
proof. O

We will now establish a bound on the Bochner norm of elements of Y"™?(R9).

Corollary 39. Letm €N, p € [1,d—1). Let k € Ny satisfy m—(d—1)/p < k <m.
Let u be a representative of an element of W™P(RY) and let P be the polynomial
in Corollary 38. Then

||vk(u - P)”LfLim,dfl,k R) < C”VmuHLp(Rd).

(
In particular, if u € Y™P(R?) then this bound is valid with P = 0.
Proof. By Corollary 38, we have that
1% (= Pl p e gy < 0.
In particular, for almost every ¢t € R, we have that
IV u( -, t) = VFP( )| prm,an a1y < 0.
By definition,

[e%s) 1/pk
9" s = ([ [ 19 asar)
oo JRA-1

00 1/p
= (/ V™ - at)”Iir)(Rd*l) dt)

and because this quantity is finite we must have that

V™ (-, t)|| e (ra-1) < 00
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for almost every t € R.

Fix some t such that both of the above norms are finite. Let |y| = k. Applying
Corollary 38 in R?~! with d replaced by d — 1 yields a polynomial Dty defined
on R4~1 such that

187 u( -, 8) = PeyllLra-1v a1y < CIVETFO u( -, )| poa—rbga—y
S CHVmU( . ,t)”Lp,d—l,'y(]Rd—l).
But
107 1) = 0P+ )| ot sy < [V5U(-,8) = VEP(-, )] sy < o0
and because both p; , and 87 P(-,t) are polynomials on R, finiteness of these two

norms yields that p; (z) = 7P (x,t) for all z € R4,
Thus,

107u(-,t) = O P(-, )| Loa-1ma-1) = |07u( ;) = Peyllpa—1(Ra-1)
< CIV™u(-, )| Lria-1ga-1)

for almost every ¢t € R. Summing over all multiindices v with |y| = k and integrating
in ¢, we have that by the definition (20) of LY L4,

k —
V(= gzt = ([

— 00

00 1/p
<C (/ V™ ( - 7t)||11),P(Rd*1) dt)

= C”VmuHLP(]Rd)-
This completes the proof. (I

oo

1/p
940 = P)C ey )

3.2. Sobolev functions in cubes. In this section we will establish analogues to
Corollaries 38 and 39 in cubes.

Remark 40. In this section and throughout this paper we have chosen to work
in cubes rather than in balls. This simplifies certain covering arguments (we never
need to use the Vitali covering lemma when working with cubes), but the primary
motivation is ease of use with Bochner norms. Recall that the L]LP() norm
involves integration over the sets [Q]f. If Q@ C RY is a ball, then [©2]* depends on t
in a complicated way; however, if () is a cube with sides parallel to the coordinate
axes, then [Q2]" takes on only two values, one of which is the empty set.

Lemma 41. Let m, d €N, d > 2, p € [1,00), and let j, k € Ny satisfy 0 < j < k
and m—d/p < k <m. Let py, = pm.ak- Then there is a constant C' depending only
on p, d, and m such that if Q C R% is a cube and u € W™P(Q), then
m—k-+j
IVl @) < C Y QIR Vi Lo ).
i=j
Proof. Suppose first that |Q| = 1. By the Gagliardo-Nirenberg-Sobolev inequal-
ity in bounded domains (see, for example, [GT01, Theorem 7.26]) and the defini-
tion (23) of px, we have that
1

wllzes @) < C”w”Wl”’kH(Q) = Cz ||Viw||ka+1(Q)
i=0
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FI1GURE 1. The rectangles in the proof of Lemma 43

for any function w € WHPr+1(Q). Taking w = V7u, we see that
IV7ull o (@) < C Y NIVl Lrara ()
i=j
Iterating this argument with w = Viu and recalling that p = p,, yields the |Q| =1
case of the lemma. A change of variables establishes the case for general Q). ([l

We may also control Bochner norms; this is very useful in the case that the
coefficients satisfy the condition (10).

Lemma 42. Letm, d €N, d > 2, p € [1,00), and let j, k € Ny satisfy 0 < j < k
and m — (d—1)/p < k <m. Let py = Pm.a—1,k- There is a constant C' depending
only on p, d, and m such that if Q C R? is a cube with sides parallel to the coordinate
azes and uw € W™P(Q), then

m—k+j
IV7ull e ) SC D QI T | 1 )
i=j

Proof. Let Q = A x [to, to+ R], where A € R4 ! is a cube, ¢y € R, and R = |Q|"/.
Recall that

, to+R , - p/pe \ P
IV ull 1y e () = (/t (/A V7 u(z, t)|Pr da:) dt) .
0

Applying Lemma 41 in dimension d — 1, we see that

, _ 1/Pr mkri ,
(/ |V u(x, t)[P* dx) <C Z Rl*j*Hfmevlu( . vt)HLP(A)'
A —
i=j
Integrating in ¢ completes the proof. O

3.3. Sobolev functions in annuli. We will now establish analogues to Lemmas 41
and 42 in cubical annuli, that is, in domains of the form Q\Q for some cube Q C R?
and some number 6 > 1.

Lemma 43. Let m, d €N, d > 2, p € [l,00), and let j, k € Ny satisfy 0 < j < k
and m —d/p <k <m. Let py, = pm,ax. Let 1 <0 < 2.
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Then there is a constant C depending only on p, d, and m such that if Q C R¢
is a cube with sides parallel to the coordinate azes and u € W™P(0Q \ Q), then

m—k+j C
IV9ull Lo 0r@) < C Z T g IV e

If in addition k > m — (d — 1)/p, then
m—k—+j C

IVl 0o \0) = © Z (0 = 1)|QI/d)ym=hti= IVl

Proof. Observe that there exists an integer n > 2 with % < HT < %1 < 2
Without loss of generality we assume that @ is open. Let I1,..., I; be the d open
intervals that satisfy Q = I x --- x Iy . If I, = (ax, by), and 7 = b — az, = |Q|*/<,

define the d(n + 2) intervals I ; by

0—1 0—1
Io = (ak - ak), Ipny1 = (bk7bk + 27°>7

Iij = <ak+J_

Let G = {Ile XIQ)jz X XId,jd :jk S {0,1,...,n+1}}, and let H C G be given
by H={l; XIpj, x---x1Ig;, :jx € {1l,...,n}}. The rectangles in the set G
are shown in Figure 1. Up to a set of measure zero,

Q=Jr Q=|JR
REG REH

Furthermore, the rectangles in G are pairwise disjoint. If R € G then the shortest
side of R is at least r/n and the longest side is at most (# —1)r/2 < 2r/n. A change
of variables argument shows that Lemmas 41 and 42 are valid in R with uniformly
bounded constants.

Suppose m — (d — 1)/p < k < m. If Q C R? recall that [Q)f = {x € RI!:
(x,t) € Q}. Then

. o0 , o \P/Be \1/p
IV ull 1o 2k (0 ova) = ( /_ _ ( /[QQ\W VI u(z, t) [P+ dm) dt)

p/Pk 1/p

(/ (Z/ V7 xtpkdx> dt) .

REG\H

r,ak+‘7r> if1<j<n.
n

Because p/py, < 1, we have that

‘ B p/Pr 1/p
1990l on (Z / </R]f|V-7u(x,t)|p’“dx) dt)

REG\H

1/p
(X 1vul,n)

REG\H

By Lemma 42 in rectangles,

A m—k+j C ‘ py\ 1/p
”VJ“”LfLik(eQ\Q) 5( Z < Z ((9—1)r)m—k+j—i||vlu||Lp(R>) > :
REG\H

i=j
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By the triangle inequality in the sequence space 7,

. m ki C ] 1/p
IVl 1o p2v ) = Z (0 = yryn—Fti—i ( > (||VZU|LP(R>)p)
i=j REG\H
= miﬂ (06— 1)7§m—k+j—i IV ull o 0@\
i=j
A similar (and simpler) argument establishes the bound on [[Viul|pri9g\g)- O

Lemma 43 generalizes the Gagliardo-Nirenberg-Sobolev inequality to thin annuli.
We remark on the presence of the term 6 — 1 in the denominator of the right-hand
side. In a thin annulus, this term is potentially very small and so Lemma 43 yields
a poor bound.

The following lemma allows us to bound a function v in an annulus by its gradi-
ent, without powers of (§—1). We observe that the following lemma is a special case
of the Poincaré inequality and not of the Gagliardo-Nirenberg-Sobolev inequality;
that is, we do not gain higher integrability (a higher power of «) on the left-hand
side. We will use both Lemma 43 and Lemma 44 in different contexts.

Lemma 44. Let d > 2 be an integer and let 1 < p < oco. There is a constant
C = Cy,p depending only on d and p such that if Q C R% is a cube, 1 < 6 <2, and
u € WhP(0Q\ Q), then

P d
u— f, ul|” < Cq, QP / [VulP.
/QQ\Q’ b\Q ‘ g 0Q\Q

Proof. We restrict to the case |Q| = 1 and where the midpoint of @ is the origin
(that is, the case Q@ = (—1/2,1/2)%); rescaling and translating yields the general
case.

Let p(X) = 2max{|X1|,...,|Xa|}. Thus, if X € R then p(X) is the unique
real number with X € 9(p(X) Q). Observe that p is a Lipschitz function with
|Vp| = 2 almost everywhere and with p(X) < 2|X| < v/dp(X). Define

d_1 9d _ pd 1/d
r(t):(a 4+ 9) )

24 —1 2¢ —1

Observe that r(1) = 1, (2) = 6, r is increasing, r(t)/t is decreasing, and 7(¢)4~1 v/ (t) =
0°—1d—1 1y particular, if 1 <t <2 then 0 < 7/(¢) < 6% — 1.

2d_Llet P(X) = Xr(p(X))/p(X). Then ¢ is a bilipschitz change of variables 1) :
20\ Q — 0Q\ Q.

If feL'(2Q\ Q), then

/ZQ\Q f= ;/12 /a@Q) f(X)do(X)dt

where o denotes d — 1-dimensional Hausdorff measure (that is, surface measure on
the boundary of the cube tQ). In particular, letting f = g o ¢ and making the
change of variables X =tY in the inner integral, we have that

1 2dfl
o) = — o) Yd Yd
LQ\ng 2/115 /mg YY) do(Y)dt
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If Y € 0Q, then p(tY) =t and so ¥(tY) = r(t) Y. Thus

/2Q\Qg U= ;/12 /E)Qg(r(t) Y)do(Y) " dt.

Applying our above formula for 7’/ (t),

d_ 2
/QQ\QQ o = %/1 /w g(r(t) X) dor(X) r(£)=1 ' (8) dt.

Using the chain rule of single variable calculus and reversing our above arguments,

o241 f d—1
/ZQ\QQW = =T /1 /BQg(rX)da(X)r dr
20 1 ¢
e /1 /8 gy S
2d _

7
04 =1 Jogr\q

We will apply this argument to g = u and to g = |u[P. In particular,

1 04 —1
]iQ\Qu_aQ\Q/GQ\Qu_(le)W 2Q\Quoz/)_]£Q\Quo1/),

We also need to integrate the gradient. Let Jy be the Jacobian matrix for the
change of variables 1, so that V(uo ) = (Jy,Vu) oy, If X € 2Q \ Q, then

N | _ |r(p(X)) ' (p(X)) p(X) —r(p(X))
‘m = Rt BSE Oep(X)
_ |r(p(X)) ( - X; 3kp(X)> X; 0pp(X) 04 =1 p(X)*!
p(X) \’ p(X) p(X) 27 —1r(p(X))1
Note that |X; 0xp(X)| < 2|X;| < p(X) for all j and k. Furthermore, if 0pp(X)
exists and is not equal to 0 then it has the same sign as Xy, so 0 < %)’;SX) <1.

Finally, 1 < p(X) <2 and so 1 =r(1)/1 > r(p(X))/p(X) > r(2)/2 = /2. Thus,
we have that
g4 — 1241

d d
<1+ ey <092

oY,
00X},

and so Jy, is a bounded matrix. Thus,

(/2Q\Q |V(“°¢)Ip)1/p = </2Q\Q (Ju V) o¢|p)1/p

1/p
< cd(/zQ\Q (Tueur)
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Now,
/ |u7f9 u|p9d1/ |uo¢—f2 wo Y|P
0Q\Q e\ 29 =1 Jag\@ e\Q

64 —1
< Z P
_Od,de_llQ\QW(uow

¢ —1
< Cd,pﬁ/ |[(Vu) op|P = Cd,p/ [VulP.
- 2Q\Q 0Q\Q

Thus the Poincaré inequality holds in an annulus with constant independent of 6.
O

3.4. Sobolev norms and cutoff functions. A particular application of Lem-
mas 43 and 44 is the following result concerning smooth cutoff functions.

Lemma 45. Let m, d € N, d > 2, and let 1 < p < oo. There is a constant C
depending on m, d and p with the following significance.

Let Q C R be a cube and let 1 < § < 2. Let x € C>(RY) be a test function
supported in 0Q and identically equal to 1 in Q, with 0 < x < 1. Define X =
maxy<i<a(f — 1)|Q| Vx| L= (q)-

If u € W™P(0Q) (equivalently, if u € Y™P(0Q)), and if we extend uy by zero
outside of 0Q, then ux € Y™P(R?) and

m—1

CcX i
[uxlymegay < llullymeoq) + Z (0 — 1)|Q|/dym—i VUl r 00\@)-
i=0

Proof. We begin by using the definition of the Y P-norm and the Leibniz rule.
HUX”YWP(]Rd) = Z ”vk(UX)”LPk(]R'i)

m—d/p<k<m

k 4 4 Pr\ 1/Pk
< > (/ (ZCj,ka_]XIV]M)) :
R?\20

m—d/p<k<m
Observe that C} ;, = 1. By definition of X and isolating the j = k terms,

1/pk
||uX||YmvP(]Rd) < Z (/ |V’€u|pk)
0Q

m—d/p<k<m

N\ 1/pk
+c > </0Q\Q<ZX ) =k1Q|U= ’“>/d|wu> )

m—d/p<k<m

< lullymo o)

, 1/pk
J 4| PE
D M S LD

m—d/p<k<m j= 0

By Lemma 43,

m—1
||UX||me(Rd) < ”uHYmvP(OQ + Z |Q|1/d)m ; v UHLP(OQ\Q)
=0

This completes the proof. [
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4. THE CACCIOPPOLI INEQUALITY

The Caccioppoli inequality was established first by Caccioppoli in the early twen-
tieth century and is a foundational result used throughout the theory of second
order divergence form equations. It has been generalized to the case of second
order operators with lower order terms in [DHM18], and of higher order equations
(without lower order terms) first in [Cam80], and later with some refinements in
[AQO0, Bar16].

We now generalize these results to the case of higher order equations with lower
order terms. We will follow [AQO0] and derive a Caccioppoli inequality for equations
that satisfy the weak Garding inequality (34) (and not necessarily the stronger
Garding inequality (6)). We will follow [Cam80] and establish the Caccioppoli
inequality for solutions # to inhomogeneous equations Lad = T for a (possibly
nonzero) element 7" of Y ~™P

We begin with the following lemma. This lemma was proven first in [Cam80] for
operators of order 2m without lower order terms.

Lemma 46. Let L be an operator of order 2m of the form (26) associated to
coefficients A that satisfy the weak Garding inequality (34) and either the bound
(8) or the bound (10).

Let Q C R? be an open cube with sides parallel to the coordinate azes, and let
1<6<2. Letie€ W™2(0Q). Let T € Y~"™2(0Q). Suppose that Lii = T in 6Q
in the sense that formula (26) is true for all test functions @ € WS”’Q(HQ).

Then we have that

m—1
c
v < / |vka’\2+c5/ @2 + || T2
/Q > TR Jyone .

=0

where C' is a constant depending on the dimension d, the order 2m of L, the number
A in the bound (34), and the number A in the bound (8) or (10). Here ||T| =

| T|ly —m.2(00) is the operator norm, that is, the smallest number such that (4, T)| <
1§ ]lym200)ITIl for all § € Y5™*(6Q).

Proof. Let p = ((6 —1)/2)|Q|*/? be the distance from Q to R?\ #Q. Let ¢ be a
smooth, real valued test function with 0 < ¢ < 1, supported in Q) and identically
equal to 1 on Q. We require also that [V¥p| < Cyp~F for any integer k > 0.

Define z/_z' = ©*™ . Notice that by Lemma 45, 1; € Yom’Q(HQ). Furthermore, by
formula (26),

(47) YOy / 0% (™) X 0Py, = T oo

Jjk=1|a|<m |B|<m

We first consider the left hand side of formula (47). By the Leibniz rule, and
separating out the v = « terms, we see the following.

/ 0% (") ALY 0wy = / aa(gp?mnj)Ang 0> 0 uy

[N S T ) A 0

oQ ’Y<oz
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Now as in [Barl6], we write

o a— m mo m 7
(48) Y i 00T (@M () = Y P e T

M=)t =

for some functions ®,, ¢ which are supported in 0Q\Q and satisfy |®,, | < Cpl¢l=lel.
Thus we have

/ 0° (p*m ;) ALY, 0wy = / 0% (> ;) ALY, 0*™ 0Py

+/ Z¢a<8 u]AJ 2m8ﬁuk.

Q§<a

It is desirable to have our final term in terms of 9°(p?™uy,) rather than ¢?>™9%uy,
so after one more application of the Leibniz rule, and writing as in formula (48),
we have for some functions ¥ ¢ which are supported in Q) \ @ and satisfy |Ug | <
Cplél=181

/ 0% (") ALY 0Puy = / 0% (™™ 11;) ALY, *™ 0Py,
0Q

+/ S By 0575 ATE, 0 (0 uy)

QC<0¢
—/ Z‘I)aca UJAJ’IBZQO \I/B;;‘aguk
9Q ¢<a £<p

Similar measures as taken above also give us

/ aa me A]’ (PQmUk / aoc 2m7 A], 5 Z (pm \IIB ¢ aguk
£<B

+ / o“ ((pzmﬂj) Aéﬁ; L,OQm 85%.
0Q

Thus combining the previous two equations and reintroducing summation, we see
that

Y X X [ o) ah o)
J.k=1|a|<m |B|<m
-3 Y Y [ et o

Jk=1 |a\<m |Bl<m

YT Y [ Y e 0

gk=1|a|<m |8]<m ” 9@ ¢<a

5 OB SID Sl IS TR s

J,k=1|a|<m |B|<m C<Oé £<B

+Z > Z/ 0% (™) ALY N T o™ Wy ¢ .

J.k=1|a|<m |B|<m £<pB
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We write this as I=IT+III+IV+V. Observe that by formula (47),
(49) 1 = T g,
By the condition (34), we have that
NIV™(@*™ D)2 (9q) < Rel+8ll* ™22 (gq)-

Suppose that the condition (10) is true. By Holder’s inequality and properties
Of (I)a,g,

¢ = ~ 2m—» <
|TII| < > > p|a\ m |10% HL?Lia(oQ\Q)Ha (v )”LfLiﬁ(eQ)'

—(d—1)/2<|a|<m (<«
m—(d—1)/2<|B8|<m

Recall that ©*"@ € Yy™?(0Q) and so may be extended by zero to a Y™2(R%)-
function. By Corollary 39 we have that

10° (™ )| = [19° (o> a)|

L%Liﬁ (R4)
< C|V™(*™ ) || L2(ray = CIV™ (9™ D) || L2 (0 -

L2127 (6Q)

Summing, we see that

¢ = B 2m = .
< > > |a| |<| 19%ll 2 20 (g 197" Tl 20y

m—d/2<|a|<m C<a

By Lemma 43,
m—(|a|—|¢]) C
[ - I (N vare
1o ““L%Li‘*(@Q\Q) = Zl melaHI(lﬂ‘”V lz200\0)-

So

m—1

I < ) pm,i”vZﬁHL?(eQ\Q)HSOQmaHWmﬂ(GQ)'
1=0

Applying Young’s inequality, we see that

m—1

c i
|HI‘ < Z p2m 21 HV uHLz(gQ\Q) + 7”50 ukHWm 2(0Q)"
=0

A similar argument with the roles of o, ¢ and 3, £ reversed yields the same bound
on V, while an even simpler argument yields the bound

m—1

C i
i<y i |1V %2 9e\)-
1=0

The argument in the case that the condition (8) is true is similar.
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‘We thus have that
NG 02 mn 0y < ReT + 86722 g
< || + |11} + |IV| + [V +8[10*™ 172 90

Va7 IVIUIT2 (00\@) q
<[j+c Z mem T olle®™ |72 o)

EH@QM ﬂ”Wm 2(6Q)"
Subtracting the final term and applying formula (49) yields that
(50)

A . 7 LIV _’HL? 0Q\Q -
SNz < (T 6" |+OZ e+ 81 g

By definition of || T,

(T, "™ @)oql < ITI le* ™ llym2(oq)-

By Lemma 45 with y = @™

C 7 m
IV (@™ )| 1200\ @) -

m—1
e ™ llym20q) < ™™ @llymeeq) + D i
1=0

Using the Leibniz rule and arguing as before,

m—1

ymema) < @ llym20g) +C Y i IVl L2000\ @) -
=0

lp*™ ]

By Corollary 38, [|¢®" ]|y m.2(9q) < C’||g02m11’||Wm,2(9Q). By Young’s inequality and
formula (50) we have

Ao Ao g
5”@2 ||Wm 2(0Q) <C||TH2+7||<P2 ||2 Wm.2(0Q)
Vel
2(0Q\Q m-
+C pgm 21\ ) 5”‘»02 u||L2(9Q)
=0

Subtracting the second term on the right hand side and observing that ||V™||z2(g) <
||g02mﬁ||Wm,2(9Q) completes the proof. O

We wish to improve the Caccioppoli inequality by removing the intermediate
derivatives (that is, Vegforl <k <m-— 1). The following theorem was proven
in [Barl6, Theorem 18] in the case of balls rather than cubes; the proof in [Barl6]
carries through with the obvious modifications.

Theorem 51. Let Q C RY be a cube with sides parallel to the coordinate azes. Let
1 < 0 < 2. Suppose that @@ € W™2(0Q) is a function that satisfies the inequality

m—1
. Co k2
(52) / VP < / VEaR 4+ F
9Q kZ:o ((p = 0)|Q[/4)2m=2k | w0

whenever 0 < ¥ < p < 0, for some F > 0.
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Then U satisfies the stronger inequality

c
vl < / @2 + CF
/Q ((0 = DIQIV)2™ Jono

for some constant C depending only on m, the dimension d, and the constant Cy.
Furthermore, if 0 < j < m, then U satisfies

_ C _
V]ﬁ2 < / ﬁ2+CQ(2m72J)/dF.
/Q' S DI J,, T O

Now if we combine Lemma 46 and Theorem 51, we obtain the desired Caccioppoli
inequality in which we bound |V™|? without the intermediate gradient terms, as
stated in the following corollary.

Corollary 53. Let L be an operator of order 2m of the form (26) associated to
coefficients A that satisfy the weak Garding inequality (34) and either the bound
(8) or the bound (10).

Let Q C R? be an open cube with sides parallel to the coordinate azes, and let
1<0<2 Let@eY™2(0Q). Let T € Y~™2(0Q). Suppose that Li =T in 0Q in
the sense that formula (26) is true for all test functions @ € WJ"2(0Q).

Then we have that

C
vl < / P +05/ @ + |7
/Q (0 = DIQIM)*™ Joprq 0Q
and for all j with 1 < j < m — 1 we have that
1 4 C
54 7/ V]f[2§—./ ﬂ’Q—l—C&/ i> +C||T|?
( ) |Q|(2m*2j)/d Q| | (07 1)23|Q‘2m 0Q| | 9Q| | || ||

where C' is a constant depending on the dimension d, the order 2m of L, the number
A in the bound (34), and the number A in the bound (8) or (10). Here |T| =

| T|ly ~m.2(00) is the operator norm, that is, the smallest number such that |(1, T')| <
8 lly 200 IT1] for all § € Y7™*(6Q).
Remark 55. If m—d/2 < j < m and § = 0, then we can replace the term foQ |i)?

in the bound (54) by feQ\Q || at a cost of some additional negative powers of
(0 —1). See Section 6.

5. INVERTIBILITY OF L

In this section we will investigate boundedness and invertibility of the operator
L:Yy™P([RY) — Y~™P(R?). The argument for invertibility parallels that used in
[BHLG™, Lemma 3.4] in the second order case.

We remark that invertibility requires the Garding inequality (6), and not only
the weaker Garding inequality (34) of Section 4 and [AQO0]; thus, for the remainder
of this paper, we will always assume the strong Garding inequality (6).

We will begin with boundedness of L for a range of p.

Lemma 56. Let L be an operator of the form (26) associated to coefficients A that
satisfy either the bound (8) or the bound (10). Let IIy be as in Definition 30.
If A satisfies the bound (8) then

°d  2d d d
24 2P Ve, and =11,
(d+1’d—1)— Loan <d+a—m’m—b) L
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If A satisfies the bound (10) then

2d 2d d—1 d—1
) g ) g HL-
d+1'd-1 d—14+a—m'm-—=5b
If p € Ty, then the constants A(p) in the bound (7) depend only on p, d, m and
the constant A in the bound (8) or (10).

Proof. If L satisfies the condition (8) then m > a>m—d/2 and m > b > m—d/2.
Observe that m, d and a, b are integers, and som >a>m—d/2+1/2, m > b >
m —d/2+4 1/2. A straightforward computation yields that

2d 2d c d d
d+1'd-—1) " \d+a-m'm—-0b/"

Similarly, if L satisfies the condition (10) then m > a >m — (d —1)/2 4+ 1/2 and
m>b>m—(d—1)/2+1/2. Thus

2d 2d - 2(d—-1) 2(d—1) c d—1 d—1
d+1'd-1) — d T d-2 “\d-1+a—-m' m-5b
d d
C ; .
“\d+a—-m' m-—>

Suppose that L satisfies the condition (8). If p € (m, —4) then a >
m—d/p’, b >m—d/p, and so if a < |a| < m and b < |3] < m then p], and pg
exist and are finite. By formulas (23) and (8),

i, .t
bs (p/)oz 204,5
Thus by Hélder’s inequality, for such p, «, and £,
[ 0% AP 0] < 10% 0, v oy 10" | AL s
which by the condition (8) and the definition (24) of Y™P(R?) satisfies

/ ’aa@jA]’ 851/)1@‘ < AM@llymw (R%) ||wHYmp(]Rd)

=1

Summing over «, 3, j and k and using Definition 30 completes the proof

Now suppose that L satisfies the condition (10). If p € (dﬂﬁ, A=) then

a>m—(d—1)/p',b>m—(d—1)/p, and soif a < |a] <m and b < |B| < m then
P, and pg exist and are finite. Again

11
Observe that
[ atorns [~ [ e ah ot dsa
Applying Holder’s inequality first in R4~ and then in R yields that

[ 1o Azt 0% < Al 07

Applying Corollary 39 and summing completes the proof. O

L L (ra) LyL:" (RY)
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We now establish invertibility of L for p = 2. The main tool in the proof is the
complex valued Lax-Milgram lemma, which we now state.

Theorem 57. [Bab71, Theorem 2.1] Let Hy and Hy be two Hilbert spaces, and let
B be a bounded sesquilinear form on Hy X Hy that is coercive in the sense that
B(w,v B(u,w
wp BODI o Bw)

ZAHuHHl
weH N0} |[wllH, weH\{0} Wl m,

for every w € Hy, and v € Hsy, for some fixed X\ > 0. Then for every linear
functional T defined on Hy there is a unique ur € Hy such that B(v,ur) = T(v).
Furthermore ||up| g, < %HTHHQ

Lemma 58. Let L be an operator of the form (26) of order 2m which satisfies the
ellipticity condition (6) and such that 2 € IIy, where Iy, is as in Definition 30.
Then L is invertible with bounded inverse Y™ ?2(R%) — Y ~™2(R9),

Proof. Let B(u, ) be the form given by

N
(59) Ban=-3 Y 3 [ Fuateu.
Rd

k=1 |al<m |B]<m

Notice that by formula (6) B is a coercive sesquilinear operator on Y 2(R%) x
Y™2(R9) in the sense of Theorem 57, while by Definition 30, B is bounded on
Y™2(RY) x Y™2(R?) with the bound
(60) |B(4,v)] < A@2)|4]

Let T be an element of Y ~"2(R%). Recall that we write bounded linear function-
als on Y™2(R%) as (T, -). Let iir € Y"™2(R?) be the unique element of Y™ 2(R?)
given by the Lax-Milgram lemma, so

N
(o) XX Y [ ek =T

Jok=1]a|<m |B|<m

Yy m.2(Rd) HU”ym,z(Rd).

for all p € Y™2(R%). Observe that by formula (26), Liiz = T. By the boundedness
property of the Lax-Milgram lemma, ||t ||y m.2ga) < %HTHY*T”Q(Rd), and by the
uniqueness property in the Lax-Milgram lemma, @ = up is the only element of
Y™2(RY) with Lé = T. Thus the operator T+ i is well defined, bounded,

linear, and an inverse to L. O

We conclude this section by establishing invertibility of L for a range of p. In
this case the main tool is Sneiberg’s lemma. We refer the reader to [BL76, Tri83,
ABES19] for the definition of interpolation couples and complex interpolation.

Lemma 62. (Sneiberg’s lemma [ABES19, Theorem A.1]) Let X = (Xo, X1) and
7 = (Zy, Zy1) be interpolation couples and let [-, -] denote the standard complex
interpolation functor. Let T € L(X,Z); that is, T is a linear operator from Xo+ X,
to Zo + Z1 such that T(X;) C Z; and T : X; — Z; is bounded for j = 0, 1.
Suppose that for some 0* € (0,1) and some k > 0, the lower bound || Tx||(z,,2,),. >
K|zl (x0,x1],- Polds for all x € [Xo, X1]o~. Then the following are true.

(i) Given 0 < e < 1/4, the lower bound ||Tx|(z, 2,1, > €xlz|[x,,x,], holds

for all x € [Xo, X1lg, provided that |0 — 6*| < =U=20min{071207} = p oo
3R+6M

M = maxj—o1 |T|x,-z2,-
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(i) If T : [Xo,X1]le» — [Zo, Z1]e= is invertible, then the same is true for
T : [Xo,X1lo — [Zo, Z1]g if 0 is as in (i). The inverse mappings agree on
[Zo, Z1)o N [Zo, Z1]e~ and their norms are bounded by .

Lemma 63. Let L : Y™2(R?) — Y~"2(R%) be bounded and invertible, and sup-
pose that L extends by density to a bounded operator L : Y™P(R?) — Y ~™P(R%)
for all p in an open neighborhood of 2.

Let Y, be as in Definition 35, that is, the set of all p such that L : Y™P(R?) —
Y ~"P(R%) is bounded and compatibly invertible.

Then Y is an interval, and there is a 6 > 0 such that if 2 —6 <p < 2+ 0 then
p e TL-

In particular, these conditions are satisfied if L is an operator of the form (26)
that satisfies the ellipticity condition (6) and such that I}, as given by Definition 30
contains an open neighborhood of 2. In this case § depends only on Il;, and the
standard parameters.

Proof. By assumption or by Lemma 58, L : Y™2(R?) — Y ~™2(R9) is invertible.
Thus 2 € 1.

By [Tri83, Section 5.2.5], W™ P(R%) forms a complex interpolation scale. The
map which sends an element of W™ (R%) to its unique representative in Y7 (R?) is
invertible, and thus is a retract; by [KMMO07, Lemma 7.11], we have that Y™ ?(R%)
forms a complex interpolation scale. Next, we have from [BL76, Theorem 4.5.1]
that the antidual space Y ~™P(R%) also forms a complex interpolation scale.

A straightforward interpolation argument shows that if L is bounded and com-
patibly invertible Y7 (R?) — Y ~™P(R%) then L is bounded and compatibly in-
vertible Y?(R%) — Y ~™4(R?) whenever ¢ is between p and 2, and so Y, is an
interval.

Finally, by Sneiberg’s lemma, L is invertible Y ¢(R%) — Y ~"9(R%) whenever
2 -6 < q< 240, where § is as dictated by (i) from Sneiberg’s lemma. This
completes the proof. O

6. LP BOUNDS ON SOLUTIONS AND THEIR GRADIENTS

In [Mey63], Meyers established a reverse Holder estimate; in the notation of the
present paper, he established that if L = —V - AV is a second order divergence
form operator without lower order terms, and if @) is a cube, then for all p and ¢
sufficiently close to 2 (and, in particular, for some p > 2 and ¢ < 2) we have the
estimate

IVull Loy < CIQIMP~|Vul| pagaq) + CllLully-15020)

for all suitable functions u. The exponent ¢ on the right hand side can be lowered
if desired; see [FS72, Section 9, Lemma 2] in the case of harmonic functions, and
[Barl6, Lemma 33] for more general functions. Meyers’s results can be generalized
to second order systems (even nonlinear systems) without lower order terms (see
[Gia83, Chapter V]), or to higher order equations without lower order terms (see
[Cam80, AQO0, Barl6]).

Theorem 14 represents a generalization to the case of operators with lower or-
der terms. It follows immediately from the next theorem and Lemma 63. We
remark that the m = 1 case of this theorem was essentially established in [BHLG™,
Section 3.1] and that the higher order case uses many of the same arguments.
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Theorem 64. Let m > 1 and d > 2 be integers. Let L be an operator of order 2m
of the form (26) associated to coefficients A that satisfy the Garding inequality (6)
and either the bound (8) or the bound (10).

Let T, and Y, be as in Definitions 80 and 35. Let p, p € Y N1l with p > 2
and let 0 < g < co. Let j and w be integers with 0 < j < m and 0 < w < min(j, b).
If p =2, we impose the additional requirement that either ¢ > 2 or w > 1.

Let Q C RY be a cube with sides parallel to the coordinate aves. Let 1 < 6 < 2.
Suppose that @ € Y™H(0Q) and that Ld € Y~"P(0Q) (in the sense that zfz/? €
Vg™ P (0Q) NYG™ (0Q) then [(Lii, ¥)oq| < Cllvllyma (9g))-

Then Vi € LP(Q), and there exist positive constants k and C depending on p,
q, and the standard parameters such that

1 i
WHVJUHLP(Q)

C . c|Q|/r—1/a=(m=w)/d
< ———|| Lty =m.p V= La .
S0-1- (| Ladly Q) + 01" V=il La9\@)

Here b is as in Definition 30, that is, b = min{|3] : Aflkﬁ(X) # 0 for some «, j,
k, and X}.

Remark 65. If j > m — d/p, we may of course immediately apply the Gagliardo-
Nirenberg-Sobolev inequality (Lemma 41) to bound ||VI|»; g); if j < m —d/p,
then improved estimates on V7, such as local Holder continuity, may be derived
from further Sobolev space results such as Morrey’s inequality.

In the case of operators without lower order terms (in which case b = m), we
may take 7 = w = m; Theorem 64 then yields the same bounds as the classical
inequality of Meyers (and the generalizations of [Cam80, AQO00, Bar16]).

We will also establish an estimate for functions @ with Lad € Y~"™?(0Q) for p < 2
sufficiently close to 2.

Theorem 66. Let m > 1 and d > 2 be integers. Let L be an operator of order 2m
of the form (26) associated to coefficients A that satisfy the Garding inequality (6)
and either the bound (8) or the bound (10).

Let Iy, and Y be as in Definitions 30 and 35. Let p, u € Yp NIl and let
0 < g <o0. Let j be an integer with 0 < j < m.

Let Q C R be a cube with sides parallel to the coordinate azes. Let 1 < 6 < 2.
Suppose that @ € Y™ H(0Q) and that Li € Y~™P(0Q).

Then Viu € LP(Q), and there exist positive constants k and C depending on p,
q, and the standard parameters such that

1

|Q‘(m—j)/d HVJuHLT’(Q)

C ~ C|Q|1/p71/q m 1 L
< en— L —m,p — —_— . N7 v q .

i=min(j,b)
Given operators with lower order terms, Theorem 64 cannot be strengthened, as

shown in the following example.

Theorem 67. Let d > 3, m > 1, a € (m—d/2,m], and b € (m —d/2,m) be

nonnegative integers, and let € > 0.
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Let Qo C R? be the cube of volume 1 centered at the origin. Let Aaﬁ be real
nonnegative constant coefficients such that

(=A™ = (-1)™ Z gaﬁ(‘)‘“'ﬂ, gaﬁ =0 if o] <m or|B| <m.

loe|=[B]=m

Then there exists a linear operator L of the form (26) with N = 1 associated to
smooth coefficients A, g = Ailﬁ and a C* function u such that

o |[Anp — EQ,QHLW(Q) <e¢ for all |a| <m and |3] < m,

e The numbers a and b chosen above also satisfy the conditions (28)—(29)
given in Definition 30,

e Lu = 0 in Qo in the classical sense (and thus also as an element of
Y-m0(Qq) for any p € 11y,

o [fC >0 and 2 < p < oo then there is a cube Q C Qo with

IV allr @) = C Y QP27 VP 2 o).
i=b+1

Constant coefficient operators without lower order terms such as (—A)™ clearly
satisfy the bounds (8) and (10) for some A > 0. Extending A, g by zero, we see
that by taking ¢ small enough, we may ensure that L satisfies the bound (8) with
constant A arbitrarily close to that of (—A)™.

By an elementary (and very well known) argument using the Fourier transform,
the operator (—A)™ satisfies the bound (6) for some A > 0. By Corollary 38, and
again by taking ¢ small enough, the operator L satisfies the bound (6) with constant
A arbitrarily close to that of (—A)™.

We will prove Theorems 64 and 66 in Section 6.1, and prove Theorem 67 in
Section 6.2.

6.1. Proof of Theorems 64 and 66. We begin with the following variant of
Lemmas 41, 42, and 43 in the case where the exponents on each side are different.

Lemma 68. Let m, d € N, d > 2, p € [1,00), and let j, k € Ny satisfy 0 < j <
k—1and m—d/p < k <m. Let py, = pm,ar- Let 1 < 0 < 2. Let pu satisfy
0<1/p<min(1,1/p+1/d).

Then there is a constant C depending only on p, d, and m such that if Q C R?¢
is a cube with sides parallel to the coordinate azes and u € W™P(0Q), then

[V9ulln oy < 3 CIQIHP i m b0/ T
i=j
. m C|Q|1/p—1/u—(m—k+j—i)/d ;
HVJUHLPIC(@Q\Q) < Z (9 — 1)mfk+jfi+1 ||v UHLH(OQ\Q)'

i=j

If in addition k > m — (d — 1) /p, then

V70l 210y < D CIQIP =0 ]| g ),
i=j
L C|Q| M=t n=(m—ktj—i)/d ;
LYLEF(0Q\Q) = > (0 — 1)m—hti—itl IViulle0ora)-

1=y

IV
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Proof. By Holder’s inequality, it suffices to establish the listed bounds for the end-
point value 1/p = min(1,1/p+1/d). We will establish the last of the listed bounds;
the arguments for the three preceding bounds are similar (in the first two cases
with Lemmas 41 or 42 in place of Lemma 43).

By Lemma 43, and because k — j > 1, we have that

m—1
. C ;
||Vju||ka(9Q\Q) < § : (6 — 1)|Q|1/d)m—k+j—i v “HLP(GQ\Q)'
i=j

Recall that we have taken p to satisfy 1/u = min(1,1/p + 1/d). Because d > 2, we

have that

1 1 1 1
0< =--=-<=
Pm—1 p d 7 p

(in particular, p,,_1 exists) and so by Holder’s inequality,

m—1
, C ~ ,
IV ulinoane < - qgpygmapmr= @ IV s oo

i=j

Another application of Lemma 43 yields

m—1
_ C B .
IV7ullir0ara) < Z (@ = D)Q[/ym—Fri—i¥i QIVPVE IV | L)
i=j
as desired. O

Now, recall from Lemma 45 that if v € Y™ #(0Q) then uy € Y™#(0Q) for all
X € C§°(0Q). By Definition 30, if u € II, then L(uy) € Y ~"™#(R%). We now show
that under some circumstances, L(uy) is also in Y~ (R9).

Lemma 69. Letm > 1 and d > 2 be integers. Let L be an operator of the form (26)
for some coefficients A that satisfy either the bound (8) or the bound (10).

If A satisfies the bound (8), let p, p € (d-s-%m7mL—b) If A satisfies the
bound (10), let p, u € (d—ﬂﬁ’%)' By Lemma 56, these ranges include
(%, 24 In either case we additionally require that 1/ < 1/p+1/d.

Let Q C RY be a cube with sides parallel to the coordinate axes. Let 1 <

0

2. Let @ € Y™H(0Q) be such that L@ € Y~™P(0Q) (in the sense that if |
Y5 P (0Q) N Y™ (0Q) then (L, ¥)oq| < CllYllym 9g))-

Let x € C°(R?) be a test function with 0 < x < 1 such that x = 1 in Q and
x = 0 outside 0Q). We extend uwx by 0 outside of 0Q).

Then L(ix) extends to a bounded operator on Y™ (R%).

Furthermore, if 0 < w < b, then there is a polynomial P of degree less than w
and positive constants C and k depending on the standard parameters such that

<
€

L3 C .
| L((u — P)X)”Y*’”»P(Rd) < WHLUHY—WW(@Q)

CXA|Q|Y/P—1/r zm: 1
2 1q

01" m7a IV il e \@)

where X = maxi<i<a(6 — 1)"1Q|"4||Vix|| 1= (q)-
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We follow the convention that the zero function is a polynomial of negative

degree; thus, if w = 0 then P = 0. For any p € (m, mi_b) or (%, :7,;—15)7

there is a p in the same range with p < p and with 1/p < 1/p+ 1/d.

Proof of Lemma 69. Let P be the polynomial of degree less than w with feQ\Q o7 (u—

P) =0 for all |y| < @. Because @ < b and by defintion of b, LP = 0. The function
xP is smooth and compactly supported and so L(xP) € Y~™P(R%). Thus, we
need only show that L((@Z— P)x) € Y~™?(R%) and establish an appropriate bound
on its norm. For notational convenience we will take P = 0.

Recall that Y ~™P(R%) is the antidual space to Y™ (R%). So to show that
L(xi@) € Y~™?(R%), we need only bound (L(x@), ) for all in Y™ (R%). By
density we may assume that @ € Y™ (R%), so by Lemma 45, (L(@x), ¢) represents
an absolutely convergent integral.

Let @ be (a representative of) an element of Y™ (R%) N Y™# (R?). By the
weak definition (26) of L,

/ Z Z Z aa%Ajk ? (xur).
jk‘ 1]a|<m |B|<m

Let 1/7 = g— R, where R is the polynomial of degree less than a with fGQ 87(5—1?:) =
0 for all |y| < a. Then L*R = 0. Therefore,

T - L7 - L@ h-3% 3 3 / Fogy AT 0 (xur).

j.k=1|a|<m |B|<m

We remark on the symmetry of our situation: ¢ € Yymr' (0Q), @ € Y™ (0Q),
Joo @ =0if 7] <a, and [y, ,0°7 =0 if |§| < w.
By the Leibniz rule,

Yy Z/ P @yx) A2, P

j.k=1 \a|<m |BI<m

Y Y Y z/

J.k=1|a|<m |B|<my<p

yryy/

o —
Jk=1|a|<m|B8|<m d<a Q\@ e

a%AJ’“muk 9Py
Q\Q’Y ﬂ 7

a%] 920 x ALY, 9Py,

Recall from Lemma 45 that Yy € Yom’p/ 0Q) N Yom’”,(HQ). By the weak defini-
tion (26) of L, we have that

S X Y [ T a0 = T

J.k=1]a|<m |B|<m

By definition of Y ~™P

(L, Xag] < 1Ly —rr00) KTy (o
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By Lemmas 45 and 41,

m
o7 1
”XwHYom’pl(OQ Z — 1 m—i ‘Ql(m z)/de ¢||Lp 0Q)"
z:O

By the Poincaré inequality, and because Vzﬁ = Vi@ for all i > a,

m

_ CX 1
||XwHme1P’(0Q) S (0 — m Z |Q|(m Z)/de SOHLP Q)"

Recall that p > o—"——. If i > a, then 1/p’ — (m —i)/d > 0 and so by formula (23)
(p'); is well deﬁned and finite. Thus by Hélder’s inequality

_ - cx .
X llygmr oq) < g—gym 19l ms 00)-

Thus

SN = c . -
[(L(ix), #)| < W”LUHY—MW(@Q)”SDHYWP/(GQ)

Ir Yy ey

Jk=1a|<m |B|<m <

Iy ey

l(a —
k=1 |a|<m |B|<m d<a Q\q Ma

3a¢]AJ avukaﬁ Ty

0\Q V! »3 )

aézpj 9° 70X ALK, 9P uy,|.

We will now bound the integrals over 6Q \ Q.
Suppose that the coefficients A satisfy the condition (10). Let o and S be such
that Aikﬁ is not identically equal to zero. By assumption on g and p, this means

that fig, ps, (p'),, and (u), exist and are finite. By Hélder’s inequality in R?~1
and then in R,

94 AT 0wy, 977 x

0Q\Q

_ ik
<10l e 10 X200\ @ AR 2 s 0 ) 1074 1125 a0

and

D4; 07Oy TN 0Py,

0Q\Q
< [|0°

” a—0

. qk 8 .
w1 o0 =001 4d sl s 00\ 19705 1y 120 00

Because |a] > a we have that 9% = 9*@F. By Lemma 42 with j = k = ||, the
definitions (24) and (23) of Y™P" and p,, and Holder’s inequality,
Ha d’] ||Lp L(P )(x (9Q\Q)
By Lemma 43 with j = k = |f],

CllBlly m.» 0Q)-

C .
107l s 175 g < -Zm @ gV oo
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By Lemma 68 with j = |y| < k = |5],

m C|Q|1/p—1/u—(m—\5\+|7|—i)/d

B i
L eoQ) = I Ch 1)m—IBH+R=i+1 IV ulle0o\@)
i=|y

107wl

and by Lemma 44,

L O|Q| Pt Bl =)/
LILP (6Q\Q) 2 (6 — 1ym-1al+t IV urllee oor@)-

1=

107 u |

Observe that 1/p’ < 1/’ + 1/d; thus, by Lemma 68 and the Poincaré inequality
with j = || < k = |a|, and with p, u, u replaced by p/, p’, 1, we have that

1074

L 107 (o) = > _ClQIMpt/n el = G .
t e i=a

Because VZJ = Vi for all i > a, and by Hélder’s inequality, we have that

(el , < ZCIQI1/”_1/’”('(1‘_‘5‘)/dllvi<ﬁl\m/>i(eQ)
=a

L L (0Q

< C‘Q|1/p71/u+(\ozlf\5\)/d||¢||Ym’p,(QQ),

Combining all of the above estimates and the definitions of X and A, we see that
Lo ¢ . -
[(L(tix), #)| < WHLUHYW»MQ)H@Hymw’(eQ)

m )
. CxA|Q|1/p—1/u—(m—l)/d i
+ ”‘P”Y"MP’(GQ) Z (6 — 1)m+1 V4| e (6q\@) -

=T

This completes the proof in the case where A satisfies the condition (10).
If instead A satisfies the condition (8), a similar argument with Lemma 41 in
place of Lemma 42 establishes the same bound. O

From Lemma 69 we have a bound on L(@y). We may now prove the following
result; this is Theorem 66 in the case ¢ = p.

Lemma 70. Letm, d, L, p, i, Q, 0, and w be as in Lemma 69. Let @ € Y™*(0Q)
be such that L4 € Y~™P(0Q).

Suppose in addition that p, p € T, NIy, where Iy, and Y, are as in Definitions
30 and 35.

Then there is a constant C depending only on p and L such that, for all 7 with
w < j < m, we have that

1 . C .
W”W“HLP(Q) < WHLuﬂy—w(eQ)

CA|Q‘1/I)—1/H m 1 i
+ 0 — 1)~ Z Q|(m—0/d V'@l i 0\@)-

If2 -6 <p <240, where § is the number in Lemma 63, then C may be taken
depending only on p and the standard parameters.
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Proof. Let x € C°(0Q) be as in Lemma 69; we may require that the parameter

—

X be bounded depending only on m and d. We extend (4 — P)x by zero, where

—

P is the polynomial in Lemma 69. By Lemma 69, L((u — P)x) € Y~"?(0Q). By

—

Lemma 45, (€ — P)x € Y™"™#(0Q), and so by Definition 30 and because p € I,
we have that L((u — P)x) € Y~™2(0Q) NY ~"™H(0Q).

By the definition of Yy, L is invertible Y™ ?(R9) — Y ~™P(R?), Y™ (R4) —
y-mi(RY), and Y™2(RY) — Y—m2(RY).

Furthermore, if T € Y~"P(R)NY ~"™2(R?), then L~'T € Y™?(R?)NY ™ 2(RY).
Observe that we may approximate elements of Y =™ (R%)NY ~™#(R?) by elements
of Y=mP(RY) NY ™R NY~"™2(RY); thus, by density, if T € Y~"P(R%) N
Y ~m#(R), then L™1T € Y™P(RY) N Y™H(RY) (even if T ¢ Y ~"™2(R?)).

Thus, because (x(@ — P)) € Y™#(R?), we have that

x(i = P) = L™ (L(x(@ — P))).
Since L(x(@ — P)) € Y ~™2(R%) N Y ~™#(R%), we have that y(Z — P) € Y™P(R?).
By boundedness of L™1 : Y™?(R%) — Y ~"?(R%), we have that
[Ix (@ — ﬁ)”Y’"aP(H@) < C(p, L)|| L(x(a - p’))HY*m’P(Rd)-
By Lemma 69,

L3 c ~
Ix (@ — P)lym»m@ey < W”LUHY*"L’P(GQ)

m
0A‘@|l/p—l/u ;
+ Z (6 — 1)~|Q|(m—i)/d IV “kHL“(GQ\Q)'

If j > m — d/p, then p; exists and by Holder’s inequality
QY=Y Looq) < V7 L7 (-
Because j > @, VI = VI (x(@ — P)) in Q and so
|Q|(j7m)/d|\vjﬂ||Lp(9Q) < ||V (x (i — ﬁ))HL"]‘(@Q) <Ix(a — IS)HYWP(@Q)-

If w < j < m—d/p, recall that x(@ — 13) is supported in #P; by the Poincaré
inequality, we again have that

QY™ 1oy < 1QIY™™V (x(@ — P))|| o 0e)
< CIIV™ (x(@ = P)) ooy < Cllx(it - P)|

Y™P(0Q)-
In either case
QIO (x(@ ~ P)) o) < ClIx(@ = P)lymon e

and the proof is complete. (I

We may combine Lemma 70 with the Caccioppoli inequality (Lemma 53) to
prove Theorem 64 in the case ¢ = 2.

Lemma 71. Let m, d, L, p, u, Q, 0, u, w, and j be as in Lemma 70, that is, that
they are as in Lemma 69 with p, p € T N1l and w < j < m.
Suppose in addition that p > 2.
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Then there is a positive constant k depending only on the standard parameters
and a positive constant C' depending on p and L such that, if 0 < j < m, then

1 . C .
W”VJ“HLP(Q) = W”Luﬂyfmm(m)
C|Q|V/p—1/2=(m==)/d
(6 — 1)~ V=l 22 0@\@)-

If 2 < p < 249, where § is the number in Lemma 63, then C' may be taken
depending only on p and the standard parameters.

P?”OOf. Let 90 = 1, 93 = 9, and 93 — 92 = 02 — 91 = 91 — 90 = (9 — 1)/3 Choose
p = 2. Lemma 70 yields that

1 . C .,
W||VJUHLP(01Q) < WHLUHWWP(%Q)

CA|Q|1/p,1/# m 1 i
+ 0 —1)" Z |Q|(m—0/d IVl L2 (0,010, Q)

Let P be a polynomial of degree less than @ < min(j, b) such that fGQ\Q o (i—P) =
0 for all |y| < w. Observe that Lii = L(@ — P) and V7@ = Vi (@ — P). Applying
Corollary 53 to & — P and a covering argument yields that

1 - C . C|Q‘1/p—l/2 .
|Q|(m,j)/d ijuHLP(Q) < (0 — 1)m HLUHY”"*P((?Q) + (9 — 1),€ HLu”Y*mﬂ(é)Q\Q)
C|Q|1/p—1/2—m/d . .
(0 — 1)r+m la - PHL?(f)Q\Q)’

Because p > 2, by Holder’s inequality |Q|Y/P~Y/2||Lii|ly -m.2(9q) < C||Lilly-m.»(ag)-
By Lemma 44, we may replace Hﬁ_ﬁHL2(9Q\Q) by |Q|7/4||V=| 12 (p0\q)- Redefin-
ing x completes the proof. ]

Remark 72. If p = 2, Lemma 71 still represents an improvement over the Cac-
cioppoli inequality (Corollary 53) in that, if m — d/2 < j < m, then we can bound

V7 ull 2@y by ||l L2(00\@) and not ||d]|r2(sq).-
Remark 73. If p =2 and @ > 1, then by Lemmas 71 and 43,

1

C||Lidlly-m.»00)
Q=7

@ 1)~
C Q 1/p—1/2—(m—w+1)/d o
< =1 V=" ] L2 00\

\Vjﬂ'HLp(Q) <

C|| L]y -m.» (o)
B (0 —1)~
O|Q|1/p71/27(m7w)/d .
G- IVTlleew@

for ¢ satisfying 1/u = 1/2 + 1/d; notice that this ¢ satisfies ¢ < 2.

We have now established that Theorem 66 is valid if ¢ = p, and that Theorem 64
is valid if ¢ = 2 or if @w > 1 and ¢ takes a specific value less than 2. In particular,
these theorems are valid for at least one ¢ < p. By Hdlder’s inequality, these
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theorems are valid for all ¢ > p. The following lemma will complete the proof by
establishing validity for all positive but smaller q.

Lemma 74. Letd > 2 and 0 < w < n < m be integers. Let Q C R? be a cube and
let1 <6 <2.

For each i with w < i < m, let p;, u; satisfy 0 < p; < oo and u; € LP(0Q); if
n addition w < i < n, let q; satisfy 0 < @; < p;.

Suppose that, whenever 1 < ¢ < ¢ < 0, we have the bound

- F
(75) Z sl ri (oq) < C— o) (C 19 Z lwill La: (co\o)

i=w

for some nonnegative constants cy, k and F independent of { and ¥.
Then for every set of numbers q; with 0 < ¢; < @;, there are some constants C

and &, deqending only on the q;s, G;s, p;S, co, and K, such that

C
(76) Znujnmw(@ g (P4 X hllznwoo))

1=

Proof. If ¢g = 0, then applying the bound (75) with 1 = 9 and 6 = ¢ immediately
yields the bound (76) with K = & (and in fact without the sum on the right hand
side). Thus, throughout we may assume c¢g > 0. We are also done if ¢; = ¢; for
all 7; we will consider the case where ¢; < g; for at least one 7. In the present paper
we will only need the case where ¢; = ¢q, ¢; = q for some ¢, ¢ independent of ¢, but
for completeness we present the general case.
Let 1 =99 < ¥ < P2 < ... for some ¥y € [1,0) to be chosen momentarily, and

let Q= 9,Q. Let Ay = Qui1\ Q. f w <i <, let

_VYa—-1/pi _ a(pi — @)

Ve —-1pi G(pi— @)
If 0 < q; < q; < p;, we have that 0 < 7; < 1. Thus

n n N A\ Va
P EIREDS (/ Iuil”‘“uil(l‘”)%'> :
i=w i=w A

We compute that

!
q: _bi qu € (1,00), ( di > (1—7)q = pi-

Tidi  Pi—4i i
So we may apply Holder’s inequality to see that

Z ||UZ||LQL(A; < Z il Fa (Ap) ||U1H2mﬂAg

By Young’s inequality,

n (1—73)/7;
Znulum DS ( ) sl zos

- (¥ )"
FYo0- “7)”%””@-
Co

19@+1

g
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If ¢; = q; and so 7; = 1, this bound is still true. By the bound (75),

m r ‘o n
Uil ) < + willa
J;ﬂ l[ujllz (Qe) (D1 —00)"  (Dgg1 — 90)" ; l[will £ (Ae)

1/7;
< + T; ;| Las
(19@+1 9e)" z; ( _ 19@) ) l|will ai ()

1=

+ Z 1 — T; ||Ui||LPi(A2)-
Recall that 99 = 1. We now let 9,41 = 9y + (6 — 1)(1 — 0)o’ for some constant
€ (0,1) to be chosen momentarily. Notice that limy_,~ ¥y = 6. Recall that
A € Q41 Then

m n 1/7;
F TiCo

Z HujHij(Qk) < (g _ 1)n(1 _ 0’)”0’“4 + Z (9 _ 1)&/73( _ )m/‘ria—ﬁé/n Hui”Lqi(Ali)

n

+ Z(l — Ti)||ui||LPi(Q£+l)'

1=t
Let 7 = min; 7;. If 7 = 1 then ¢; = @; for all 7 and there is nothing to prove;
otherwise, 7 € (0,1). Recall that o < n < m. Iterating, we see that if K > 0 is an
integer, then

m K F

1/7;

N TiCo
+ Z(l —7) Z (0 — 1)~/7(1 — o)/ Tort/T uillL‘“(M))

+ Z K+ HUJHLPJ (Qet1)”

Recall that Qg = @ and Qe C0Q, Ay C 0Q\ Q for all £ > 0. Changing the order
of summation, we see that

m F Kori-r\*
Ny <
Z llujllz (@ = (0 —1)~(1 — o)~ Z( ok >
jmw =0
TZCO/ ‘ 1-7\"
+ Z K,/T — )r@/'r HUZ”L‘“(QQ\Q) Z O—I{/T

+(1—m)fHt Z llwill i (6q)-

Jj=w

Choose o € (0,1) such that 1 — 7 < ¢"/7; since 7 € (0,1), this implies 1 — 7 < o*.

Taking the limit as K — oo, we have that the geometric series converge and the

final term approaches zero, and so
= F

1
2 Islrs @) < Oy + € 2 =gy Iillzs )

Jj=w 1=w

n
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as desired. 0

6.2. A counterexample. In this section we will prove Theorem 67.

Let a, b and € be as in the theorem statement. Without loss of generality we
may require 0 < ¢ < 1. Fix a multiindex ¢ with |{] = b.

Define w(X) = (1 + |X|?)~¢. We may easily compute that V™w € LP(R?) for
any p > d/(2d + m) (in particular, for all p > 2).

Let {Qr}72, be a sequence of pairwise-disjoint cubes contained in @ (whose
volumes necessarily tend to zero). Let ¢ be a smooth cutoff function with ¢ sup-
ported in Qo and with ¢ = 1 in 1Qo, and let i(X) = ¢((X — Xj)/lx), where
X}, is the midpoint of Qy and £y = |Qk|1/d is the side length of Q. Then ¢y is a
smooth cutoff function supported in @} and identically 1 in %Qk.

Let {nx}32; be a sequence of positive numbers such that n¢; — oo and ngfy > 1
for all k. Notice that £ < 1 so ng > 1 for all k. Define

UX) = X4 5D ) s (X - X))
k=1

for a positive constant Cj to be chosen momentarily. We may easily compute that
if X e %Qk and v is a multiindex, then

(77) Ou(X) = 97 XC + Cioﬁ(am)(nk(x ~ X)),
Ny,

Furthermore, if X € Q and 0 < |y| < 2m, then
0u(X) — 97X £ SClp )l T < o)
We choose Cy > 2C((, p,d); this ensures that

|0%u — ¢! = [0°u — 8°X°| <

DO =

and so |0°u(X)| > 1 for all X,
Recall that A, g is a set of real nonnegative constants that satisfies
(—A)m _ (—l)m Z Z Aaﬁaa-ﬁ-ﬁ.
la]=m |B|=m
(Many possible families of such constants exist.) Similarly, for any a < m, there
exist families of constants B, , such that
A== Y B0t
la|=a |y|=2m—a
Choose some such family.

Define the coefficients A, 3 = Al’lﬁ as follows.

av

o If |a| = |B] =m, let Ay g = Aa .
o If |a| =aand =, let

e ~ 0u
Agc = (—1)HFm=e 3 Bangea

|v|=2m—a

e Otherwise, let Ay 3 = 0.
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Because |(| = b < m, Ay g is well defined.
If L is as given by formula (26), then formulas (28) and (29) are clearly valid. If
Cy is large enough then |4, g(X) — /~1a$B(X)| < ¢ for all X, o, and 3.
Furthermore, because u is smooth, we may compute that

oY (—)o%(Ap0’u) =0
a<|a]<m b<|B|<m

This is the classical definition of Lu = 0. An integration by parts argument yields
that (¢, Lu) = 0 for any test function ¢ such that the integral in formula (26) is
well defined; in particular, Lu = 0 in Y ~"P(Qy) for any p € II.

It remains only to establish a lower bound on lek V™.

If p>2and b+ 1< j <m, then by definition of u and a change of variables,

| 1/p . _ 1/p
TR RN ——
1Qk Con $Qx
- _ 1/p
- ——(f, wuopax)
CO 30nkQ

2d/p€ ) 1/17
= 2m—j d/ (/ |vjw(X)‘p dX) .
Co’rlk (éknk) p 20nkQ

Thus, recalling that ngf; > 1, we have that

p 2d/pg 1/p e
V™ul? > / VTmw(X de) P S—
(ngk| | ) Canwéknk)d“’< %Q| (&)l ni™ (Eng)d/P

where ¢; > 0 is independent of k.
Furthermore, if X € Q; \ $Qj then

Ce

C’onimij (nply)2d+i ’

[V7u(X)| <

Thus,

1 1/2 1 - . Ce 2\ 1/2
m—j (][ |v]u|2> < m—j (2 d][ |V]’LL|2 T ( 2m—j 2d ) )
Ek Qk ﬁk 3Qk CO” (nkgk) 3
€ 1 . C 1/2
< w2 4+ ——— .
= COan ]gm 7 <(£k)nk)d /Rd |v w| + (nkfk)4d+23>

Again using the fact that ni¢; > 1 and the fact that Viw € L2(R?) for any j > 0,

we have that
m 1/2
1 ][ P2 02
S —— (4 vy ) <2

jJHQJ(% i (Lng) /2

If p > 2, then because nyfr — oo, there is some k large enough that
~ CQ C1
C <
n}?(ﬁknk)dm - n’,?(ﬁknk)d/p
as desired. This completes the proof of Theorem 67.
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7. THE FUNDAMENTAL SOLUTION

In this section we will construct the fundamental solution. We will begin in
Section 7.1 with local estimates on functions in Y™P(R?) for m large enough.
Using these estimates, in Section 7.2 we will construct a preliminary version of the
fundamental solution in the case 2m > d. We will investigate the properties of this
fundamental solution in Sections 7.2-7.5. We will slightly modify our definition in
Section 7.4. In Section 7.6 we will construct the fundamental solution in the case
2m < d, and will address uniqueness in Section 7.7.

7.1. Preliminaries for operators of high order. Recall from the definition (24)
of Y™ 4(R?) that if u € Y™ (R%), then the derivatives 9" u of u are defined as locally
integrable functions if |y| > m—d/q, and are defined only up to adding polynomials
if |y] < m —d/q. We will now wish to fix a family of normalizations of functions in
Y™4(R%) and investigate their properties.

If d/m < g < 00, let Sy 4,4 be the number of multiindicies v € (Ng)? so that
|v] < m —d/q. Observe that s,, 4, is nonnegative, nondecreasing in ¢ and that
if ¢ < oo then sp,,q,¢ < Sm,d,q- Choose distinct points Hy, Hy,...,H, ,, in
B(0,1) \ B(0,1/2) (so 1/2 < |H;| < 1 for all 1 < i < $,44). If the points H;
are chosen appropriately (see [GS00] for a survey on polynomial interpolation in
several variables) then for any ¢ with d/m < ¢ < co and any numbers a; there is a
unique polynomial

P(X) = Z p, X7 such that P(H;) = a; for all 1 <i < s.4.4-
[v|<m—d/q

(We emphasize that if ¢ < d then we cannot specify the values of P(H;) for s,,.4,4 <
i < Sm,d,d-) Also there is some constant h < oo depending only on H; such that

sup  |py[ <h  sup  agl.
|[y|<m—d/q 1<i<Sm,d,q

We now show that this gives a normalization in Y™4(R%). We will need some
additional properties of this normalization.

Lemma 78. Let m, d € N with d > 2, let 7 > 0, and let Zy € R?. Let
max(1,d/m) < p < q<oo. Let U satisfy ||Ul|ymumay < 00.
Then there is a unique function Ug, r 4 that is continuous and satisfies

Uzy,r,q(Zo +1H;) =0, O°U = 9°Ug, ;4 almost everywhere

for all 1 <4 < 8,44 and all multiindices ¢ with m —d/q < |¢| < m. In particular,
if g = then U and Ug, 4 are representatives of the same element of Y™ (RY).

Furthermore, if X, Y € RY, R=r+|X -2, |X-Y| < iR, and || <m—d/p,
then we have the bounds

- B R wg—1
107U 24 .m.q(X)| < C.R d/p—|v| (r> ||U||Ym,,;L(Rd),

B B R wg—1
"0 z010() = Uz ()] £ Coult =t (B) 0o

(X —YI\°
R )

where C,, and € > 0 depend on d, m, and p, and wy is the smallest (necessarily
positive) integer with m — d/q < wq.
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Proof. Fix X € R%. Let Q be a cube centered at Zy of side length 4R. Observe
that ||U|lymu) < |Ullymumray < co. By definition of Y™#(R?) we have that
ViU is locally integrable in R? (and thus in particular is integrable in Q) for any
0<i<m. Let V =U+ P, where P is a polynomial of degree at most m — d/u so
that fQ 0"V =0 for all y with |y| < m—d/u (that is, all v with |y| < w,,). Observe
that [|U = Vlym.uga)y = 0, s0 [[V]lym.u(q) = [[Ullym.u(q) < oo
If d/p is not an integer, let 6 = p. Otherwise, let 0 satisfy d/0 = d/p + 1/2.
In either case, d/6 is not an integer and 6 < u. Since m > d/u + |y, if d/p is an
integer then m > d/p+ |y| + 1 and so m > d/6 + |y|. Because p > 1 we have that
d > d/u, so similarly d > d/6 and so 6 > 1.
Let k be the unique integer such that m — d/8 < k < m — d/6 + 1. Thus
|y <m —d/f <k <m+1andso |y]|+1<k<m. By Lemma 41,
m—k-+1
IV Vo) < Cu D RV ]|
i=1

and by Holder’s inequality and because k > 1 + |7/,

m
VOV || o) < Cpu Y RITITIFE=mtd/0=dli /iy |1 ).

i=1

I 1 m—kzeol
0, 0 d d )

By Morrey’s inequality (see [Eval0, Section 5.6.2]), we may redefine the weak de-
rivative 97V of V on a set of measure zero in a unique way so that it is continuous
(thus defined pointwise everywhere) and, if X € 1@ and |X — Y| < R/2, then
07V(X) = VY| < CulX = Y[V VOV | o -
Lete=1—d/0, =1—d/0 +m — k. Observe that 0 < e < 1. Then

- X =Y N i
(79) 07V(X) = 0"V(Y)| < Cugerhira/n ZR IVV e (@)-

i=1

By formula (23),

Averaging |97V (X)| < |07V(X) — &V (Y)| 4+ |07V (Y)| over Y € B(X,R/2) we
have that

e ¢ - it
(80) 7V(X)] < R\Tﬁd/u Z;R IVVI Li(q)-

We will consider the cases X = X and X = Zo+rH;.
We may write

m _ _ wp—1 ) . 1/p m ) ) 1/p
S RIVVIe = Y B ([ 9ve) e m( [ wvre)
i=0 i=0 i=w, Q

Recall that V' satisfies fQ ViV =0 for all 0 < i < w, — 1. We may apply the
Poincaré inequality in the first sum so that

) ) 1/n 1/n
R </ |V’V|“> < CuR%" </ |V“’“V|“> .
Q Q
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Thus

m 1/n
e < Cy Z R (/Q |V1V“) )

1=Wy

> RV'V|
1=0

By Holder’s inequality, we have that

m m 1/pq
S RIV Vi < € 3wt ([ o)

i=0 i=w,
By formula (23) we have that i + d/pu — d/u; = m. Thus, by the definition (24) of
the norm on Y"™#*(Q), we have that

(81) Y RIVVIlLu@) < CuR™Ullymanq)-
i=0

Let P; be the (unique) polynomial of degree at most m—d/q with P,(Zy+rH;) =
V(Zy + rH;) for each 1 < j < sp,,4,4, and let Uz, g = V — P1. Then Ug, rq is
the unique continuous function with Uy, ,4(Zo + rH;) = 0 for all 1 < j < p and
with O%Uz, rq = 0V = 0°U almost everywhere for all || > m — d/q. Thus the
specified function Uz, ,, is constructed; we need only establish the desired bounds
on UZO,'r',q- _

We now take X = Z, + rH; for some j. By formulas (80) and (81),

|P1(Z0 +rH;))| = [V(Zo +rHj)| < Cu Y RTYH|V'V| L)
i=0
< CuR™ YU lymn()-
Let Pl(Z) = PQ((Z—Zo)/’I") so that PQ(HZ) = Pl(Z0+THi) and PQ(Z) = Z|’y\§wq—l p’yZ"/
for some p,, where |p,| < hsup, |Pa(Zo +rHj)| < C R™=Y1||U|lymu(q). We then
have that P (Z) = ngwrlpvr_h‘(z — Zy)Y. We may then compute that if
Z €Qand 0 <i<wg—1, then
\ViPL(Z)| < CuR™ YEH|U |lym (@) (R/r)e "
Combining these pointwise bounds on P; with the bound (81) yields that

(82) > RVUzyrgllie@) < CuR™|Ullymn(qy(R/r)* "

=0
Combining this bound with the bounds (79), (80) with X = X completes the
proof. O

Remark 83. We observe that if U € Y™ #(R?), then 07U € L*+(R?) is defined
up to sets of measure zero whenever |y| > m — d/u, while Uy, ,, is continuous
and satisfies the bounds given by Lemma 78 whenever ¢ > p and |y| < m — d/p.

Suppose |y| = m —d/u. If k = |y| + 1, then by formula (23) ur = d and so
Vo'U € L4RY). By [Eval0, Section 5.8.1], we have that 97U lies in the space
BMO of bounded mean oscillation with [[07U|[gyro < Cpl|U|lym.u(ray. By the
John-Nirenberg inequality (see, for example, [Ste93]) we have that if 1 < p < oo
and @ is any cube then

1/p
(]{2 |3WU - fQ 87U|p> < CP,H”UHY"W‘(]Rd)-
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Let Zg, r, and Ug, 4 be as in Lemma 78. Observe that 9°U = 90Uy, ., for all
I¢| > ||, and so §°U differs from 9%Ug, ., by a constant. Thus

1/p
(]é |6WUZo,r,q - fQ aWUZo,r,qP) < Cp,u”UHYmv#(Rdy

By the bound (82) and Hoélder’s inequality, if @ is a cube centered at Zy of side
length 4R > 4r, then

| o P Uil < 1QI V2107 Uzy gl < CuR™ PN (R/1)%[Ullymon g

and so

1/p
( /Q |aWUz0,r,qp) < Gy RYP (/P [Ty

7.2. The fundamental solution for operators of high order. We now define
a preliminary version of our fundamental solution for operators of high order. If d
is odd, we will use this definition throughout; if d is even then we will modify the
definition somewhat in Section 7.4. We will consider operators of lower order in
Section 7.6.

Definition 84. Let m and d be integers with 2m > d > 2. Let L be a bounded and
invertible linear operator L : Y™4(R%) — Y ~"4(R%) for some ¢ with 1 < ¢ < oo
and 1 —m/d < 1/qg<m/d. Let Zyg € R let r >0, and let 1 < j < N.

Let Tx j z,,r.q be given by

(T'x,j,20,r,0: ®) = (®5) 20 ,r,q (X)

where 1/g+1/¢ = 1. By Lemma 78, this is a well defined bounded linear functional
on Y™ (R?); that is, Tx j zo.rq € Y "9(R?).

We define the fundamental solution E)L( . Zomq DY

L, o
EX jzowq = (L7 Tx j.20,rq) Zo,rq-

Remark 85. If L is bounded and invertible L : Y™2(R%) — Y ~™2(R%), and if L
is defined and bounded Y 4(R%) — Y ~™4(R%) for all ¢ in an open neighborhood
of 2, then by Lemma 63, ¢ satisfies the conditions of Definition 84 for all ¢ in a
(possibly smaller) neighborhood of 2.

Remark 86. Since Y ~"-4(R%) is by definition the dual space to Y™ (R%), by
standard function theoretic arguments L : Y™4(R?) — Y ~™4(R%) is bounded
and invertible if and only if its adjoint operator L* : Y™ (R%) — Y~ (R4)
is bounded and invertible. Furthermore, (L~1)* = (L*)~!. Also observe that
max(0,1 — m/d) < 1/q < min(1,m/d) if and only if max(0,1 — m/d) < 1/¢ <
min(1,m/d). Thus, L and g satisfy the conditions of Definition 84 if and only if L*
and ¢’ satisfy those conditions.

That is, E%(,j,Zo,r,q exists (for all X, j, Zp, r) if and only if E’gk,zmr,q' exists (for
allY, k, Zp, and 7).

In the remainder of this subsection we will establish some basic properties of the
fundamental solution; we will establish further properties in Sections 7.3-7.5. We
will begin with a symmetry property for the operators L and L*; we will use this
property to establish certain symmetries of the fundamental solution.
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Theorem 87. Let L and q satisfy the conditions of Definition 84. Let Zy, € R?,
let >0, and let j, k be integers in [1, N].
For all X, Y € R? we have that

(88) (BX g 20m a6 (V) = (B, 7,15 (X).
For every S € Y™ (R?) and every X € R? we have that
(89) (8, B j zara) = (L)78)3) Zymqr (X).

Finally, if we let

By 20ma(XY) = (B 20.0.0)i(X) = (EXj 2,10 )6 (Y),

is continuous on R? x R?,

L
then By, 7,04

Proof. That Ef, , . exists is Remark 86.
IfFX,YeR*and 1< j <N, 1<k< N, then by Definition 84 and Remark 86,

(EX . 2o (Y) = (Tvik 20,0 EX . 20ma) = (T Zorars L TX 5,20 a)

= (Tx,j.zora> (L) Ty k. 20,r0') = {TX j.Zouras BV k. 2o 1)
= (E)L’;C,Zo,r,q/)j (X)

In particular, observe that by Lemma 78, E%,k Zo.r.q(X) is locally uniformly con-

tinuous in both X and Y, and so E]Lk Zo.rq 18 continuous on R? x R?,

Similarly, we have that if S € Y~ (R%), then

(8. B j z0ma) = (8- L7 T zo,ria) = (X3, Z0,ras (L) 'S)
= (L) 7'8);) Zo.rar (X).
This establishes formula (89). O

We will conclude this section with a preliminary bound on the derivatives of the
function E)L(,j,Zomq'

Theorem 90. Let L and q satisfy the conditions of Definition 84. Let 1 < p < 2q.
Suppose that L also satisfies the conditions of Definition 84 with q replaced by p,
and that the inverses are compatible in the sense of Definition 35, that is, if T €
y—mP(RY) MY ~™4(RY) then LT € Y™P(RY) N Y™4(RY).

Suppose that 3 is a multiindex with 0 < |B| < m. Let Q C R? be a cube. Then
we have the bound

1/p K
o) ([ 198 ural) < omormssamin ()
Q

r

where R = max(r, | X — Zy|,dist(Zo, Q) + diam Q), and where C' and k are positive
constants depending on q, p, the norms of L' : Y™™¢(R%) — Y™4(R%) and
L=t y—mP(RY) — Y™P(RY), and the standard parameters.

Recall from Definition 35 that Y, is the set of all ¢ such that L~! is compatible
between Y™2(R%) and Y™ 49(R%). By density, if p, ¢ € Y1, then L™! is compatible
between Y™P(R4) and Y™4(R?), as required by the lemma.
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Proof of Theorem 90. By Lemma 78, if T'x ; z,.r 4 is as in Definition 84, then

R

, wafl
ITx 5, Zo ||y —moa(may < CqR™ 4/ (r>

and so by invertibility of L,

= _ , R wafl
(92) |‘E)Lf,j,zo,r,q| ymamay < CR™ d/q (T) .
By Lemma 78, if | 3| < m —d/q and |Y — Zy| < R then
L R\
0V EX j 20rg(Y)| < CRZ=41F] (r> .

Integration yields the bound (91) in this case (for all p € [1, 00]).
By Remark 83, if |3| = m — d/q and |Q| = 4R with Q centered at Zj, then

. Up ([ R\"
(/~ |31ﬁ/E§(,j,ZO,r,q(Y)|p dY) < CRY/p+m—d/q () )
Q

r

Because || =m —d/q=m —d+d/q, the bound (91) is valid in this case (for all
p e [1,00)).

We are left with the case |5| >m —d/q. fg>pand m —d/q < |8],orif ¢ <p
and m—d/q < |B| < m—d/q+d/p, then by formula (23) we have that p < ¢z < oc.
By the bound (92) and Hélder’s inequality,

1/10 K
- R

9PEL P < CRZm—d+d/p=18l [ V)
(-/Q X,LZomq| ) —= r

Finally, suppose that ¢ < p and that m —d/q+ d/p < || < m. If ¢ < p then
¢’ > p’, and so by Lemma 78

. (R wafl
1T 520 r.ally —mo(mty < CR™P (r) .
By compatible invertibility of L : YmvP(Rd) N Y—’ﬂhp(Rd)’ we have that
- R wafl
(93) HE}L{J’ZO,T,qHY*mvP(Rd) < CRm+d=d/p (’r) .

If |B] > m —d/q+ d/p and p < 2¢ then |8] > m — d/p and so this provides a
Lebesgue space bound on 9” E)L( j.Zo.rq- By Holder’s inequality,

1/p K
(/ |555§j . q|p) < O R2m—d+d/p—|B] (R>
3J240,Ts -
Q

r

which is the bound (91).
In any case, the bound (91) holds. O

7.3. Mixed derivatives of the fundamental solution. Recall that Ef(,j720,r7q(y)
is a function of both X and Y. We may control derivatives in Y using Theorem 90,

and derivatives in X using formula (88) and Theorem 90 applied to Eﬂgk’ Zorq - Ve

will also wish to control mixed derivatives, that is, derivatives in both X and Y.

This subsection will consist of the following theorem and its proof.
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Theorem 94. Let L be an operator of the form (26) with 2 € Y NIy, and let
g€ YN, with 1l —m/d < 1/q < m/d, where II;, and Y1, are as in Definitions
30 and 35. Then L and q satisfy the conditions of Definition 84 and Theorem 90
forallp e T NIIL N (1,2q] withl—m/d <1/p<m/d.

Let p € Y, NI N (1,29] with 1 —m/d < 1/p < m/d. Suppose that the
Caccioppoli-Meyers inequality

(95) E | |j/d (/ | J p) "
Q Vi
Jj=0 Q

1/2
gcm“p‘”(/ laP) T ClQI™ | Lty - )
2Q

holds whenever Q@ C R is a cube with sides parallel to the coordinate axes and
whenever 4 is a representative of an element of Y™P(2Q), with C independent of
4 and Q). Suppose in addition this statement is valid with p replaced by 2.

Suppose that a is a multiindex with 0 < |a| < m.

Then for every compact set K C R%, the function 3§E’)LM}ZO)W is in Y™P(K)
for almost every X € R\ K. If |a| < min(m —d/p’,m —d/2) then 3‘)’(EH)L(J-7ZO’W €
Y™P(K) for almost every X € R%. Furthermore, we have the bound

- R r
96 oL EL ) 2 . dX < CRQm—d+2d/p—2|a|
) [ 10% Bz allfnni) X < g

whenever T' and Q are cubes with |[T'| = |Q|, T' C 8Q, and either T' C 8Q \ 4Q or
la| < m —d/p'. Here R = max(r,|Q|"4,dist(Zo,Q)) and k is a positive constant
depending on the standard parameters.

In particular, if the Caccioppoli inequality (95) is valid for p = 2, then for all
multiindices  with 0 < |B] < m, the mized partial derivative 8§8€E§7j,ZO7T,q(Y)
exists as a locally L? function defined on RTx R\ {(X, X) : X € R?}. Furthermore,
if Q, T CR? are two cubes with |Q| = |T'| and T' C 8Q \ 4Q, then

- R "
97 OOy E% Y)[2dY dX < O ———— | Rim—2el=21A
O [ 10800 B (V)P aX < O s
If |o| <m —d/2, then 8§8€Eﬂ§(’j,zgmq(Y) exists as a locally L? function on all
of R4 x R, Furthermore, if Q C R? is a cube, then

. R "
98 %0y E% Y)[PdY dX < O —— g | RIm2lel=27
58) ], Jy O a0 X = G

where R = max(r, |Q|Y/?, dist(Zy, Q)) and  is a positive constant depending on the
standard parameters. If the Caccioppoli inequality is valid for L*, that is, if the
bound (95) is valid with p = 2 and L replaced by L*, then the bound (98) is valid
whenever |B| <m —d/2 even if m — d/2 < |a| < m.

The remainder of this subsection will be devoted to the proof of Theorem 94.
We remark that if L is an operator of the form (26) associated to coefficients A
that satisfy the Garding inequality (6) and either the bound (8) or (10), then by
Theorem 64 the condition (95) is valid for p € T, NII; with p > 2. Thus the above
theorem gives the bound (96) only for p > 2.

Let o be a multiindex with || <m. Let 1 < j < N.
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Let 1 be a nonnegative real-valued smooth cutoff function supported in B(0,1)
and integrating to 1 and define 7.(X’) = 4n(1X’) for £ > 0. Define

(99) Ueax (V)= /B . 0“ne(X — X')E% s 70 rg(YV) dX.

By the weak definition of derivative and the symmetry relation (88),

(100) (Tera,x (V) = 1 % OBV, 70 1 0)i (X).
We now investigate . o x-

Lemma 101. With the above construction and under the conditions of Theorem 90,
if @ C R is a cube, then . o,.x € W™P(2Q), and if |8] < m then

(102) Puc o x (V) = / 0ne(X — X)OPE% ; 70 rg(V) dX.
Proof. Let Yy € R? and let p > 0. If 0 < |8] < m and @ € C5°(B(Yp,2p)), then
/6595'. Ue,a,x = /8695'(1/) . /8‘)‘775()( - X" EH)L(,’j’ZU’T,q(Y) dX'dy.

By Theorem 90, E}%/,j.zo,r,q and 855)%,7]-,2077,’(1 are locally square integrable and
thus locally integrable. By Fubini’s theorem and the definition of weak derivative,

/ PG ex = / n.(X — X) / PH(Y)- By (V)Y dX’
— () / 9*n.(X — X) / F(Y)-0°Bk, 5 (V)dY dX’

=07 [ @) [0 (X = X) 0Bk g, (V) X' Y.

This is true for all test functions @, and so we have that formula (102) is valid. By
the triangle inequality in LP, we have that

H / 0ne(X — X)OPE%. ; 7y r.q dX'

LP(2Q)
< / 0%0:(X — X0°E% ., o v ooy AX.

By Theorem 90 we have that the quantities |‘8BE§(/7j,ZO7T,q||LP(2Q) are bounded.
Because 0“7 is bounded and compactly supported, albeit with a bound depending
on a and &, we have that 9%u. o x € LP(2Q), as desired. O

We will need a bound on ||0°1; o, x || 12(g). specifically a bound that is indepen-
dent of . We seek to apply the Caccioppoli (and Meyers) inequalities; we will need
to compute L, o x.

Lemma 103. With the above construction, if L is of the form (26) and q € T, with
1—m/d<1/q<m/d and with L : Y™4(R%) — Y ~"™9(R?) invertible, and if Q C
R? is a cube, then for all e € (0, 1|Q[*?) and all p with 1 > 1/p > max(0,1—m/d),
if X €9Q and either X ¢ 3Q or |a] <m —d/p’, then

R

(104) L xlly-riag) < CRM-4 ! ()
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where R = max(r, |Q|'/%, dist(Zo, Q)) and C and k are constants depending on the
standard parameters.

Proof. Let ® € C5°(2Q). By the bound (92) and the definition of I, <LE§/,j,Zo,r,q’

denotes an absolutely convergent integral whenever decymd (R?), and further-
more, the integrand has uniform L' norm. Thus we may apply Fubini’s theorem
to the integral

P)

[0 (xX = X0 LER 4y B X’

and compute that

(Liie o x, B) = / O*ne(X — X'V(LE%, &) dx".

By formula (89),

<LE§(’7j,ZU,T,q’ (I)> = <L*(I” E)L(’7J',Z07T,Q>

=3

= (L)L ®)) 20,r,0 (X) = (P5) Zg,rq (X)-
Thus,
(L a,x, (f)> =1 * (0%(®;) zo,r,q ) (X).
Recall that (®;)z,,rq = ®; + P for some polynomial P of degree at most m —d/q’
satisfying P(Zo+rH;) = —®,(Zy+rH;). As in the proof of Lemma 78, if P(X) =

Z\y\gmfd/q’ Py (X_TZO)Wv then
pal Shsup| 30 pyH]| = hsup [ P(Zo + rHy)| = hup |®(Zo + rHi)).
b ll<m—d/q’ ! !

Because € C§°(2Q), we have that & = 0 outside of B(Zy, (1 + 2v/d)R). Thus,
® =By, cry = Pzy.cry because |H;| > 1/2 for all i. Thus

Ip+| < hsup (B2, Ry (Zo +rHy))|
K2

and by Lemma 78, since p’ > d/m,
P3| < CR™ VP8l (-
Thus
[(Lite .5, B)] = [ % (8°P)(X) + 11 % (9°;) (X))

/ R\" -
<l @0 + ORIl () 1y,
If X ¢3Q and 0 < ¢ < $|QY/¢ = dist(2Q, R? \ 3Q), then 7. * (0°®;)(X) = 0. If
la| < m—d/p’, then again by Lemma 78 applied to ®; = (®;)z,.crp, if0<e <R
then

- , R\" -
(0. B < R () i,
This completes the proof. O

We have established that @, o, x € W™P(2Q)) and have a bound on L, o x. We
will now bound the derivatives of @, o, x.
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Lemma 105. Let L, q, and p satisfy the conditions of Theorem 90. Suppose in
addition that the conclusion (104) of Lemma 103 is valid (under the given conditions
one, X and o). Let Q C R? be a cube. Suppose further that the Caccioppoli-
Meyers estimate (95) is valid in Q for all @ € Y™P(2Q). Let T' C 8Q be a cube
with [T = Q).
Then for all € € (0, 3|Q|'/?), if either I' C 8Q \ 4Q or |a| < m —d/p’, then
- —1l—2am m—a—4i|x R "
J e el €

where R = max(r, |Q|*?, dist(Zy, Q)) and C and k are constants depending on the
standard parameters.
In particular, if p =2 then for all 8 with || < m we have that

/ / 10917, 0 x (V) dY dX < C|Q-2181/d gim—d=2lal (R> .
rJQ

r

Proof. Applying the bounds (104) and (95) and Lemma 41 to @ = @ o, x yields

1/2 / R\"
yme(Q) S C|Q|1/p_1/2‘m/d</ ﬁs,a,x|2) + CRm /v =le () :
2Q

r

e, 0, x|

By formula (100), the L? boundedness of convolution, and the bound (91), if ¢ is
small enough, I' C 8Q) and Y € 2@Q), then

. R\"

/ |t 0. x(Y)|?dX < sup 0“EL 70 (X)) dX < C(> Rim—d=2lal,

1<k<N Jor e r

Combining the above bounds completes the proof. ([

We now prove Theorem 94. The assumptions of Theorem 94 include the assump-

tions of Theorem 90, Lemma 103 and Lemma 105 with p = 2; we will use only the
conclusions of Lemma 105 and the definitions (99) and (100) of @. o, x-

The Lebesgue space L?(T' x Q) is weakly sequentially compact. Thus, because
{te,0,x }o<ec1|q|r/e 18 a bounded set in LT x Q), if 0 < |B] < m, there is a

function Eﬂaﬁg’j with

. R ~
Eo5i(X,Y)?dY dX < CRY™ 22181 =
/F/Q| ﬂu( Y = min(r,|Q|1/d)

and a sequence of positive numbers ¢; with ¢, — 0 and such that, for all ¢ €
L?(T x Q), we have that

// (X,Y) Eap;(X,Y)dY dX = hm//@’(X,Y)@ﬁﬁaha)X(Y)deX.
Q

11— 00

Integrating by parts and applying formula (100), we see that if ¢ is smooth and
compactly supported then

//@k(X7Y)(Ea,ﬂ,j(va))dedX
rJa

= (-1 1im // Ko (X,Y) (0 x (V) dY dX

1—00

1)/l llm//8€¢kXY ne, ¥ 00(EE 5 );(X)dY dX.

71— 00
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Using properties of convolutions, we see that

/ / ok(X,Y) (B i (X, V) dY dX
rJQ
17— 00

= (~1)lBi+l Jiny / / e, #x 03O o (X,Y) (B g 1 )5 (X) dY dX

where *x denotes convolution in the X variable only. By the dominated conver-
gence theorem,

/r‘/cgwk(X? Y) (EQ,B,j(va))k dY dX

:(—1)|5|+QIALB§6€¢k(X,Y) (L, , . );(X)dY dX

and so (E_:Oﬂﬁd(X? Y))k = 8?(8ﬁ (E{;*k Zo,r,q’ )]( ) = a?(a}ﬁ/(ﬁ)[/(,j,z(),r,q)k(y) in the
weak sense. Furthermore, we may derive bounds on Ea, 3,;(X,Y) from our bounds
on U, o x. Thus, by Lemma 105, we have the bound (97) and the bound (98) in
the case |a] < m —d/2.

Suppose |G| < m — d/2 and the Caccioppoli inequality ((95) with p = 2) holds
for L*. By Remark 86, we may thus apply the above results to EL". By the
bound (98) for EL", if |8] < m — d/2 then

e o L* 2 R ; 4m—2|a|—2
/Q/Q |05 O% EY: e o gy (X)?AX AY < C(m'm(|Q|1/d,r)> RAm=2lel =21,

Applying formula (88) yields the bound (98) in the case |8] < m — d/2.
The space L?(T'; LP#(Q)) is a Bochner space, and so is a reflexive Banach space
with dual L2(I'; L®#)'(Q)). By Lemma 105, we have that if ¢ € L2(T', Q) then

/ B(X,Y) 0%V E% ; 70 ra(¥)dY dX’
Q

= lim
1—00

(vs)’ 2/(pg)’ . R K
(/ (/ P dY) dX> on (min<r,c2|1/d>)

where = m — d/2 + d/p — |a|. The space L2(T' x Q) is dense in L2(I'; L®s)'(Q)).
Thus, this bound is valid for all g € L*(I’; L)' (Q)), and so

/ (X,Y)- 001, ax (Y deX‘

%OV EY ;4 o (Y) € LA L7 (Q))

and satisfies the bound (96).

7.4. Extraneous parameters. The fundamental solution E)L( . Zomq(Y) of Def-
inition 84 depends on the parameters Zy, r, and ¢ in a somewhat artificial way:
they are used only to normalize T'x j z,.rq and E)L(,j.,Zo,r,q' We would like (to the
extent possible) to remove the dependencies on Zy, r, and g. The following lemma
will allow us to remove (or at least reduce) these dependencies.
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Lemma 106. Let q1, g2 € (1,00). Let L satisfy the conditions of Definition 84
for both ¢ = q1 and q = qo. Suppose that L is compatible in the sense that if
S ey ma(RY)NY~™2(RY), then L~1S € Y™ @ (RY) N Y™ (RY).
Suppose that o and B are multiindices such that
max(m — d/¢;,m — d/q;) < |a| < m,
max(m — d/q1,m —d/q2) < |8] < m.

Let1<j<N,r;>0,7r0>0, Z €R? and Zo € R Suppose that, fori € {1,2},
the mized derivative ag(a;"E)L(,j,Z,;,m,qi(Y) exists almost everywhere and is locally
integrable on RY x R4\ {(X, X) : X € R?}.

Then we have that
(107) ORVER 1m0 (V) = OXOVER 70,0 (Y)
for almost every (X,Y) € R? x R4,

As noted after Theorem 90, if Y, is as in Definition 35 and ¢1, g2 € Y, then L,
q1, and ¢o satisfy the conditions of the lemma.

Under the conditions of Theorem 94, existence and local integrability of the
mixed partial derivative is valid. Furthermore, under these conditions we may
combine formulas (107) and (97) to see that if a and 8 are multiindices with m —
d/q < |a] <mand m —d/q < |B] < m, then by choosing Z; and r appropriately,
we have that if p = | Xy — Yp|/8, then

aos) [ [ (0ROJER g, (VPAY X < Cptmel
B(Xo,p) J B(Yo,p)

Proof of Lemma 106. Fix some such j, «, and .
Let i and ¢ be smooth functions with disjoint compact support. Let T be given
by
T.8) = [ s @ny)ay =07 [ sanr)n)ay.
R4 Rd
Because || > m —d/q;, we have that if & € V™4 (R?) then §°®;, is well defined as
a L5 (R%)-function (that is, up to sets of measure zero, not up to polynomials),

and so T € Y ~"™% (R%) with no normalization necessary.
By formula (89),

(((L*)_lT)j)Zi/"igq:; (X) = <T’ E}(,j,zi,ri,q)'

By duality, if T € Y~ (R))NY =% (R?), then (L*)~'T = (L~1)*T € Y™% (RN
Y™ (RY). That is, the inverses are identical whether we consider L* : Y41 (R%) —
Y= (RY) or L* : Y™4%(R?) — Y ~"%(R%). Furthermore, |a| > m —d/q} and so
0°((L*)~!T); is a well defined locally integrable function that does not depend on
Z;, i, or q;. Thus

/ 0" 0(X) 00V ) (BL ;111 o (V )k dY dX
- / 0 p(X) (T, EL , .V dX = / 0°o(X) (T 1T);(X) dX

- / 0 o(X) Pn(Y) (B, 5. 1. o (V)i dY dX.
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FIGURE 2. Z, denotes the set of lattice points in the gray rectan-
gle (including the top and right edges, but not the bottom or left
edges). In odd dimensions (upper left), Z, = 2, if ¢ is sufficiently
close to 2. In even dimensions, = (upper right) is a proper subset
of 2, for all ¢ sufficiently close to 2 but either less than 2 (bottom
left) or greater than 2 (bottom right).

Applying the definition of weak derivative, we see that

// V) (0% ES ;70 (V))edY dX

// V) (0% E% 5 700 (¥))e dY dX

for any smooth functions with disjoint compact support. By the Lebesgue differ-
entiation theorem, formula (107) is valid for almost every (X,Y) € R x R?. O

We now consider the dependency of E}% . Zo.r,q O ¢ in more detail. Define
=, = {(o, B) : @, B are multiindices, m —d/q’ < |a| <m, and m—d/q < |8] < m}.

=4 is illustrated in Figure 2. By Lemma 106, if (o, 5) € =g, then 3§8€E§7j’ZO7T’q(Y)
is independent of Zy and r. Thus, we may largely ignore the dependency on Zj
and r.
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However, the range =, of acceptable derivatives does depend on gq. We would
like to discuss this dependency in more detail.

7.4.1. Odd dimensions. In odd dimensions, we will let our fundamental solution
be Ef(](Y) = E§7j7zo7T72(Y). In light of the Garding inequality (6) and the Lax-
Milgram lemma, and their consequence Lemma 58, ¢ = 2 is the most natural value.
A straightforward computation yields that if the dimension d is odd, then =, = =5
whenever ﬁ <g< d 17 that is, for all ¢ sufficiently close to 2.

Note that for general rough coefficients, it may be that ¢ € T, and so ¢ satisfies
the conditions of Definition 84 only for ¢ very close to 2 (and in particular may

not satisfy these conditions for any ¢ outside of [-2% T d2d1}); thus, we cannot in

general expect to improve upon E% X.j.Zo.r2(Y) in terms of the number of derivatives
independent of Zg, r

7.4.2. Even dimensz’ons. The situation in even dimensions is more complicated. In
this case, if d+2 <q< j—_‘g and ¢ # 2, then =, D E%.; that is, E)L(,j’zo’r’q(Y) has
strictly more derlvatives independent of Zy, r than E)L(,j,zo,r,Q(Y)- See Figure 3.
However, if d+2 <g<2<s< d 2 and m > d/2, then E, and Z; are not equal;
indeed we have both of the two noninclusions 2, € =, and =5 € Z,. Thus, neither
of the functions E_”)L(J,Zw,q and E_:)L(,j,ZO,r,s is entirely satisfactory; we thus wish to

define a new fundamental solution E_g“( (Y) with the correct derivatives for all

multiindices in either =5 or 5.

2J>Zo,T

Theorem 109. Let d > 2 be an even integer and let m € N. Let L be such that
there exists an open neighborhood TL of 2 such that if q, q1, g2 € TL, then L and q
satisfy the conditions of Deﬁm'tz'on 84, the bound (97) is valid, and formula (107)
is true whenever (o, f) € 24, N E Zga-

Then there exists a function EXJ(Y) such that if ¢ € TN (f—&,f—i) (or
qeTrN(1,00) ifd=2), then
(110) ONONE 70 +g(YV) = 0%0VEX ;(Y)  for all (v, B) € Z,.
Furthermore, (o, 5) € 24 for some such g if and only if
(111)  m—d/2 <|a| <m, m—d/2 <|8] <m, 2m —d < |a] + 18]

Proof. If q, q € (d2f2,2) then 2, = =5 and so if ¢, ¢ € T, then

OROVE 5, 70,n(Y) = OXOVER  7,,0.5(Y)
for all (o, 8) € 2. The same is true if ¢, ¢ € (2 2d ) T, Thus, it suffices to find

vd-2
a function E% ; such that the condition (110) is valid for a single ¢ € (dQ—fQ, 2)N7Ty
and a single g € (2, 24) N TL
Fix q, s € T, such that d+2 <g<2<s<7%5. By asbumptlon some such ¢

and s exist. An elementary computation shows that (a, B) € E4UZE; if and only if
Condition (111) is true. Furthermore, we can compute that

={(a,B8) :m—d/2 <|a| <m, m—d/2 <|B] <m},
{(a,8) :m —d/2 <|a] <m, |B] =m —d/2},
{(a,B) : laf =m —d/2, m —d/2 <|B] <m}.

[I]

HyNEg =

[I]
ju

\
\Ey

—
g

jiY
Il
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16l

m—d m lal

FIGURE 3. The points (|al,|8]) that satisfy Condition (111).

Thus, it suffices to find a function E}% ; such that

Vx (0507 % (V) = Vx (0507 Ex. 2,04 (V)):
Vy (8?(65E§(,j(y)) =Vy (a())[(a}ﬁfﬁff,jzo,r,s(y))
whenever |a| = || = m — d/2.

We observe that if |a] = || = m — d/2, then (a + €;, 8 + &) € E,N E; for any
unit coordinate vectors €; and €, and so by Lemma 106,

VxVy (0%0VEX ;70 0a(V)) = VxVy (0305 EX 7, .s(Y)).

The lemma is thus reduced to a variant of the classical result that a curlfree vector
field is the gradient of a function.
For each W € R¢ and each ¢ with |(| = m — d/2, define

Gj’C’Y(W) = 8{€VE‘€[I/,]’,ZO,T,S(Y) - 86VEI€‘V,]’,ZO,T,q(Y)'

By Remark 86, formula (88), and the bound (92) applied to EL" for each Y €
R, éj7c7y is a locally integrable function. Furthermore, if m — d/2 = |3| then
Vw Vy (95Gjc,y (W)) = 0 and so there is a constant Gg j ¢y (more accurately, a
function of Y, ¢, and j, but not of W) such that Vy@éé}gy(W) = C_jg’j’C’y for

almost every W € R<.
Now, fix some cube Qg C R%, and define

. . 1 .
By = B ymn¥) 4 Y X Gievwyaw
(Cl=m—d/2 @o
Let |a] = |B| = m — d/2. Then Vxd%X¢ = 0 whenever (| = m — d/2, and so
Vi (0305 B% (V) = Vx (03 0V-EX . 7,,1.4(Y))-
We furthermore compute that

Vy (0%0y EX (V) = Vy (0%0y E% . 70 na(¥)) — Vy 0y g Giay (W) dW.
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Recall that Vy82G; ¢y (W) is independent of W. Thus, if Q@ € R% is a cube then
[ £, Okt = [ f 508 oryavay
Q JQo QJR
for any cube R C R?; choosing R appropriately, we have that by the bound (97),
/ ][ IVy Gy (W) dW dY < oo.
Q JQo

Thus by Fubini’s theorem

Vy ol g Giay(W)dW = g Vy 4Gy (W) dW
0] 0]

for almost every Y € R?, and so for almost every X € R? we have that

Vy (0305 E% ;(Y)) = VyOSWEY ; 70 V) + F Vy0yGiay (W) dW
Qo

= vyagfaeﬁff,j,Zo,r,q(Y) + vya)ﬁ/éj,oc,Y(X)
= VY (8?(8€E)L(7j,Z0,r,s(Y))
as desired. [l

7.5. Derivatives of (L*)~!. Recall from formula (89) that, if T € Y "4 (R%),
then

(L) D)) zoira (X) = AT B 7 0.q)-
By the Hahn-Banach theorem, if T € Y~ (R%), then there exist functions ﬁg

with
Z ||F5||L(q5)’(Rd) < oo

m—d/q<|{|<m

and where
Ta = Y [ Faw) Ry,

m—d/q'<|¢|<m 'R
Thus,
(1) () T zergX) = 3 [ OB ) Felv)ay.

m—d/q<|§|<m
We would like a similar integral formula for the derivatives of (L*)~!T.

Theorem 113. Let L and q satisfy the conditions of Definition 84. Assume that
the bound (96) in Theorem 94 is valid for p = q.
Let T = Tﬁ£ ey —md (R%) be a linear functional defined by

(Tped) = [ 0%0() - FOV)dy
R4
for some & and F such that m — d/q < |€] < m and F € L)' (R?) is compactly
supported.
If la] > m—d/q, and if |a| < m or €] < m, then

(14) ) T (X) = [ ROFEE 5, (0V) F(Y) QY
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and the integral converges absolutely for almost every X € Re. If |a| = |¢] = m,
this formula is true for almost every X ¢ supp F'.

Proof. By the bound (92) and Holder’s inequality,
105 B oV PV @Y < o

Let Qo C R? be a cube. We begin with the case where Qg and supp F' are disjoint.
If |a] < m, and if supp F is compact, then a covering argument combined with the
bound (96) yields

(115) / / 0%05 E% ;70 ma WIE(Y)|dY dX < 0.
Qo JR

By Fubini’s theorem, if ¢ € C§°(Qq) then

9 (X) / K EL 5 (V) F(Y)dydx
Qo Re R

=0 [ o) [ ORHETE, 5, V) FOVay ax

and so

o” \/]Rd aéEﬂ)L(,j,Zg,r,q(Y) : ﬁ(y) dy = ~/]Rd 8?(a§’E§(,j,Zo,r,q(Y) ﬁ(y) ay

as L'(Qo) functions. Combining this result with formula (112) yields that

(16) L) Trwd)zon (X) = [ 9RFFE, 5,,,0V) - F(Y)ay

for almost every X ¢ supp F. If |a| > m — d/q then
0" (L) ' Trre) = 0* (L)' Trre) zora
and so formula (114) is valid for almost every X ¢ supp F.

Remark 117. If |a| < min(m — d/2,m — d/q’), then the bound (96) yields the
bound (115) even if o and supp F are not disjoint, and so in this case formula (116)
is valid for almost every X € R

We are left with the case where X € supp F' and |a|+|¢| < 2m. We will show that
the bound (115) is still valid; the argument given above then yields formula (116)
and thus formula (114).

Since F' has compact support, we may assume that Qg is large enough that
supp F C Qq. Let G, be a grid of 2% pairwise-disjoint dyadic open subcubes of Qg
of measure 2794|Qg| whose union (up to a set of measure zero) is Qo. If X € Qo,
let Q4(X) be the cube that satisfies X € Q.(X) € G,. If Q € G441, let P(Q) be
the dyadic parent of the cube @, that is, the unique cube with Q@ C P(Q) € G,.
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Then by the monotone convergence theorem,

/Q /Q 0305 L ., (V)| [F(Y)]dX dY
0] 0

- / 3 / 0305 EL (V)| |F(YV)|dX dY
Qo 4—0 Y 4Qa(Y)\4Qa+1(Y)

:Z //p(Q\4Q|8Xa§EXJZqu( )||F( )| dX dY.

a=0Q€eG 41

By the bound (96) and Fubini’s theorem we may interchange the order of integra-
tion. Applying Holder’s inequality first in (@ and then in sequence spaces,

/Q /Q 0905 EL (V)| |F(YV)|dX dY
0] 0

X [ (] 1805
4P(Q)\4Q \JQ

1/qe N (@)
q§> dX(/ |F|(q5)>
a=0 QE€G a1 Q

S 13 1/q¢ qeN\ 1/qe
SZ( 2 (/ (/ 0508 B% . 20.r.0(Y >%dy) dX) )
a=0 P(Q\4Q

QeGat1

1/(qe)’
( 3 /|F|(qs)) _
QeGayt1

The final term is ||F| = ||F|
previous term.
If @ > 0 is an integer and Q € G,41, then by the bound (96), and applying

Lemma 106 to change Zy and r as desired, we have that

L8 (Qo) L(ae) (gay < 00, SO We need only bound the

2/q¢
L oo L 1505 Bz (0 )X < clpemsiteaia-se
Q\4Q

By Holder’s inequality,

1/qe
[ ([ 805 B g apeay ) ax
4P(Q)\4Q \VQ

A 2/qe 1/2
<([ ([ 108055 maipeay ) ax) - cpop
4P(QN\4Q \VQ

< C|Q|m/d+1/q7\a|/d.
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Thus, recalling that there are 24(*+1) cubes Q in G, each satisfying |Q| = 2~ (¢+14|Q,,

/ / 0905 EL (V)| |F(Y)|dX dY
0 0

= a1 p qeN 1/ae
< Oy (3 (lmsivatea) )

a=0 *Q€eG411
00
= CHF”L(‘I&)'(Rd) |Qo|m/d+1/q—\oz|/d Z 2ad/qE 2—a(m+d/q—|a|)'
a=0

Recall from formula (23) that d/q¢ = d/q —m + |£|]. Thus the final sum reduces to

3 g-a(zm-el-la)
a=0

which converges provided |a| < m or |£] < m. This completes the proof. (]

7.6. The fundamental solution for operators of arbitrary order. In this
section we show how to use the fundamental solution for operators of high order to
construct the fundamental solution for operators of arbitrary order.

We begin by defining a suitable higher order operator associated to each lower
order operator and investigate its properties.

Lemma 118. Let L : Y™2(RY) — Y~™2(R%) be a bounded linear operator. Let
M be a nonnegative integer. Define
(119) L=AMLAM i =m+2M.
Here AMLAM s the operator given by
(AMLAM)P, @) = (L(AM), AM @) for all 4 € YT (RY).
Then:

(a) If1 < q < oo and L is bounded or invertible Y™ 4(R%) — Y ~™4(R%), then
L is bounded or invertible Y ™4(R?) — Y~™4(RY). If L is invertible and
in addition M is large enough (depending on d, m, and q), then L and q
satisfy the conditions of Definition 84.

(b) If L is bounded and invertible Y™?*(R%) — Y~™2(R%), then T; = Yp,
where Yy is as in Definition 35.

(c) If L is of the form (26), then so is L, and

ﬁL—aZ:m—aL, ﬁl—bizm—bL7 HE:_)HLy

where ar, and by, are as in formulas (28) and (29) and I1y, is as in Defini-
tion 30. _ ~
(d) If T € Y~-™4RY), define T € Y~™(R%) by

(T, ) = (T, AM) for all ) € Y™ (RY).
If L is invertible Y™9(R%) — Y ~"4(R%), then
(120) AM(L7'T) = L7'T.
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Proof. We need only consider the case M > 0. The polylaplacian is obviously
bounded AM : Y™P(RY) — Y™P(R?) for any 1 < p < oo (in particular, for both
p=gqand p = ¢), and so if L is bounded Y™(R%) — Y~"™4(R%) then L is
bounded Y 4(R%) — Y ~™4(R%).

It is well known (see, for example, [Tri83, Section 5.2.3]) that the Laplacian is a
bounded and invertible operator W*?(R%) — W*=2P(R%) for any 1 < p < co and
any —oo < s < 00. Recall that there is a natural isomorphism between Y™P(R?)
and WP (R%).

Thus L : Y™4(RY) — Y~™4(R) is bounded if and only if L : Y™(R%) —
Y ~"4(R9) is bounded, and L : Y 9(R?) — Y ~"4(R%) is invertible if and only if
L:Y™4(RY) - Y ~™4(R?) is invertible.

If in addition M > (d/2) max(1/q,1/q") —m/2, then 1 —m/d < 1/q < m/d and
so L and q satisfy the conditions of Definition 84.

Furthermore, A~! is compatible, and so (Z)*l = AML=IA=M ig compatible
if and only if L™! is compatible. Thus, Y = Ts.

There are real nonnegative constants ¢ such that AM = Z|<|=M ke, If @
and ¢ lie in suitable function spaces, and L is of the form (26), we have that

(Ld, @) = (LAM @, AM G)

N
(X5 S ¥ S o o

Jk=1l]a|<m |B|<m [§|=M |{|=M

We may rearrange our order of summation to see that L is an operator of the
form (26) of order 2m with coefficients

ik ik
(121) AL =20 D ReReAD o) (e
|€|=M |¢|=M
28<w 2(<v
Furthermore,
N _ N :
DD ITTFIIEIED Db b PRIV
G k=1 |v|<m |w|<m Jik=1|a|<m |B|<m

If g € Y™ (RY) and @ € Y™(R?), then AM@ € Y™ (R%) and AM @ € Y"™9(RY).
Thus, if ¢ € I then the right hand side represents a L'(R?) function, and so
qE< HE'

Finally, recall that AM is invertible Y74(R%) — Y™%(R%). Thus if & €
y™4(RY), and L : Y™4(RY) — Y™4(RY) and L : Y™9(RY) — Y7™9(R?) are
bounded and invertible, then

(L(AM(L)~'T),

=

and so AM(L)~'T = (L)~ T. This completes the proof. O
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Thus, natural conditions on L guarantee that L has a fundamental solution.

We now use EL to construct EX for operators of arbitrary order. Theorem 122
(with B, (Y, X) = (E')L(’k)j(Y) and L and L* interchanged as needed) comprises
most of Theorem 15; the remaining property cited in Theorem 15 (the uniqueness
of the fundamental solution) will be addressed in Section 7.7.

Theorem 122. Let L be an operator of order 2m of the form (26) that satisfies the
ellipticity condition (6) such that 2 € Iy, where Iy, is the interval of Definition 30.
Let M be the smallest nonnegative integer with m 4+ 2M > d/2. Let L be given by
formula (119).

Suppose in addition that the Caccioppoli-Meyers inequality for L holds, that is,
that there is an interval S; with 2 € Sz C [2,4]NIIy, such that if p € S7, if Q C R
is a cube with sides parallel to the coordinate axes, and if U is a representative of
an element of Y™P(2Q), then we have the estimate

(123) Z QP IVl o) < ClQIMP ™2l 1220 + CIQI™ Ly .5 20
7=0
If L satisfies either the bound (8) or the bound (10), then this condition is true with
Sy =1z N Y N[2,4] 2 {2}, with Y1 given by formula (36).
Then there exists some array of functions Eﬁj(Y) with the following properties.
Suppose that o and B are two multiindices with m — d/2 < |a| <m, m —d/2 <
IB] <m, and (|al,|8]) # (m—d/2,m—d/2). If I, does not contain a neighborhood
of 2, then we impose the stronger condition m—d/2 < |a] <m, m—d/2 < |5] < m.
Suppose further that Q and T are two cubes in R? with |Q| = |T| and T C 8Q\4Q.
Then the partial derivative 8%3317?'}(,74(3/) exists as a locally L?(Q xT) function and
satisfies the bounds ‘

(124) //|a;a€ﬁ§(,jm|2 < C|Q|(m=2lal-2I8D/d,
QJr

2/ps
(125) /(/ |6§§8€E§7j(Y)|p5 dy) X < C|Q|2m/d*1+2/”72|a|
r\JqQ

for allp € Y, NS; withm —d/p’ <|al, m —d/p <|B|.
Furthermore, we have the symmetry property

(126) 007 (Bx 5 (Y ) = 0% 0% (B (X)),
for almost every X, Y € R% x R%.
Finally, let T, be as in Definition 35. Suppose that ¢ € T N ((—00,2) U S})

andm—d/q <|{|<m. Lt T =Tz, €Y ™™ 4" (R be a linear functzonal defined

by
Ty ed) = [ 0G0 FY)ay

for some compactly supported F € L(4¢) Rd). Whenever || > m — d/q’, we have
that

(127) O (L") 'Tg) /a‘afEL (Y)-F(Y)dy

and the integral converges absolutely for almost every X ¢ supp F'. If in addition
I¢| < m or €] < m then formula (127) is valid for almost every X € RY.
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Proof. If L satisfies either the bound (8) or the bound (10), then by Lemma 118
and formula (121), so does L. By Lemma 118, T; = YTr. By Lemma 63, T
contains a neighborhood of 2 and so Y N [2,00) contains values greater than 2.
The inequality (123) is valid for all p € II; N T3 N [2,00) by Theorem 64.

By assumption and Lemma 58, 2 € T NII; and 1 — m/d < 1/2 < m/d. Also
observe that L satisfies the conditions of Definition 84 and Theorem 94 for all
g€ YNNIl with 1 —m/d < 1/qg < m/d and all p € Sz N T3 N1I; N (1,2¢] with
1—m/d < 1/p < m/d (in particular, for ¢ = p = 2). Consequently L satisfies the
conditions of Lemma 106 for all ¢1, g2 € Y, NIl with 1/¢1, 1/g2 € (1—m/d, m/d).

If IT;, contains an open neighborhood of 2, then by Lemma 63, Y, also contains
an open neighborhood of 2. Thus the conditions of Theorem 109 are valid whenever
d is even. N N

If d is odd, or if IT;, does not contain a neighborhood of 2, let E% ; = E% .o,
be as in Definition 84. B

If d is even, and if II; contains a neighborhood of 2, we let E_}L{] be as in
Theorem 109. ~

In either case, by Theorem 94, 8§8§,E§7j (Y) exists for almost every (X,Y) €
R? x R? and every &, ¢ with [£], |¢| € [0,m]. We define

EXJ Z Z Koo by O3 EXJ( ).

|w|=M |v|=M
The bounds (124) and (125) follow from Theorem 94, Lemma 106 and Lemma 118.
The symmetry property (126) follows from the symmetry property (88) for E)E( i
We are left with formula (127). This property follows from Theorem 113 if
2m > d and so M = 0. If 2m < d, let m — d/q < |¢§| < m and F satisfy the
conditions given in the theorem statement. Let T = Tﬁ’g and let T be as in
formula (120). Observe that

(T,0) = (T,AMy) = 37wy | 05F240(Y) - F(Y)dY

d
lv|l=M R

and so T is a (linear combination of) operators as in Theorem 113. By formula (114)
and linearity, we have that if |{| > m — d/q, then

FE) 0 = 3 / 0505 EL (v) - F(Y)dy

lv|=M

for almost every X or almost every X ¢ supp F. In particular, if m—d/q’ < |¢| <m
and |w| = M, then ﬁz—d/q < |¢ + 2w| < m, and so

FAMENT;(X) = Y hens / PO EL_(v) - F(Y)dy

|w|=M |v|=M

= / 040y E% ,(Y) - F(Y)dY
Rd

Observe that (L*) = (L)*. By formula (120) with L replaced by L*, formula (127)
is valid. g

Remark 128. Theorem 122 involves conditions on L = AMLAM for the smallest
M such that E)L(J Zo.r2 €xists. The fundamental solution also exists for larger
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values of M. However, there is no loss of generality in Theorem 122 in taking the
smallest available M; that is, we claim that if the Caccioppoli-Meyers inequality
(123) is valid for L = AMLAM and if L : Y™P(€2) — Y ~"?(12) is bounded for all
open sets €2, then it is valid for L =ANLAN for any integer N with 0 < N < M.

We now prove the claim. Suppose that p > 2 and the Caccioppoli or Meyers
inequality

m~+2M

| N
> IQ”d< /Q WV’)

Jj=0

1/2
e A B e
2

is valid for all w € Y™ +2M:2(2Q)) for some cube Q. Let 0 < N < M.

It is well known (see [Ste70, Chapter VI, Section 3]) that there is a bounded,
linear extension operator E such that for all £ € Ny and all 1 < p < co we have
that | By es gy < Ckplltllwes(2g). Recall that AM =N is an isomorphism from
Wk+2]V[72N,p(Rd) to Wk’p(Rd).

Choose some @ € WH2N2(2Q). Let 7 = A~M=N)(E#). Then ¢ € Wm+T2Mp(R?)
and also satisfies

VM2V 0| 1200y < VM2V p2gay < OBl p2ray < C? ]l £2(2)-

Let @ = ¥+ P, where P is a polynomial of degree at most 2M — 2N — 1 such that
Jog @@ = 0 for all [y] < 2M —2N —1. We have that AM =N = AM=N§ = Bii = u
in 2Q. We compute

m+2N ‘ ‘ 1/p m+2N ‘ _ 1/p
> lar( [viar) =S ere( [ vrarvap)
Jj=0 Q =0 Q
m~+2M 1/p
< Z |Q|(k—2M+2N)/d</ |kaD|p> ]
k=2M—2N Q

By the Meyers inequality for AMLAM

m—+2N

1/p 1/2
> IQIW< / |vjﬁ|p) scmp”wmm/d( / wF)
= Q 2Q
L O1QIm AN LAMG] a0

By the Poincaré inequality and because AM@ = AN,

m+2N

) ] 1/p 1/2
Z Q|J/d</ |v]ﬁ|l)> < C|Q‘1/p_1/2 </ |V2M—2NU—}2>
Q 2Q

§j=0
+ ClQI N A AN LAN ||y - n-2nv.n (2 -

Finally, using the estimate ||V2M 72N 12 0g) = VM2V 12000y < Cllid]| 12(20)

we see that the Caccioppoli-Meyers estimate for AN LAY is also valid.
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7.7. Uniqueness. We have constructed a fundamental solution; we now show that
it is unique.

Theorem 129. Let L : Y™9(R%) — Y ~"4R?) be bounded and invertible. Suppose
that Ux ; and Tx ; are such that the bound (124) and formula (127) are valid with
EL replaced by either T orT.

Then ag(aéxffx,j(y) = 83“(835,1:")(,]- (Y) for almost every (X,Y) € R? x R? and all
«, B as in Theorem 122.

Proof. By the bound (124), we have that 8‘)3‘(85\17XJ and 8§8€fx,j are locally
integrable away from Y = X for almost every X € R%. By formula (127),

—

/a;a@@x,j(y)-ﬁ(y)dyz/ 0% Tx ;(Y) - F(Y)dY
Rd' Rd

for all sufficiently nice test functions F. The result follows from the Lebesgue
differentiation theorem. O
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