MATH 55203-55303

Theory of Functions of a Complex Variable I-II

Fall 2025-Spring 2026

(Fall) MEEG 217, MWF 2:00-2:50 p.m.

Next class day: Monday, August 25, 2025

CONTENTS

Elementary Properties of the Complex Numbers	1
1.2. Real Analysis	2
1.2. Further Properties of the Complex Numbers	3
1.3. Real Analysis	6
1.3. Complex Polynomials	6
1.3. The complex derivatives $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \bar{z}}$	7
1.4. Holomorphic Functions, the Cauchy-Riemann Equations, and Harmonic Functions	8

1.1. Elementary Properties of the Complex Numbers

[Definition: The complex numbers] The set of complex numbers is \mathbb{R}^2 , denoted \mathbb{C} . (In this class, you may use everything you know about \mathbb{R} and \mathbb{R}^2 —in particular, that \mathbb{R}^2 is an abelian group and a normed vector space.)

[Definition: Real and imaginary parts] If (x, y) is a complex number, then Re(x, y) = x and Im(x, y) = y.

[**Definition:** Addition and multiplication] If (x, y) and (ξ, η) are two complex numbers, we define

$$(x, y) + (\xi, \eta) = (x + \xi, y + \eta),$$

 $(x, y) \cdot (\xi, \eta) = (x\xi - y\eta, x\eta + y\xi).$

(Problem 10) Show that multiplication in the complex numbers is commutative.

Let (x, y) and (ξ, η) be two complex numbers. Then

$$(x,y) \cdot (\xi,\eta) = (x\xi - y\eta, x\eta + y\xi),$$

$$(\xi,\eta) \cdot (x,y) = (\xi x - \eta y, \xi y + \eta x).$$

Because multiplication in the real numbers is commutative, we have that

$$(\xi,\eta)\cdot(x,y)=(x\xi-y\eta,y\xi+x\eta).$$

Because addition in the real numbers is commutative, we have that

$$(\xi,\eta)\cdot(x,y)=(x\xi-y\eta,x\eta+y\xi)=(x,y)\cdot(\xi,\eta)$$

as desired.

(Fact 20) This notion of addition and multiplication makes the complex numbers a ring—thus, multiplication is also associative and distributes over addition.

(Problem 30) What is the multiplicative identity?

(Problem 40) Let r be a real number. Recall that $\mathbb{C} = \mathbb{R}^2$ is a vector space over \mathbb{R} , so we can multiply vectors (complex numbers) by scalars (real numbers). Is there a complex number (ξ, η) such that $r(x, y) = (\xi, \eta) \cdot (x, y)$ for all $(x, y) \in \mathbb{C}$?

[Definition: Notation for the complex numbers]

- If $r \in \mathbb{R}$, we identify r with the number $(r, 0) \in \mathbb{C}$.
- We let *i* denote (0, 1).

(**Problem 50**) If x, y are real numbers, what complex number is x + iy?

(Problem 60) If z = x + iy for x, y real, what are Re z and Im z?

(Problem 70) If $z \in \mathbb{C}$ and r is real, what are Re(zr) and Im(zr)?

(Problem 80) If $z, w \in \mathbb{C}$, what are Re(z+w), Im(z+w) in terms of $\text{Re}\,z$, $\text{Re}\,w$, $\text{Im}\,z$, and $\text{Im}\,w$?

(Problem 90) If $z, w \in \mathbb{C}$, what are Re(zw), Im(zw) in terms of Re z, Re w, Im z, and Im w?

[Definition: Conjugate] The conjugate to the complex number x + iy, where x, y are real, is $\overline{x + iy} = x - iy$.

(Problem 100) If z and w are complex numbers, show that $\overline{z} + \overline{w} = \overline{z + w}$.

(Problem 110) Show that $\overline{z} \cdot \overline{w} = \overline{zw}$.

(**Problem 120**) Write Re z and Im z in terms of z and \overline{z} .

(**Problem 130**) Show that $z\overline{z}$ is always real and nonnegative. If $z\overline{z}=0$, what can you say about z?

(**Problem 140**) If z is a complex number with $z \neq 0$, show that there exists another complex number w such that zw = 1. Give a formula for w in terms of z. We will write $w = \frac{1}{2}$.

 $z\overline{z}$ is a positive real number, and we know from real analysis that positive real numbers have reciprocals. Thus $\frac{1}{z\overline{z}} \in \mathbb{R}$. We can multiply complex numbers by real numbers, so $\frac{1}{z\overline{z}}\overline{z}$ is a complex number and it is the w of the problem statement.

[Definition: Modulus] If z is a complex number, we define its modulus |z| as $|z| = \sqrt{z\overline{z}}$.

(Fact 150) $|\operatorname{Re} z| \le |z|$ and $|\operatorname{Im} z| \le |z|$ (where the first $|\cdot|$ denotes the absolute value in the real numbers and the second $|\cdot|$ denotes the modulus in the complex numbers.)

(Problem 160) If z and w are complex numbers, show that |zw| = |z| |w|.

(**Problem 170**) Give an example of a non-constant polynomial that has no roots (solutions) that are real numbers. Find a root (solution) to your polynomial that is a complex number.

1.2. REAL ANALYSIS

(Fact 180) If z = x + iy = (x, y), then the complex modulus |z| is equal to the vector space norm ||(x, y)|| in \mathbb{R}^2 .

(Fact 190) \mathbb{C} is complete as a metric space if we use the expected metric d(z, w) = |z - w|.

(Bashar, Problem 200) Recall that (\mathbb{R}^2, d) is a metric space, where d(u, v) = ||u - v||. In particular, this metric satisfies the triangle inequality. Write the triangle inequality as a statement about moduli of complex numbers. Simplify your statement as much as possible.

The conclusion is that $|z+w| \le |z| + |w|$ for all $z, w \in \mathbb{C}$. This is Proposition 1.2.3 in your textbook.

¹Some authors, especially in physics, write z^* instead of \overline{z} for the complex conjugate of z.

(Memory 210) If $\{a_n\}_{n=1}^{\infty}$ is a sequence of points in \mathbb{R}^p , $a \in \mathbb{R}^p$, and we write $a_n = (a_n^1, a_n^2, \dots, a_n^p)$, $a = (a_n^1, \dots, a_n^p)$, then $a_n \to a$ (in the metric space sense) if and only if $a_n^k \to a^k$ for each $1 \le k \le p$.

(Dibyendu, Problem 220) What does this tell you about the complex numbers?

If $\{z_n\}_{n=1}^{\infty}$ is a sequence of points in $\mathbb C$ and $z\in\mathbb C$, then $z_n\to z$ if and only if both $\operatorname{Re} z_n\to\operatorname{Re} z$ and $\operatorname{Im} z_n\to\operatorname{Im} z$.

[Definition: Maclaurin series] If $f : \mathbb{R} \to \mathbb{R}$ is an infinitely differentiable function, then the Maclaurin series for f is the power series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

with the convention that $0^0 = 1$.

(Memory 221) If x is real, then the Maclaurin series for $\exp x$, $\sin x$, or $\cos x$ converges to $\exp x$, $\sin x$, or $\cos x$, respectively.

(Memory 230) The Maclaurin series for the exp function is $\sum_{k=0}^{\infty} \frac{x^k}{k!}$.

(Memory 240) The Maclaurin series for the sin function is $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$

(Memory 250) The Maclaurin series for the cos function is $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$

(Memory 270) If x and t are real numbers then

$$\sin(x+t) = \sin x \cos t + \sin t \cos x,$$

$$\cos(x+t) = \cos x \cos t - \sin x \sin t.$$

(Memory 280) The Cauchy-Schwarz inequality for real numbers states that if $n \in \mathbb{N}$ is a positive integer, and if for each k with $1 \le k \le n$ the numbers x_k , ξ_k are real, then

$$\left(\sum_{k=1}^n x_k \, \xi_k\right)^2 \leq \left(\sum_{k=1}^n x_k^2\right) \left(\sum_{k=1}^n \xi_k^2\right).$$

1.2. FURTHER PROPERTIES OF THE COMPLEX NUMBERS

(Hope, Problem 290) State the Cauchy-Schwarz inequality for complex numbers and prove that it is valid.

This is Proposition 1.2.4 in your book. If $n \in \mathbb{N}$, and if z_1, z_2, \ldots, z_n and w_1, w_2, \ldots, w_n are complex numbers, then

$$\left| \sum_{k=1}^{n} z_k w_k \right|^2 \le \sum_{k=1}^{n} |z_k|^2 \sum_{k} |w_k|^2.$$

We can prove this as follows. By the triangle inequality, $|z_1w_1 + z_2w_2| \le |z_1w_1| + |z_2w_2| = |z_1||w_1| + |z_2||w_2|$. A straightforward induction argument yields that

$$\left|\sum_{k=1}^n z_k w_k\right| \le \sum_{k=1}^n |z_k| |w_k|.$$

Applying the real Cauchy-Schwarz inequality with $x_k = |z_k|$ and $\xi_k = |w_k|$ completes the proof.

(James, Problem 300) Let $z \in \mathbb{C}$. Consider the series $\sum_{k=0}^{\infty} \frac{z^k}{k!}$, that is, the sequence of complex numbers $\left\{\sum_{k=0}^{n} \frac{z^k}{k!}\right\}_{n=0}^{\infty}$. Show that this sequence is a Cauchy sequence.

(Problem 310) Since \mathbb{C} is complete, the series converges. If z = x is a real number, to what number does the series converge?

It converges to e^{x} .

(Micah, Problem 320) If z = iy is purely imaginary (that is, if $y \in \mathbb{R}$), show that $\sum_{k=0}^{\infty} \frac{(iy)^k}{k!}$ converges to $\cos y + i \sin y$.

An induction argument establishes that

$$\operatorname{Re} i^k = \begin{cases} 0, & k \text{ is odd,} \\ 1, & k \text{ is even and a multiple of 4,} \\ -1, & k \text{ is even and not a multiple of 4,} \end{cases}$$

and

$$\operatorname{Im} i^k = \begin{cases} 0, & k \text{ is even,} \\ 1, & k \text{ is odd and one more than a multiple of 4,} \\ -1, & k \text{ is even and one less than a multiple of 4.} \end{cases}$$

We then see that we may write the Maclaurin series for cos and sin as

$$\cos(y) = \sum_{k=0}^{\infty} \operatorname{Re} i^{k} \frac{y^{k}}{k!}, \qquad \sin(y) = \sum_{k=0}^{\infty} \operatorname{Im} i^{k} \frac{y^{k}}{k!}.$$

We then have that

$$\operatorname{Re}\left(\sum_{k=0}^{n} \frac{(iy)^{k}}{k!}\right) = \sum_{k=0}^{n} \operatorname{Re}\left(\frac{(iy)^{k}}{k!}\right) = \sum_{k=0}^{n} \operatorname{Re} i^{k} \frac{y^{k}}{k!}$$

which converges to $\cos y$ as $n \to \infty$. Similarly

$$\operatorname{Im}\left(\sum_{k=0}^{n} \frac{(iy)^{k}}{k!}\right) = \sum_{k=0}^{n} \operatorname{Im}\left(\frac{(iy)^{k}}{k!}\right) = \sum_{k=0}^{n} \operatorname{Im} i^{k} \frac{y^{k}}{k!}$$

converges to $\sin y$ as $n \to \infty$. Thus the series $\sum_{k=0}^{\infty} \frac{(iy)^k}{k!}$ converges to $\cos y + i \sin y$, as desired.

(Bonus Problem 330) If z = x + iy, show that $\sum_{j=0}^{\infty} \frac{z^j}{j!}$ converges to the product $\left(\sum_{j=0}^{\infty} \frac{x^j}{j!}\right) \left(\sum_{j=0}^{\infty} \frac{(iy)^j}{j!}\right)$.

[Definition: The complex exponential] If x is real, we define

$$\exp(x) = \sum_{i=0}^{\infty} \frac{x^j}{j!}$$
 and $\exp(ix) = \sum_{i=0}^{\infty} \frac{(ix)^j}{j!}$.

If z = x + iy is a complex number, we define

$$\exp(z) = \exp(x) \cdot \exp(iy)$$
.

(Muhammad, Problem 340) If y, η are real, show that $\exp(iy + i\eta) = \exp(iy) \cdot \exp(i\eta)$.

Using the sum angle identities for sine and cosine, we compute

$$\exp(iy + i\eta) = \exp(i(y + \eta)) = \cos(y + \eta) + i\sin(y + \eta)$$

= \cos y \cos \eta - \sin y \sin \eta + i \sin y \cos \eta + i \cos y \sin \eta

and

$$\exp(iy) \exp(i\eta) = (\cos y + i \sin y)(\cos \eta + i \sin \eta)$$

= $\cos y \cos \eta - \sin y \sin \eta + i \sin y \cos \eta + i \cos y \sin \eta$

and observe that they are equal.

(Robert, Problem 350) If z, w are any complex numbers, show that $\exp(z+w) = \exp(z) \cdot \exp(w)$.

There are real numbers x, y, ξ , η such that z = x + iy and $w = \xi + i\eta$. By definition

$$\exp(z) = \exp(x) \exp(iy), \qquad \exp(w) = \exp(\xi) \exp(i\eta).$$

Because multiplication in the complex numbers is associative and commutative,

$$\exp(z)\exp(w) = [\exp(x)\exp(iy)][\exp(\xi)\exp(i\eta)] = [\exp(x)\exp(\xi)][\exp(iy)\exp(i\eta)].$$

By properties of exponentials in the real numbers and by the previous problem, we see that

$$\exp(z)\exp(w) = \exp(x+\xi)\exp(iy+i\eta).$$

By definition of the complex exponential,

$$\exp(z) \exp(w) = \exp((x+\xi) + i(y+\eta)) = \exp(z+w)$$

as desired.

(Sam, Problem 360) Suppose that z is a complex number and that |z|=1. Show that there is a number $\theta \in \mathbb{R}$ with $\exp(i\theta)=z$. How many such numbers θ exist? (Use only undergraduate real analysis and methods established so far in this course.)

We know from real analysis that, if (x,y) lies on the unit circle, then $(x,y)=(\cos\theta,\sin\theta)$ for some real number θ . By definition of complex modulus, if |z|=1 and z=x+iy then (x,y) lies on the unit circle. Thus $z=\cos\theta+i\sin\theta=\exp(i\theta)$ for some $\theta\in\mathbb{R}$. Infinitely many such numbers θ exist.

[Chapter 1, Problem 25] If θ , $\varpi \in \mathbb{R}$, then $e^{i\theta} = e^{i\varpi}$ if and only if $(\theta - \varpi)/(2\pi)$ is an integer.

(William, Problem 370) Suppose that z is a complex number. Show that there exist numbers $r \in [0, \infty)$ and $\theta \in \mathbb{R}$ such that $z = r \exp(i\theta)$. How many possible values of r exist? How many possible values of θ exist? (Use only undergraduate real analysis and methods established so far in this course.)

Observe that $|re^{i\theta}|=r|e^{i\theta}|$ because $r\geq 0$ and because the modulus distributes over products. But $|e^{i\theta}|=|\cos\theta+i\sin\theta|=\sqrt{\cos^2\theta+\sin^2\theta}=1$, and so the only choice for r is r=|z|. If z=0 then we must have that r=0 and can take any real number for θ .

If $z \neq 0$, let r = |z|. Then $w = \frac{1}{r}z$ is a complex number with |z| = 1, and so there exist infinitely many values θ with $e^{i\theta} = w$ and thus $z = re^{i\theta}$.

(Wilson, Problem 380) Find all solutions to the equation $z^6 = i$. Use only undergraduate real analysis and methods established so far in this course.

Suppose that $z = re^{i\theta}$ for some r > 0, $\theta \in \mathbb{R}$.

Then $z^6=r^6e^{6i\theta}$. If $z^6=i$, then $1=|i|=|z^6|=r^6$ and so r=1 because $r\geq 0$. We must then have that $i=e^{6i\theta}$. Observe that $i=e^{i\pi/2}$. By Homework 1.25, we must have that $6\theta=\pi/2+2\pi n$ for some $n\in\mathbb{Z}$, and so $(e^{i\theta})^6=i$ if and only if $\theta=\pi/12+n\pi/3$. Thus the solutions are

$$e^{\pi/12}$$
, $e^{5\pi/12}$, $e^{9\pi/12}$, $e^{13\pi/12}$, $e^{17\pi/12}$, $e^{21\pi/12}$

Any other solution is of the form $e^{i\theta}$, where θ differs from one of the listed numbers by 2π .

(Problem 390) Give an example of a function that can be written in two different ways.

[Definition: Real polynomial] Let $p: \mathbb{R} \to \mathbb{R}$ be a function. We say that p is a (real) polynomial in one (real) variable if there is a $n \in \mathbb{N}_0$ and constants $a_0, a_1, \ldots, a_n \in \mathbb{R}$ such that $p(x) = \sum_{k=0}^n a_k x^k$ for all $x \in \mathbb{R}$.

[Definition: Real polynomial in two variables] Let $p: \mathbb{R}^2 \to \mathbb{R}$ be a function. We say that p is a (real) polynomial in two (real) variables if there is a $n \in \mathbb{N}_0$ and constants $a_{k,\ell} \in \mathbb{R}$ such that $p(x,y) = \sum_{k=0}^n \sum_{\ell=0}^n a_{k,\ell} x^k y^\ell$ for all $x, y \in \mathbb{R}$.

(Adam, Problem 400) Let $p(x) = \sum_{k=0}^{n} a_k x^k$ and let $q(x) = \sum_{k=0}^{n} b_k x^k$ be two polynomials in one variable, with a_k , $b_k \in \mathbb{R}$. Show that if p(x) = q(x) for all $x \in \mathbb{R}$ then $a_k = b_k$ for all $k \in \mathbb{N}_0$.

p and q are infinitely differentiable functions from $\mathbb R$ to $\mathbb R$, and because p(x)=q(x) for all $x\in\mathbb R$, we must have that p'=q', p''=q'', ..., $p^{(k)}=q^{(k)}$ for all $k\in\mathbb N$. We compute $p^{(k)}(0)=k!a_k$ and $q^{(k)}(0)=k!b_k$. Setting them equal we see that $a_k=b_k$.

[Definition: Degree] If $p(z) = \sum_{k=0}^{n} a_k z^k$, then the degree of p is the largest nonnegative integer m such that $a_m \neq 0$. (The degree of the zero polynomial p(z) = 0 is either undefined, -1, or $-\infty$.)

(Amani, Problem 410) Let p be a polynomial. Suppose that $x_0 \in \mathbb{R}$ and that $p(x_0) = 0$. Show that there exists a polynomial q such that $p(x) = (x - x_0)q(x)$ for all $x \in \mathbb{R}$. Further show that, if p is a polynomial of degree $m \ge 0$, then q is a polynomial of degree m = 1. Hint: Use induction.

(Bashar, Problem 420) Let $p(x) = \sum_{k=0}^n a_k x^k$ and let $q(x) = \sum_{k=0}^n b_k x^k$ be two polynomials of degree at most n, with a_k , $b_k \in \mathbb{R}$ and $n \in \mathbb{N}_0$. Suppose that there are n+1 distinct numbers $x_0, x_1, \ldots, x_n \in \mathbb{R}$ such that $p(x_j) = q(x_j)$ for all $0 \le j \le n$. Show that $a_k = b_k$ for all $k \in \mathbb{N}_0$. Hint: Consider the polynomial r(x) = p(x) - q(x).

(**Dibyendu, Problem 430**) Let $p(x,y) = \sum_{j=0}^{n} \sum_{k=0}^{n} a_{j,k} x^{j} y^{k}$ and let $q(x,y) = \sum_{j=0}^{n} \sum_{k=0}^{n} b_{j,k} x^{j} y^{k}$ be two polynomials of two variables, with $a_{j,k}$, $b_{j,k} \in \mathbb{R}$. Show that if p(x,y) = q(x,y) for all $(x,y) \in \mathbb{R}^{2}$ then $a_{j,k} = b_{j,k}$ for all $j, k \in \mathbb{N}_{0}$.

(Memory 440) If $\Omega \subseteq \mathbb{R}^2$ is both open and connected, then Ω is path connected: for every $z, w \in \Omega$ there is a continuous function $\gamma : [0,1] \to \Omega$ such that $\gamma(0) = z$ and $\gamma(1) = w$.

(Memory 450) If $\Omega \subseteq \mathbb{R}^2$ is open and connected, we may require the paths in the definition of path connectedness to be C^1 .

(Memory 460) If $\Omega \subseteq \mathbb{R}^2$ is open and connected, we may require the paths in the definition of path connectedness to consist of finitely many horizontal or vertical line segments.

Definition 1.3.1 (part 1). Let $\Omega \subseteq \mathbb{R}^2$ be open. Suppose that $f: \Omega \to \mathbb{R}$. We say that f is continuously differentiable, or $f \in C^1(\Omega)$, if the two partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist everywhere in Ω and f, $\frac{\partial f}{\partial x}$, and $\frac{\partial f}{\partial y}$ are all continuous on Ω

(Hope, Problem 470) Let B=B(z,r) be a ball in \mathbb{R}^2 . Let $f\in C^1(B)$ and suppose that $\frac{\partial f}{\partial y}=\frac{\partial f}{\partial x}=0$ everywhere in B. Show that f is a constant.

(James, Problem 480) Suppose that $\Omega \subseteq \mathbb{R}^2$ is open and connected. Let $f \in C^1(\Omega)$ and suppose that $\frac{\partial f}{\partial y} = \frac{\partial f}{\partial x} = 0$ everywhere in Ω . Show that f is a constant.

1.3. COMPLEX POLYNOMIALS

[Definition: Complex polynomials in one variable] Let $p: \mathbb{C} \to \mathbb{C}$ be a function. We say that p is a polynomial in one (complex) variable if there is a $n \in \mathbb{N}_0$ and constants $a_0, a_1, \ldots, a_n \in \mathbb{C}$ such that $p(z) = \sum_{k=0}^n a_k z^k$ for all $z \in \mathbb{C}$.

[Definition: Complex polynomial in two variables] Let $p:\mathbb{C}\to\mathbb{C}$ be a function. We say that p is a polynomial in two real variables if there is a $n\in\mathbb{N}_0$ and constants $a_{k,\ell}\in\mathbb{C}$ such that $p(x+iy)=\sum_{k=0}^n\sum_{\ell=0}^na_{k,\ell}x^ky^\ell$ for all $x,y\in\mathbb{R}$.

(Micah, Problem 490) Show that p is a polynomial in two real variables if and only if there are constants $b_{k,\ell} \in \mathbb{C}$ such that $p(z) = \sum_{k=0}^n \sum_{\ell=0}^n b_{k,\ell} z^k \overline{z}^\ell$ for all $z \in \mathbb{C}$.

(Fact 500) Problem 430 is true for complex polynomials of two real variables; that is, if $p(x+iy) = \sum_{k,\ell=0}^{n} a_{k,\ell} x^k y^\ell$, $q(x+iy) = \sum_{k,\ell=0}^{n} c_{k,\ell} x^k y^\ell$, and p(z) = q(z) for all $z \in \mathbb{C}$, then $a_{k,\ell} = c_{k,\ell}$ for all k and ℓ .

(Fact 510) Problem 400, Problem 410, and Problem 420 are valid for complex polynomials of one complex variable.

(Muhammad, Problem 520) Give an example to show that Problem 420 is *not* true for complex polynomials of two real variables; that is, give an example of a complex polynomial q of two real variables of degree n such that $q(z_k) = 0$ for at least n + 1 values of k, but such that q is not the zero polynomial.

1.3. The complex derivatives
$$\frac{\partial}{\partial z}$$
 and $\frac{\partial}{\partial \bar{z}}$

Definition 1.3.1 (part 2). Let $\Omega \subseteq \mathbb{C}$ be an open set. Recall $\mathbb{C} = \mathbb{R}^2$. Let $f : \Omega \to \mathbb{C}$ be a function. Then $f \in C^1(\Omega)$ if Re f, Im $f \in C^1(\Omega)$.

[Definition: Derivative of a complex function] Let $f \in C^1(\Omega)$. Let $u(z) = \operatorname{Re} f(z)$ and let $v(z) = \operatorname{Im} f(z)$. Then

$$\frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}, \quad \frac{\partial f}{\partial y} = \frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y}.$$

(Nisa, Problem 530) Establish the Leibniz rules

$$\frac{\partial}{\partial x}(fg) = \frac{\partial f}{\partial x}g + f\frac{\partial g}{\partial x}, \qquad \frac{\partial}{\partial y}(fg) = \frac{\partial f}{\partial y}g + f\frac{\partial g}{\partial y}$$

for f, $g \in C^1(\Omega)$.

[Definition: Complex derivative] Let $f \in C^1(\Omega)$. Then

$$\frac{\partial f}{\partial z} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2i} \frac{\partial f}{\partial y}, \quad \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{1}{2i} \frac{\partial f}{\partial y}.$$

(Robert, Problem 540) Let f(z)=z and let $g(z)=\overline{z}$. Show that $\frac{\partial f}{\partial z}=1$, $\frac{\partial f}{\partial \overline{z}}=0$, $\frac{\partial g}{\partial z}=0$, $\frac{\partial g}{\partial \overline{z}}=1$.

(Fact 550) $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \overline{z}}$ are linear operators.

(Fact 560) Show that $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \overline{z}}$ commute in the sense that, if $\Omega \subseteq \mathbb{C}$ is open and $f \in C^2(\Omega)$, then $\frac{\partial}{\partial z}\left(\frac{\partial}{\partial \overline{z}}f\right) = \frac{\partial}{\partial \overline{z}}\left(\frac{\partial}{\partial z}f\right)$.

(Fact 570) The following Leibniz rules are valid:

$$\frac{\partial}{\partial z}(fg) = \frac{\partial f}{\partial z}g + f\frac{\partial g}{\partial z}, \qquad \frac{\partial}{\partial \overline{z}}(fg) = \frac{\partial f}{\partial \overline{z}}g + f\frac{\partial g}{\partial \overline{z}}.$$

(Sam, Problem 580) Show that $\frac{\partial}{\partial z}(z^{\ell}\overline{z}^m) = \ell z^{\ell-1}\overline{z}^m$ and $\frac{\partial}{\partial \overline{z}}(z^{\ell}\overline{z}^m) = mz^{\ell}\overline{z}^{m-1}$ for all nonnegative integers m and ℓ .

(William, Problem 590) Let p be a complex polynomial in two real variables. Show that p is a complex polynomial in one complex variable if and only if $\frac{\partial p}{\partial \bar{z}} = 0$ everywhere in \mathbb{C} .

Definition 1.4.1. Let $\Omega \subseteq \mathbb{C}$ be open and let $f \in C^1(\Omega)$. We say that f is holomorphic in Ω if

$$\frac{\partial f}{\partial \overline{z}} = 0$$

everywhere in Ω .

(Fact 600) A polynomial in two real variables is a polynomial in one complex variable if and only if it is holomorphic.

(Wilson, Problem 610) Suppose that $\Omega\subseteq\mathbb{C}$ is open and connected, that $f\in\mathcal{C}^1(\Omega)$, and that $\frac{\partial f}{\partial z}=\frac{\partial f}{\partial \overline{z}}=0$ in Ω . Show that f is constant in Ω .

[Chapter 1, Problem 34]Suppose that $\Omega \subseteq \mathbb{C}$ is open and that $f \in C^1(\Omega)$. Show that

$$\frac{\partial f}{\partial z} = \overline{\left(\frac{\partial \overline{f}}{\partial \overline{z}}\right)}.$$

(Adam, Problem 620) Show that $\frac{\partial}{\partial z}\frac{1}{z}=-\frac{1}{z^2}$ and $\frac{\partial}{\partial \overline{z}}\frac{1}{z}=0$ if $z\neq 0$. Then compute $\frac{\partial}{\partial z}\frac{1}{z^n}$ and $\frac{\partial}{\partial \overline{z}}\frac{1}{z^n}$ for any positive integer n.

[Chapter 1, Problem 49] Let Ω , $W \subseteq \mathbb{C}$ be open and let $g: \Omega \to W$, $f: W \to \mathbb{C}$ be two C^1 functions. The following chain rules are valid:

$$\frac{\partial}{\partial z}(f \circ g) = \frac{\partial f}{\partial g}\frac{\partial g}{\partial z} + \frac{\partial f}{\partial \overline{g}}\frac{\partial \overline{g}}{\partial z},$$
$$\frac{\partial}{\partial \overline{z}}(f \circ g) = \frac{\partial f}{\partial g}\frac{\partial g}{\partial \overline{z}} + \frac{\partial f}{\partial \overline{g}}\frac{\partial \overline{g}}{\partial \overline{z}},$$

where $\frac{\partial f}{\partial g} = \left. \frac{\partial f}{\partial z} \right|_{z \to g(z)}$, $\left. \frac{\partial f}{\partial \overline{g}} = \left. \frac{\partial f}{\partial \overline{z}} \right|_{z \to g(z)}$.

In particular, if f and g are both holomorphic then so is $f \circ g$.

1.4. HOLOMORPHIC FUNCTIONS, THE CAUCHY-RIEMANN EQUATIONS, AND HARMONIC FUNCTIONS

Lemma 1.4.2. Let $f \in C^1(\Omega)$, let u = Re f, and let v = Im f. Then f is holomorphic in Ω if and only if

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

everywhere in Ω . (These equations are called the Cauchy-Riemann equations.)

(Amani, Problem 630) Prove the "only if" direction of Lemma 1.4.2: show that if f is holomorphic in Ω , $\Omega \subset \mathbb{C}$ open, then the Cauchy-Riemann equations hold for u = Re f and v = Im f.

(Bashar, Problem 640) Prove the "if" direction of Lemma 1.4.2: show that if u = Re f and v = Im f are C^1 in Ω and satisfy the Cauchy-Riemann equations, then f is holomorphic in Ω .

Proposition 1.4.3. [Slight generalization.] Let $f \in C^1(\Omega)$. Then f is holomorphic at $p \in \Omega$ if and only if $\frac{\partial f}{\partial x}(p) = \frac{1}{i} \frac{\partial f}{\partial y}(p)$ and that in this case

$$\frac{\partial f}{\partial z}(p) = \frac{\partial f}{\partial x}(p) = \frac{1}{i} \frac{\partial f}{\partial y}(p).$$

(Dibyendu, Problem 650) Begin the proof of Proposition 1.4.3 by showing that if f is holomorphic then $\frac{\partial f}{\partial z} = \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}.$

(Hope, Problem 660) Complete the proof of Proposition 1.4.3 by showing that if $f \in C^1(\Omega)$ and $\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial x}$ then f is holomorphic.

Definition 1.4.4. We let $\triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$. If $\Omega \subseteq \mathbb{C}$ is open and $u \in C^2(\Omega)$, then u is harmonic if

$$\triangle u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

everywhere in Ω .

(**Problem 670**) Show that if $f \in C^1(\Omega)$ then $\triangle f = 4 \frac{\partial}{\partial z} \frac{\partial f}{\partial \overline{z}} = 4 \frac{\partial}{\partial \overline{z}} \frac{\partial f}{\partial z}$

(Micah, Problem 680) Suppose that f is holomorphic and C^2 in an open set Ω and that $u = \operatorname{Re} f$ and $v = \operatorname{Im} f$. Compute $\triangle u$ and $\triangle v$.

(Muhammad, Problem 690) Let f be a holomorphic polynomial. Show that there is a holomorphic polynomial F such that $\frac{\partial F}{\partial z} = f$. How many such polynomials are there?

(Nisa, Problem 700) Show that if u is a harmonic polynomial (of two real variables) then $u(z) = p(z) + q(\bar{z})$ for some polynomials p, q of one complex variable.

Lemma 1.4.5. Let u be harmonic and real valued in \mathbb{C} . Suppose in addition that u is a polynomial of two real variables. Then there is a holomorphic polynomial f such that $u(x,y) = \operatorname{Re} f(x+iy)$.

(Robert, Problem 710) Prove Lemma 1.4.5. *Hint*: Start by computing $\frac{\partial}{\partial z} \frac{\partial}{\partial \overline{z}}$ and $\frac{\partial}{\partial \overline{z}} \frac{\partial}{\partial z}$.