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I: Lebesgue Integration for Functions of a Single Real Variable

Preliminaries on Sets, Mappings, and Relations

Unions and Intersections of Sets



(Problem 10) [De Morgan] If X is a set and F is a family of sets, show that

X ∼
“ [
F∈F

F
”
=
\
F∈F

(X ∼ F ):

(Problem 20) [De Morgan] If X is a set and F is a family of sets, show that

X ∼
“ \
F∈F

F
”
=
[
F∈F

(X ∼ F ):

Mappings Between Sets

(Problem 30) If f : A→ B is a function, and E, F ⊆ B, show that

f −1(E ∪ F ) = f −1(E) ∪ f −1(F ):

(Problem 40) If f : A→ B is a function, and E, F ⊆ B, show that

f −1(E ∩ F ) = f −1(E) ∩ f −1(F ):

(Problem 50) If f : A→ B is a function, and E, F ⊆ B, show that

f −1(E ∼ F ) = f −1(E) ∼ f −1(F ):

(Problem 60) If f : A→ B is a function, and we define f (E) = {f (e) : e ∈ E} for all E ⊆ A, are the analogues
to the above formulas true?

Equivalence Relations, the Axiom of Choice and Zorn’s Lemma

[Definition: Relation] Let X be a set. A subset R of the Cartesian product X ×X is called a relation on X; we
write xRy if (x; y) ∈ R.
[Definition: Reflexive relation] A relation R is reflexive if xRx for all x ∈ X.

[Definition: Transitive relation] A relation R is transitive if xRy and yRz implies xRz .

[Definition: Symmetric relation] A relation R is symmetric if xRy if and only if yRx .

[Definition: Equivalence relation] A relation R is an equivalence if it is reflexive, symmetric, and transitive.

[Definition: Partial ordering] A relation R is a partial ordering if it is reflexive, transitive, and as far from
symmetric as possible: if xRy and yRx then x = y .

[Definition: Totally ordered] Let R be a partial ordering on a set X and let E ⊆ X. We say that E is totally
ordered if, for every x , y ∈ E, either xRy or yRx .

[Definition: Equivalence class] The equivalence class of an element x of a set X with respect to an equivalence
relation R on X is Rx = {y ∈ X : xRy}, and X=R = {Rx : x ∈ X}.
[Definition: Partition] Let X be a set and let P be a collection of subsets of X. If, for every x ∈ X, there is
exactly one P ∈ P that satisfies x ∈ P , we say that P is a partition of X.

(Problem 70) Let R be an equivalence relation. Show that X=R is a partition of X.

(Problem 80) Let P be a partition of X. Define R =
S
P∈P P × P . Show that R is an equivalence relation and

that xRy if and only if there is a P ∈ P with x , y ∈ P .
[Definition: Choice function] Let F be a nonempty family of nonempty sets and let X =

S
F∈F F . (We do not

require that F be a partition of X.) A choice function on F is a function f : F → X such that f (F ) ∈ F for
each F ∈ F .

Zermelo’s axiom of choice. If F is a nonempty collection of nonempty sets, then there exists a choice function
on F .

(Problem 90) Suppose that f : X → Y is a function from one metric space to another. Suppose that x ∈ X and
that f is continuous at x in the sequential sense: for all sequences {xn}∞n=1 ⊂ X that satisfy xn → x , we have



that f (xn) → f (x). Use the axiom of choice to show that f is continuous in the "-‹ sense as well. Be sure to
explain where you must use a choice axiom.

[Definition: Upper bound] Let R be a partial ordering on a set X and let E ⊆ X. If x ∈ X and eRx for all
e ∈ E, then x is an upper bound on E.

[Definition: Maximal element] Let R be a partial ordering on a set X and let x ∈ X. If {y ∈ X : xRy} = {x},
then x is said to be maximal.

[Homework 1.1] Let F be a family of sets.

(a) Show that ⊆ and ⊇ are both relations on F and that they are partial orderings.
(b) When is A ∈ F maximal under the relation ⊆? Under the relation ⊇?
(c) If E ⊆ F , when is A ∈ F an upper bound for E under the relation ⊆? Under the relation ⊇?

Zorn’s lemma. Let X be a nonempty partially ordered set. Assume that, if E ⊆ X is totally ordered, then E has
an upper bound in X (not necessarily in E). Then X contains a maximal element.

[Definition: Cartesian product of a parameterized collection of sets] If {E–}–∈Λ is a parameterized collection
of sets, then the Cartesian product

Q
–∈Λ E– is defined to be the set of functions f from Λ to

S
–∈Λ E– such that

f (–) ∈ E– for all – ∈ Λ.

(Problem 100) When is the Cartesian product of a parameterized collection of sets equal to the set of choice
functions on the family of sets? Can you modify the axiom of choice so that it is equivalent to the statement
that the Cartesian product of of a parameterized collection of nonempty sets is nonempty?

1. The Real Numbers: Sets, Sequences and Functions

1.1 The Field, Positivity and Completeness Axioms

[Definition: Field] A field is a set F together with two functions from F × F to itself (denoted a + b and ab
rather than s((a; b)) and p((a; b))) that satisfy the axioms

• a+ b = b + a for all a, b ∈ F ,
• a+ (b + c) = (a+ b) + c for all a, b, c ∈ F ,
• There is a 0 ∈ F such that a+ 0 = a for all a ∈ F ,
• If a ∈ F then there is a −a ∈ F such that a+ (−a) = 0,
• ab = ba for all a, b ∈ F ,
• a(bc) = (ab)c for all a, b, c ∈ F ,
• There is a 1 ∈ F such that 1a = a for all a ∈ F ,
• If a ∈ F and a ̸= 0 then there is a 1=a ∈ F such that a(1=a) = 1,
• 1 ̸= 0,
• a(b + c) = ab + ac for all a, b, c ∈ F ,

(Elliott, Problem 110) Show from the axioms that 0a = 0 for all a ∈ F .

Because 0 is the additive identity, 0+ 0 = 0 and so 0a = (0+ 0)a. By the distributivity of multiplication
over addition (and commutativity of multiplication), (0 + 0)a = 0a + 0a. Thus 0a = 0a + 0a. We add
−(0a) to both sides to see that 0 = 0a, as desired.

[Definition: Ordered field] A field F is an ordered field if

• F is a field,
• F is totally ordered with respect to some relation on F (which we will call ≤),
• If a ≥ 0 then (−a) ≤ 0,
• a− b ≥ 0 if and only if a ≥ b,
• If a ≥ 0 and b ≥ 0 then both a+ b ≥ 0 and ab ≥ 0.

(Problem 120) Show that Q and R (as defined in undergraduate analysis/advanced calculus) are both ordered
fields. If you have taken complex analysis, show that C is not an ordered field.

[Definition: Complete ordered field] An ordered field F is complete if, whenever E ⊂ F is a nonempty subset
with an upper bound, then E has a least upper bound.



[Definition: Absolute value] If x is an element of an ordered field, we define |x | = x if x ≥ 0 and |x | = −x if
x ≤ 0.

The Triangle inequality. If x and y are real numbers (or rational numbers), then |x + y | ≤ |x |+ |y |.
[Definition: Extended real numbers] We introduce the symbols ∞ = +∞ and −∞ denoting two objects that
are not in R, and let the extended real numbers be R ∪ {−∞;∞}. (The extended real numbers are not a field!)

• We extend the relation ≤ by stating −∞ ≤ r ≤ ∞ for all r ∈ R.
• We extend the operation + by writing

∞+ r = ∞; −∞+ r = −∞; ∞+∞ = ∞; −∞+ (−∞) = −∞
for all r ∈ R. (∞+ (−∞) and (−∞) +∞ are not defined.)

• If a, b ∈ R ∪ {−∞;∞}, then
(a; b) = {r ∈ R ∪ {−∞;∞} : a < r < b}; [a; b) = {r ∈ R ∪ {−∞;∞} : a ≤ r < b};
(a; b] = {r ∈ R ∪ {−∞;∞} : a < r ≤ b}; [a; b] = {r ∈ R ∪ {−∞;∞} : a ≤ r ≤ b}:

We may write R ∪ {−∞;∞} = [−∞;∞].

(Irina, Problem 130) Show that every subset of the extended real numbers has a supremum in the extended
real numbers. (A similar argument shows that every subset of the extended real numbers has an infimum in the
extended real numbers.)

Let X ⊂ [−∞;∞]. There are then four cases:

• X = ∅ or X = {−∞}. Then −∞ is an upper bound for X, because x ≤ −∞ for all x ∈ X. Furthermore,
if y ∈ [−∞;∞] then −∞ ≤ y , and so −∞ ≤ y for all upper bounds y of X. Thus −∞ is the least
upper bound on X.

• For every r ∈ R there is an x ∈ X with x > r . In particular there is an x ∈ X with x > 0 > −∞, and so
−∞ is not an upper bound for X. Furthermore, no element of R is an upper bound for X. However, ∞
is an upper bound for [−∞;∞], so is an upper bound for X; as it is the only upper bound

• None of the preceding cases is valid. Thus, there is some r ∈ R such that x ≤ r for all x ∈ X.
Furthermore, X ̸= ∅ and X ̸= {−∞}. In this case ∞ =∈ X (because ∞ ≮ r). Thus, X ̸⊆ {−∞;∞}, and
so X ∩ R ̸= ∅. r is an upper bound for X ∩ R, so by the completeness axiom X ∩ R has a (real) least
upper bound s. If X = X ∩R we are done; otherwise, X ∩R = X ∼ {−∞}. s is an upper bound for X
because s > −∞, and is the least upper bound for X because it is the least upper bound for a subset
of X. This completes the proof.

1.2 The Natural and Rational Numbers

[Definition: Inductive set] Suppose that F is a field and that E ⊆ F . Suppose furthermore that 1 ∈ E and
that, if x ∈ E, then x + 1 ∈ E. Then we say that E is inductive.

[Definition: Natural numbers] If F is a field, we define the natural numbers NF in F as the intersection of all
inductive subsets of F .

(Zach, Problem 140) If F is an ordered field, show that 1 ∈ NF and that f =∈ NF for all f < 1.

Let S = {x ∈ F : x ≥ 1}. Then 1 ∈ S. Furthermore, if x ∈ F then x ≥ 1. Because 1 > 0, we have that
x + 1 > x ≥ 1 and so x + 1 ∈ S. Thus S is inductive, and so NF ⊆ S. Because ≥ is a partial ordering, if
f < 1 then f ̸≥ 1 and so f =∈ S, so f =∈ NF , as desired.

(Problem 141) If n, m ∈ NF , show that n +m ∈ NF . Phrase your proof in terms of inductive sets rather than
in terms of induction as done in undergraduate mathematics.

[Chapter 1, Problem 8] If F is an ordered field and n ∈ NF , then NF ∩ (n; n + 1) = ∅.
[Chapter 1, Problem 9] If F is an ordered field and n, m ∈ NF with n > m, then n −m ∈ NF .
Theorem 1.1. Let F be an ordered field and let E ⊆ NF . Suppose that E ̸= ∅. Then E has a smallest element.



(Juan, Problem 150) Prove Theorem 1.1. For bonus points, prove this in a general ordered field; the proof in
your book is only valid in complete ordered fields.

Corollary. Let ZF = {n − m : n;m ∈ NF }. If S ⊆ ZF and S is bounded above (respectively, below) then S
contains a maximal (respectively, minimal) element.

The Archimedean property. An ordered field F has the Archimedean property if, for every a ∈ F , there is a
n ∈ NF with n > a.

(Micah, Problem 160) Let F be a complete ordered field. Prove that F has the Archimedean property.

Suppose that F does not have the Archimedian property. Then there is some a ∈ F fuch that n ≤ a for
all n ∈ NF .

Thus a is an upper bound for NF . Because F is complete, there is a least upper bound c of NF . Consider
c − 1. Then c − 1 < c, and so c − 1 is not an upper bound for NF , and so there is some m ∈ NF such that
c − 1 < m. But then c < m + 1, and so c is not an upper bound for NF . This is a contradiction.

[Potential homework problem] Let F and R be two complete ordered fields. Show that there is a unique
bijection ’ : F → R that satisfies

• ’(a+ b) = ’(a) + ’(b),
• ’(ab) = ’(a)’(b),
• If a ≤ b then ’(a) ≤ ’(b).

Thus (up to isomorphism) there is only one complete ordered field.

[Definition: Dense] Let F be an ordered field. A subset S of F is dense if, whenever a, b ∈ F with a < b, there
is a s ∈ S with a < s < b.

Theorem 1.2. The rational numbers Q are dense in the real numbers R.
(Muhammad, Problem 170) Prove Theorem 1.2.

Since b−a > 0, we have that 2
b−a > 0. Thus there is a q ∈ N such that q > 1

b−a (and thus 1=q < b−a)
by the Archimedean property.

Let S = {n ∈ Z : n < qb}. S is clearly bounded above, so by (the corollary to) Theorem 1.1 we have
that S contains a maximal element p.

Thus p < qb. Because q ∈ N, we have that q > 0 and so p
q
< b. Furthermore, p + 1 is not in S and so

p + 1 ≥ qb, that is, p+1
q

≥ b. But then p
q
= p+1

q
− 1

q
≥ b − 1

q
> b − (b − a) = a, and so a < p

q
< b, as

desired.

The axiom of dependent choice

The axiom of countable choice. Let X be a set. For each n ∈ N, let En ⊆ X. Then there is a sequence
{xn}∞n=1 such that, for each n ∈ N, we have that xn ∈ En.
The axiom of dependent choice. Let X be a set and let R be a relation on X. Suppose that for each x ∈ X,
there is at least one y ∈ X such that xRy .

If x ∈ X, then there is a sequence (a function from N to X) such that x1 = x and such that xnRxn+1 for all
n ∈ N.
The Bolzano-Weierstrauß theorem. If {xn}∞n=1 is a bounded sequence of points in R, then there is a subse-
quence {xnk}∞k=1 that converges.

(Bonus Problem 171) Use the axiom of dependent choice to prove the Bolzano-Weierstrauß theorem. Can you
do this using only the axiom of countable choice?

(Bonus Problem 172) Show that the axiom of dependent choice implies the axiom of countable choice.

(Bonus Problem 180) Use Zorn’s lemma to prove the axiom of dependent choice.

(Problem 181) Choose a standard inductive proof from undergraduate analysis and rephrase it in terms of
inductive sets.



1.3 Countable and Uncountable Sets

[Definition: Finite] A subset of N is finite if it is bounded above. An arbitrary set S is finite if there is a bijection
f from S to a finite subset of N.

(Memory 190) If S is finite, then there is a m ∈ N and a bijection f : S → {k ∈ N : k ≤ m}.

(Memory 200) If S is a set, T is a finite set, and there exists either

• An injection g : S → T ,
• A surjection h : T → S,

then S is finite.

[Definition: Countable] A set S is countable if there exists an injection g : S → N.

(Memory 210) S is countable if and only if there exists a surjection h : N → S.

(Memory 220) All finite sets are countable.

[Definition: Countably infinite] A set S is countably infinite if it is countable but not finite.

(Memory 230) S is countably infinite if and only if there exists a bijection f : S → N.

(Memory 240) Q is countable.

(Memory 250) The countable union of countable sets is countable.

[Definition: Uncountable] A set is uncountable if it is not countable.

(Memory 260) The real numbers are uncountable. In fact, if I ⊆ R is an interval, then either I = ∅, I = {a} is
a single point, or I is uncountable.

(Anjuman, Problem 270) Let S be a set. Let 2S (or P (S)) denote the set of all subsets of S. Show that there
does not exist a bijection f : S → 2S.

1.4 Open Sets and Closed Sets of Real Numbers

[Definition: Open interval] A subset I of R is an open interval if there exist a, b ∈ [−∞;∞] with a ≤ b such
that I = (a; b) = {r ∈ R : a < r < b}.

(Problem 280) Is the empty set an open interval?

[Definition: Open set] A subset O of R is open if it is the union of open intervals.

Proposition 1.9. In R (but not in other metric spaces), every open set may be written as a union of countably
many open intervals that are pairwise-disjoint.

[Definition: Closed set] A set in R is closed if its complement is open.

[Definition: Closure] If E ⊂ R, then E =
T
F :F closed;E⊆F F .

(Memory 290) If E ⊆ R then E is closed. If E ⊆ R is closed then E = E.

(Memory 300) If E ⊆ R then E = {r ∈ R :if " > 0 then there is an e ∈ E with |r − e| < "}.

The nested set theorem. If {Fn}∞n=1 is a sequence of sets such that Fn ⊇ Fn+1, Fn is compact, and Fn ̸= ∅,
then

T∞
n=1 Fn ̸= ∅.



1.4 Borel Sets of Real Numbers

[Definition: ff-algebra] Let X be a set and let A ⊆ 2X . We say that A is a ff-algebra of subsets of X, or a
ff-algebra over X, if

(a) ∅ ∈ A.
(b) If S ∈ A then X ∼ S ∈ A.
(c) If B ⊆ A is countable then

S
S∈B S is in A.

(Problem 310) Show that 2X and {X; ∅} are both ff-algebras over X.

(Ashley, Problem 320) Suppose that A is a ff-algebra and that B ⊆ A is countable. Show that
T
S∈B S is in A.

(Problem 321) Let G be a collection of ff-algebras over X. Let A =
T

B∈G B. Show that A is also a ff-algebra
over X.

(Problem 322) Is the same true for unions of ff-algebras?

Proposition 1.13. Let F ⊆ 2X . Let

S = {A ⊆ 2X : F ⊆ A; A is a ff-algebra}:

Let AF =
T

A∈S A. Then AF is a ff-algebra.
Furthermore, F ⊆ AF and if A is a ff-algebra with F ⊆ A then AF ⊆ A.
We call AF the smallest ff-algebra that contains F .

(Bashar, Problem 330) Prove Proposition 1.13.

(Dibyendu, Problem 340) Let A be a ff-algebra on X and let {En}∞n=1 ⊆ A. Let

lim sup
n→∞

En = {x ∈ X : x ∈ En for infinitely many values of n}:

Show that lim supn→∞ En ∈ A.

The statement that x ∈ En for infinitely many values of n is equivalent to the statement that, for all
m ∈ N, there is a n ≥ m such that x ∈ En.

The statement that there is a n ≥ m such that x ∈ En is equivalent to the statment that x ∈
S∞
n=m En.

Thus, the statement that x ∈ En for infinitely many values of n is equivalent to the statement that, for
all m ∈ N, x ∈

S∞
n=m En.

But for any sequence of sets {Sm}∞m=1, x ∈ Sm for all m ∈ N if and only if x ∈
T∞
m=1 Sm.

Thus,

lim sup
n→∞

En =
∞\
k=1

h ∞[
n=k

En

i
and the result that lim supn→∞ En ∈ A follows immediately from the definition of a ff-algebra and from
Problem 320.

(Elliott, Problem 350) Let A be a ff-algebra on X and let {En}∞n=1 ⊆ A. Let

lim inf
n→∞

En = {x ∈ X : x =∈ En for at most finitely many values of n}:

Show that lim infn→∞ En ∈ A.

A similar argument to that of the previous problem yields that

lim inf
n→∞

En =
∞[
k=1

h ∞\
n=k

En

i
and so again the result follows from the definition of a ff-algebra and from Problem 320.

[Definition: Borel sets] The collection B of Borel subsets of R is the smallest ff-algebra containing all open
subsets of R.



1.5 Sequences of Real Numbers

[We will assume that all students saw all material in this section in advanced calculus or real analysis.]

1.6 Continuous Real-Valued Functions of a Real Variable

[We will assume that all students saw all material in this section in advanced calculus or real analysis.]

2. Lebesgue Measure

2.1 Introduction

[Definition: Characteristic function] Let E ⊂ R be a set. The characteristic function of E is defined to be

fflE(x) =

(
1; x ∈ E;
0; x ∈ R ∼ E:

[Definition: Jordan content] Let E ⊂ R be a bounded set. If fflE is Riemann integrable, then we say that E is
Jordan measurable and that its Jordan content is J (E) =

R∞
−∞ fflE .

(Irina, Problem 360) Suppose that {En}mn=1 is a finite collection of pairwise disjoint Jordan measurable sets.
Show that ∪mn=1En is also Jordan measurable and that

J
“ m[
n=1

En

”
=

mX
n=1

J (En):

(Zach, Problem 370) Find a bounded set E that is not Jordan measurable, but such that E =
S∞
n=1 En, where

{En}∞n=1 is a sequence of pairwise disjoint Jordan measurable sets.

Let E = Q∩ [0; 1]. Then E is countable and so is the union of countably many pairwise disjoint singleton
sets. It is an elementary real analysis argument to show that singleton sets are Jordan measurable but that
E is not.

[Definition: Measure] If X is a set and M is a ff-algebra of subsets of X, then we call (X;M) a measurable
space. A measure on a measurable space (X;M) is a function — such that:

• — : M → [0;∞].
• —(∅) = 0,
• If {Ek}∞k=1 ⊆ M and Ek ∩ Ej = ∅ for all j ̸= k , then

—
“ ∞[
k=1

Ek

”
=

∞X
k=1

—(Ek):

(Recall that if M is a ff-algebra then ∅ ∈ M.)

[Chapter 2, Problem 1] If — is a measure on a ff-algebra M, and if A, B ∈ M with A ⊆ B, then —(A) ≤ —(B).

[Chapter 2, Problem 2] We may replace the second condition by the condition “—(E) < ∞ for at least one
E ∈ M”.

[Chapter 2, Problem 3] If — is a measure on a ff-algebra M, and if {Ek}∞k=1 ⊆ M, then

—
“ ∞[
k=1

Ek

”
≤

∞X
k=1

—(Ek):

[Chapter 2, Problem 4] Let (X;M) be a measurable space. If E ∈ M, let c(E) = ∞ if E is infinite and
c(E) = #E if E is finite. Then c is a measure on (X;M).

(Juan, Problem 380) Let (X;M) be a measurable space. There are functions from M to {0;∞} that are
measures. Find two of them. (These are the trivial measures on M.)



2.2 Outer Measure

[Definition: Length] Let I ⊆ R be an interval, so I = (a; b), [a; b], [a; b), or (a; b] for some a, b ∈ [−∞;∞]
with a ≤ b. We define ‘(I) = b − a.

[Definition: Outer measure] Let A ⊆ R. The Lebesgue outer measure of A is

m∗(A) = inf
n ∞X
k=1

‘(Ik) : A ⊆
∞[
k=1

Ik ; each Ik is a bounded open interval
o
:

(Problem 390) Let A ⊆ B ⊆ R. Show that m∗(A) ≤ m∗(B).

(Problem 391) Let S ⊂ R be a finite set. Show that m∗(S) = 0.

(Micah, Problem 400) Let S ⊂ R be a countably infinite set. Show that m∗(S) = 0. In particular, m∗(Q) = 0.

Proposition 2.1. The outer measure of an interval in R is its length.

(Muhammad, Problem 410) Let I = [a; b] be a closed bounded interval (that is, a and b are both real numbers).
Show that m∗(I) = ‘(I) = b − a.

(Anjuman, Problem 420) Prove Proposition 2.1.

Proposition 2.2. Outer measure is translation invariant: if E ⊆ R and r ∈ R, then

m∗(E) = m∗`{e + r : e ∈ E}
´
:

(Ashley, Problem 430) Prove Proposition 2.2.

Let {Ik}∞k=1 be a countable sequence of bounded open intervals that satisfies E ⊆
S∞
k=1 Ik . There are

real numbers ak , bk with ak ≤ bk and Ik = (ak ; bk).
Let Jk = (ak + r; bk + r).
If f ∈ Er = {e + r : e ∈ E}, then f = e + r for some e ∈ E. Because E ⊆

S∞
k=1 Ik , we have that

e ∈ Ik (that is, ak < e < bk) for at least one value of k. Then ak + r < e + r < bk + r , so f ∈ Jk . Thus
Er ⊂

S∞
k=1 Jk . But {Jk : k ∈ N} is a countable collection of bounded open intervals, and so by definition

of Lebesgue outer measure

m∗(Er ) ≤
∞X
k=1

‘(Jk) =
∞X
k=1

(bk − ak) =
∞X
k=1

‘(Ik):

Taking the infimum of both sides over the set of all such {Ik}∞k=1, we see that

m∗(Er ) ≤ m∗(E):

But E = (Er )−r , and so by the previous argument m∗(E) = m∗((Er )−r ) ≤ m∗(Er ). Thus m
∗(E) = m∗(Er ),

as desired.

(Problem 431) If E ⊆ R and r ∈ R, then

|r |m∗(E) = m∗`{re : e ∈ E}´:
Proposition 2.3. If for each k ∈ N we have a set Ek ⊆ R, then

m∗
“ ∞[
k=1

Ek

”
≤

∞X
k=1

m∗(Ek):



(Bashar, Problem 440) Prove Proposition 2.3.

If
P∞

k=1m
∗(Ek) = ∞ we are done because m∗(S) ∈ [0;∞] for all S ⊆ R. Therefore we assume thatP∞

k=1m
∗(Ek) <∞. In particular, m∗(Ek) <∞ for all k ∈ N.

Let " > 0. By definition of infimum and by definition of m∗, for each k, there is a sequence {Ik;‘}∞‘=1 of
bounded open intervals that satisfies

Ek ⊆
∞[
‘=1

Ik;‘;
∞X
‘=1

‘(Ik;‘) ≤ m∗(Ek) + 2−k":

Now, B = {Ik;‘ : k; ‘ ∈ N} is the union of countably many collections of countably many bounded open
intervals, and so by Problem 250 B is a countable set of bounded open intervals.

Furthermore, if x ∈
S∞
k=1 Ek then x ∈ Ek for some k, and so x ∈ Ik;‘ for some ‘. Thus Ek ⊂

S
I∈B I.

Thus by definition of m∗,

m∗
“ ∞[
k=1

Ek

”
≤
X
I∈B

‘(I):

By definition of B

m∗
“ ∞[
k=1

Ek

”
≤

∞X
k=1

∞X
‘=1

‘(Ik;‘):

By definition of Ik;‘,

m∗
“ ∞[
k=1

Ek

”
≤

∞X
k=1

`
m∗(Ek) + 2−k"

´
= "+

∞X
k=1

m∗(Ek):

Because this is true for all " > 0, we must have that

m∗
“ ∞[
k=1

Ek

”
≤

∞X
k=1

m∗(Ek)

as desired.

[Chapter 2, Problem 9] If A, B ⊆ R and m∗(A) = 0, then m∗(A ∪ B) = m∗(A) +m∗(B).

[Chapter 2, Problem 10] Let A, B ⊂ R be bounded. Suppose that inf{|a− b| : a ∈ A; b ∈ B} > 0. Show that
m∗(A ∪ B) = m∗(A) +m∗(B).

2.6 Vitali’s Example of a Nonmeasurable Set

[Definition: Rationally equivalent] If r , s ∈ R, we say that r and s are rationally equivalent if r − s ∈ Q.

(Dibyendu, Problem 450) Show that rational equivalence is an equivalence relation.

Let R denote rational equivalence.

• Suppose rRs. Then r − s ∈ Q. Because Q is a field, −(r − s) = s − r ∈ Q and so sRr . Thus R is
symmetric.

• Suppose r ∈ R. Then r − r = 0 ∈ Q and so rRr . Thus R is reflexive.
• Suppose rRs and sRt. Then r − s ∈ Q and s− t ∈ Q. Because Q is a field, r − t = (r − s)+(s− t) ∈ Q
and so rRt. Thus R is transitive.

Because R is symmetric, reflexive, and transitive, it is an equivalence relation.

(Problem 451) Let R denote rational equivalence. Let [−1; 1]=R be the set of equivalence classes in [−1; 1]
under R. This is a collection of (pairwise disjoint) sets.

If S ∈ [−1; 1]=R, is S finite, countably infinite, or uncountable?

Let x ∈ S. Then S = {y ∈ [−1; 1] : xRy} = {y ∈ [−1; 1] : y = x + q for some q ∈ Q}. S is clearly
infinite. Conversely, S ⊂ {x + q : q ∈ Q}. This set is countable because it has a natural bijection to the
countable set Q. Thus S is countably infinite.



(Problem 452) Is the collection of equivalence classes [−1; 1]=R finite, countably infinite, or uncountable?

We have that

[−1; 1] =
[

S∈[−1;1]=R

S:

The right hand side is uncountable but each S on the left hand side is countable. The countable union of
countable sets is countable, and so we must have that [−1; 1]=R is uncountable.

(Problem 453) Let ’ be a choice function on [−1; 1]=R and let V = ’([−1; 1]=R). Is V countable or uncountable?

The elements of [−1; 1]=R are pairwise disjoint because R is an equivalence relation. Thus, if ’(S) =
’(T ), then ’(T ) ∈ S ∩ T because ’ is a choice function and so ’(S) ∈ S, ’(T ) ∈ T . Thus S ∩ T ̸= ∅ and
so S = T . Thus ’ is a bijection from [−1; 1]=R to V . Because [−1; 1]=R is uncountable, so is V .

(Elliott, Problem 460) If q is rational, define Vq = {v + q : v ∈ V }. Show that if q, p ∈ Q∩ [−2; 2] then either
q = p or Vq ∩ Vp = ∅.

Let p, q ∈ Q ∩ [−2; 2] and suppose that Vq ∩ Vp ̸= ∅. Let x ∈ Vq ∩ Vp. Then x = v + q = w + p for
some v , w ∈ V by definition of Vq. We must have that v = ’(S), w = ’(T ) for some S, T ∈ [−1; 1]=R
by definition of V .

Thus v − w = p − q ∈ Q and so vRw . Because ’ is a choice function, v = ’(S) ∈ S. Because vRw ,
we must also have w ∈ S. But w = ’(T ) ∈ T . As in the previous problem this implies S = T , and so
v = ’(S) = ’(T ) = w . Thus 0 = v − w = p − q and so p = q, as desired.

(Irina, Problem 470) Show that

[−1; 1] ⊆
[

q∈[−2;2]∩Q

Vq ⊆ [−3; 3]:

(Zach, Problem 480) Show that m∗(V ) > 0.

By Proposition 2.1 and Problem 390, we have that

2 = m∗([−1; 1]) ≤ m∗
“ [
q∈[−2;2]∩Q

Vq

”
:

By Proposition 2.3, and because the rational numbers are countable, we have that

2 ≤
X

q∈[−2;2]∩Q

m∗(Vq):

By Proposition 2.2, we have that m∗(Vp) = m∗(Vq) for all p, q ∈ Q. Thus

2 ≤
X

q∈[−2;2]∩Q

m∗(V ):

The right hand side is either zero (if m∗(V ) = 0) or ∞ (if m∗(V ) > 0). The first possibility is precluded by
the positive lower bound, and thus we must have that m∗(V ) > 0.

(Juan, Problem 490) Let {qk}∞k=1 be a sequence that contains each rational number in [−2; 2] exactly once and

contains no other numbers. Show that
P∞

k=1m
∗(Vqk ) ̸= m∗

“S∞
k=1 Vqk

”
.

(Micah, Problem 500) Show that there exist two disjoint sets A and B such that
m∗(A ∪ B) ̸= m∗(A) +m∗(B).



2.3 The ff-algebra of Lebesgue Measurable Sets

[Definition: Measurable set] Let E ⊆ R. We say that E is Lebesgue measurable (or just measurable) if, for all
A ⊆ R, we have that

m∗(A) = m∗(A ∩ E) +m∗(A ∼ E):

(Problem 501) Show that E ⊆ R is measurable if and only if, for all A ⊆ R, we have that

m∗(A) ≥ m∗(A ∩ E) +m∗(A ∼ E):

This is an easy consequence of Proposition 2.3.

(Problem 510) Show that the complement of a measurable set is measurable.

(Problem 520) Show that the empty set is measurable.

Proposition 2.10. Let E ⊆ R be a measurable set. Let y ∈ R. Define E + y = {e + y : e ∈ E}. Show that
E + y is also measurable.

(Muhammad, Problem 530) Prove Proposition 2.10.

(Problem 531) Let E ⊆ R be a measurable set. Let r ∈ R. Define rE = {re : e ∈ E}. Show that rE is also
measurable.

Proposition 2.4. Let E ⊂ R. Suppose that m∗(E) = 0. Then E is measurable.

(Anjuman, Problem 540) Prove Proposition 2.4.

Proposition 2.5. The union of finitely many measurable sets is measurable.

(Ashley, Problem 550) Prove Proposition 2.5.

Let S = {n ∈ N :the union of n measurable sets is measurable}. It is trivially true that 1 ∈ S. We will
now show that S is inductive and thus S = N; this will complete the proof.

Suppose that n ∈ S. Let {Ek}n+1
k=1 be a set of n + 1 measurable sets. Let F =

Sn
k=1 Ek ; because n ∈ S

we have that F is measurable. Let G = En+1; by assumption G is measurable. We need only show that

F ∪G =
Sn+1
k=1 is measurable; because {Ek}n+1

k=1 was arbitrary this will imply that n+1 ∈ S, which will show
that S is inductive and thus complete the proof.

Let A ⊆ R. Applying the measurability of F yields that

m∗(A) = m∗(A ∩ F ) +m∗(A ∩ FC)
where the superscript C denotes the complement. Applying the measurability of G yields that

m∗(A) = m∗(A ∩ F ) +m∗(G ∩ (A ∩ FC))
+m∗((A ∩ FC) ∩ GC):

Set intersection is associative and so (A ∩ FC) ∩ GC = A ∩ (FC ∩ GC). Recall that FC = R ∼ F . By De
Morgan’s laws (Problem 10),

FC ∩ GC = (R ∼ F ) ∩ (R ∼ G) = R ∼ (F ∪ G) = (F ∪ G)C :
Thus

m∗(A) = m∗(A ∩ F ) +m∗(G ∩ (A ∩ FC))
+m∗(A ∩ (F ∪ G)C):

By Proposition 2.2,

m∗(A ∩ F ) +m∗(G ∩ (A ∩ FC)) ≥ m∗((A ∩ F ) ∪ (G ∩ (A ∩ FC))):
Again using associativity of intersection,

G ∩ (A ∩ FC) = A ∩ (G ∩ FC):



Because unions distribute over intersections,

(A ∩ F ) ∪ (A ∩ (G ∩ FC)) = A ∩ (F ∪ (G ∩ FC)):
But F ∪ (G ∩ FC) = F ∪ G and so

m∗(A) ≥ m∗(A ∩ (F ∪ G)) +m∗(A ∩ (F ∪ G)C):

By Proposition 2.2, m∗(A) ≤ m∗(A ∩ (F ∪ G)) +m∗(A ∩ (F ∪ G)C), and so we must have that

m∗(A) = m∗(A ∩ (F ∪ G)) +m∗(A ∩ (F ∪ G)C)
for any set A. Thus F ∪ G is measurable, as desired.

Proposition 2.6. If {Ek}nk=1 is a collection of finitely many measurable pairwise disjoint sets, then

m∗
“ n[
k=1

Ek

”
=

nX
k=1

m∗(Ek):

More generally, if A ⊆ R then

m∗
“ n[
k=1

(A ∩ Ek)
”
=

nX
k=1

m∗(A ∩ Ek):

(Bashar, Problem 560) Prove Proposition 2.6.

Let A ⊆ R. We prove by induction. The base case n = 1 is trivially true.
Suppose that the proposition is true for some n, that is, that

m∗
“ n[
k=1

(A ∩ Ek)
”
=

nX
k=1

m∗(A ∩ Ek)

whenever {Ek}nk=1 is a collection of n measurable sets. Let {Ek}n+1
k=1 be a collection of n + 1 measurable

sets.
Because En+1 is measurable, we have that

m∗(A ∩
n+1[
k=1

Ek) = m∗
““
A ∩

n+1[
k=1

Ek

”
∩ En+1

”
+m∗

““
A ∩

n+1[
k=1

Ek

”
∼ En+1

”
:

Now, “
A ∩

n+1[
k=1

Ek

”
∩ En+1 = A ∩

“n+1[
k=1

Ek ∩ En+1

”
= A ∩ En+1

because the Eks are pairwise disjoint.
Similarly,“

A ∩
n+1[
k=1

Ek

”
∼ En+1 =

“
A ∩

n+1[
k=1

Ek

”
∩ ECn+1 = A ∩

“n+1[
k=1

Ek ∩ ECn+1

”
= A ∩

“ n[
k=1

Ek

”
:

Thus

m∗(A ∩
n+1[
k=1

Ek) = m∗(A ∩ En+1) +m∗
“
A ∩

“ n[
k=1

Ek

””
:

By our induction hypothesis, the second term is equal to
nX
k=1

m∗(A ∩ Ek)

and so

m∗(A ∩
n+1[
k=1

Ek) =
n+1X
k=1

m∗(A ∩ Ek):

A standard inductive argument completes the proof.



(Problem 561) Show that the intersection of finitely many measurable sets is measurable.

Let {Ek}nk=1 be a collection of finitely many measurable sets.
By Problem 510, each ECk = R ∼ Ek is measurable.
By Proposition 2.4,

Sn
k=1 E

C
k is measurable.

Again by Problem 510, R ∼
`Sn

k=1 E
C
k

´
is measurable.

Finally, by Problem 10,

R ∼
 

n[
k=1

ECk

!
=

n\
k=1

(R ∼ ECk ) =
n\
k=1

Ek

and so
Tn
k=1 Ek is measurable.

Proposition 2.13. Let {Ek}∞k=1 be a sequence of pairwise disjoint measurable sets. Then

m∗
“ ∞[
k=1

Ek

”
=

∞X
k=1

m∗(Ek):

[Chapter 2, Problem 26]If A ⊆ R and {Ek}∞k=1 is as in Proposition 2.13, then

m∗
“ ∞[
k=1

(A ∩ Ek)
”
=

∞X
k=1

m∗(A ∩ Ek):

The inequality

m∗
“ ∞[
k=1

(A ∩ Ek)
”
≤

∞X
k=1

m∗(A ∩ Ek)

is Proposition 2.3.
By Problem 390, if n ∈ N then

m∗
“ ∞[
k=1

(A ∩ Ek)
”
≥ m∗

“ n[
k=1

(A ∩ Ek)
”
:

By Proposition 2.6 we have that

m∗
“ ∞[
k=1

(A ∩ Ek)
”
≥

nX
k=1

m∗(A ∩ Ek):

Taking the supremum over n yields that

m∗
“ ∞[
k=1

(A ∩ Ek)
”
≥

∞X
k=1

m∗(A ∩ Ek)

as desired.

(Dibyendu, Problem 570) Let {Ek}∞k=1 be a sequence of measurable sets. For each n, let

Fn = En ∼
n−1[
k=1

Ek ; Gn =
n[
k=1

Ek :

Show that

• Each Fn is measurable.
• If m ∈ N then Gm =

Sm
n=1 Fn.



By Proposition 2.5,
Sn−1
k=1 Ek is measurable. By Problem 510, the complement R ∼

Sn−1
k=1 Ek is measur-

able. By Problem 561, En ∩
“
R ∼

Sn−1
k=1 Ek

”
is measurable. It is straightforward to establish that this final

expression is equal to Fn.
Because Fn ⊆ En ⊆ Gm whenever n ≤ m, we have that Gm ⊇

Sm
n=1 Fn. Conversely, let e ∈ Gm. Then

e ∈ Ek for some k ≤ m. Let n be the smallest natural number with e ∈ En. Then e =∈
Sn−1
k=1 Ek , and so

e ∈ Fn. Thus Gm ⊆
Sm
n=1 Fn. This completes the proof.

(Problem 580) Show that

• Each Gn is measurable.
• If the Ens are pairwise disjoint then En = Fn.
• If n < m then Fn ∩ Fm = ∅.
• If n < m then Gn ⊆ Gm.
•
S∞
n=1 En =

S∞
n=1 Fn =

S∞
n=1 Gn.

Proposition 2.7. The union of countably many measurable sets is measurable.

(Elliott, Problem 590) Prove Proposition 2.7.

Let {Ek}∞k=1 be a sequence of measurable sets and let Fn, Gn be as in the previous problem. It suffices
to show that E =

S∞
n=1 Fn is measurable.

Let A ⊆ R. By Problem 501, it suffices to show that

m∗(A) ≥ m∗(A ∩ E) +m∗(A ∼ E)

for all such A.
If m∗(A) = ∞ there is nothing to prove, so assume that m∗(A) <∞. By Problem 2.26,

m∗(A ∩ E) = m∗
“
A ∩

∞[
k=1

Fk

”
=

∞X
k=1

m∗(A ∩ Fk):

The left hand side is at most m∗(A) < ∞, and the right hand side is a sum of nonnegative real numbers,
and so the sum must converge. In particular, we must have that

P∞
k=n+1m

∗(A∩Fk) → 0 as n → ∞. Thus

m∗(A ∩ E) = lim
n→∞

nX
k=1

m∗(A ∩ Fk):

By Proposition 2.6 and by the previous two problems,

m∗(A ∩ E) = lim
n→∞

m∗(A ∩ Gn):

Because Gn is measurable and m∗(A) <∞,

m∗(A ∩ E) = lim
n→∞

m∗(A)−m∗(A ∼ Gn):

But Gn ⊆ E and so A ∼ Gn ⊇ A ∼ E, and so

m∗(A ∩ E) ≤ m∗(A)−m∗(A ∼ E):

Rearranging completes the proof.

[Homework 2.1] The collection of Borel sets B is the smallest ff-algebra that contains {(−∞; a) : a ∈ R}.
[Homework 3.1] If A, B ⊆ R and supA ≤ inf B, then m∗(A ∪ B) = m∗(A) +m∗(B).

(Problem 591) If a ∈ R then (−∞; a) is measurable. (Note that we use Homework 3.1 to prove this, and so
you may not use this fact to do Homework 3.1.)

Theorem 2.9. The collection M of Lebesgue measurable subsets of R is a ff-algebra on R and contains the
Borel sets.

(Problem 600) Show that the collection of Lebesgue measurable subsets of R is a ff-algebra on R.
(Irina, Problem 610) Prove Theorem 2.9.



(Problem 611) Let M denote the collection of Lebesgue measurable subsets of R. Then (R;M) is a measurable
space, and m∗

˛̨
M is a measure on (R;M).

[Definition: Lebesgue measure] We let m = m∗
˛̨
M and refer to m as the Lebesgue measure.

2.4 Finer Properties of Measurable Sets

(Zach, Problem 620) Let E ⊆ R be measurable. Show that E =
S∞
n=1 Fn, where each Fn is bounded and

measurable and where Fn ∩ Fm = ∅ if n ̸= m.

Let E1 = (−1; 1) and let En = (−n; n) ∼ (1− n; n− 1) for all n ≥ 2. Because the measurable sets form
a ff-algebra and contain the Borel sets, we have that each En is measurable. Clearly each En is bounded.
Furthermore, the Ens are pairwise disjoint. Let Fn = En ∩E. Then Fn ⊆ En, and so Fn is bounded and the
Fns are pairwise disjoint. The fact that E =

S∞
n=1 Fn follows from the fact that R =

S∞
n=1 En, and the fact

that the Fns are measurable follows from the measurability of E and from Problem 561.

[Definition: G‹-set] A set G ⊆ R is a G‹-set if there is a sequence {On}∞n=1 of countably many open sets such
that G =

T∞
n=1 On.

[Definition: Fff-set] A set F ⊆ R is a Fff-set if there is a sequence {Cn}∞n=1 of countably many closed sets such
that F =

S∞
n=1 Cn.

(Problem 630) Show that all Fff sets and all G‹ sets are measurable.

Theorem 2.11. Let E ⊆ R and let EC = R ∼ E. The following statements are equivalent:

(i) If " > 0, then there is an open set O containing E for which m∗(O ∼ E) < ".
(ii) There is a G‹-set G with E ⊆ G and with m∗(G ∼ E) = 0.
(iii) If " > 0, then there is a closed set C with C ⊆ EC and with m∗(EC ∼ C) < ".
(iv) There is a Fff-set F with EC ⊇ F and with m∗(EC ∼ F ) = 0.
(v) E is Lebesgue measurable.
(vi) EC is Lebesgue measurable.

Recall [Problem Problem 510]: (v) and (vi) are equivalent.

(Juan, Problem 640) Show that (ii) and (iv) are equivalent.

(Problem 650) Show that (i) and (iii) are equivalent.

(Problem 651) Show that (v) implies (i) in the special case where m∗(E) <∞.

(Micah, Problem 660) Show that (v) implies (i) in general.

(Muhammad, Problem 670) Show that (iii) implies (iv).

(Anjuman, Problem 680) Show that (iv) implies (vi).

Theorem 2.12. Let E ⊂ R be a measurable set with finite measure. Let " > 0. Show that there is a collection
of finitely many pairwise disjoint open intervals {Ik}nk=1 such that

m
“
E ∼

n[
k=1

Ik

”
+m

“ n[
k=1

Ik ∼ E
”
< ":

(Ashley, Problem 690) Prove Theorem 2.12.

Let O be as in Theorem 2.11 with " replaced by "=3. By Proposition 1.9, there is a sequence of pairwise
disjoint open intervals with O =

S∞
k=1 Ik .

Observe that by Problem 390, Proposition 2.13, and Proposition 2.1,

m(E) ≤ m(O) =
∞X
k=1

m(Ik) =
∞X
k=1

‘(Ik) < m(E) + "=2:

In particular each Ik is bounded. There is also an n ∈ N such that
Pn

k=1 ‘(Ik) > m(E)− "=3.



Then

E ∼
n[
k=1

Ik ⊆ O ∼
n[
k=1

Ik =
∞[

k=n+1

Ik

and so

m
“
E ∼

n[
k=1

Ik

”
≤

∞X
k=n+1

‘(Ik) =
∞X
k=1

‘(Ik)−
nX
k=1

‘(Ik) < m(E) + "=3− (m(E)− "=3) = 2"=3:

Conversely,
n[
k=1

Ik ∼ E ⊆ O ∼ E

and so

m
“ n[
k=1

Ik ∼ E
”
≤ m(O ∼ E) < "=3:

This completes the proof.

(Problem 700) Why do we need the assumption that E has finite outer measure?

(Bashar, Problem 710) Give an example of a measurable set E ⊂ R with finite measure and a " > 0 such
that there is no collection {Ik}nk=1 of finitely many pairwise disjoint open intervals with

Sn
k=1 Ik ⊆ E and with

m
“
E ∼

Sn
k=1 Ik

”
< ". Note: The empty set is an open interval, and the empty collection is a finite collection of

open intervals.

Let E = [0; 1] ∼ Q. There are no nonempty open intervals that are subsets of E, and so m
“
E ∼Sn

k=1 Ik

”
= m(E) = 1 for all finite collections {Ik}nk=1 of open intervals contained in E.

(Dibyendu, Problem 720) Give an example of a measurable set E ⊂ R with finite measure and a " > 0 such
that there is no collection {Ik}nk=1 of finitely many pairwise disjoint open intervals with

Sn
k=1 Ik ⊇ E and with

m∗
“Sn

k=1 Ik ∼ E
”
< ".

Let E = [0; 1] ∩ Q. Suppose E ⊆
Sn
k=1 Ik where each Ik is an open interval. Then E ⊆

Sn
k=1 Ik =Sn

k=1 Ik , where E denotes the closure of E. But E = [0; 1] and Ik ∼ Ik contains exactly two points, soSn
k=1 Ik contains all but finitely many points of [0; 1]. Thus

Pn
k=1 ‘(Ik) ≥ m∗([0; 1]) = 1. Because E has

measure zero and is measurable, m∗
“Sn

k=1 Ik ∼ E
”
= m∗

“Sn
k=1 Ik

”
≥ 1, and so no such collection can

have measure less than " for any " < 1.

[Chapter 2, Problem 19] Suppose that E is not measurable but does have finite outer measure. Show that
there is an open set O containing E such that E ⊂ O but such that m∗(O ∼ E) ̸= m∗(O)−m∗(E).

[Chapter 2, Problem 20] In the definition of measurable set, it suffices to check for sets A that are bounded
open intervals; that is, E ⊆ R is measurable if and only if, for every a < b, we have that

b − a = m∗((a; b) ∩ E) +m∗((a; b) ∼ E):



2.7 Undergraduate analysis

(Memory 721) Let X, Y be two metric spaces. Let f : X → Y and let fn : X → Y for each n ∈ N. Suppose
that each fn is continuous and that fn → f uniformly on X. Then f is continuous.

(Memory 722) A sequence of functions fn : X → Y is uniformly Cauchy if, for every " > 0, there is a K ∈ N
such that if m, n ∈ N with m ≥ n ≥ K, then d(fn(x); fm(x)) < " for all x ∈ X. Suppose that {fn}∞n=1 is uniformly
Cauchy and that Y is complete. Then fn → f uniformly for some function f : X → Y .

(Memory 723) (The intermediate value theorem.) Suppose that a < b and that f : [a; b] → R is continuous. If
f (a) ≤ y ≤ f (b), then there is an x ∈ [a; b] such that f (x) = y .

(Memory 724) (Definition of interval) A set I ⊆ R is an interval if, whenever a < b < c and a, c ∈ I, we also
have that b ∈ I. Then {I ⊆ R : I is an interval} is the union of the following ten collections of sets:

• {∅}
• {R}
• {(a; b) : a < b and a, b ∈ R}
• {[a; b : a < b and a, b ∈ R}
• {[a; b) : a < b and a, b ∈ R}
• {(a; b] : a < b and a, b ∈ R}
• {(a;∞) : a ∈ R}
• {[a;∞) : a ∈ R}
• {(−∞; b) : b ∈ R}
• {(−∞; b] : b ∈ R}

[Definition: Relatively open] Let (X; d) be a metric space and let Y ⊂ X. Then (Y; d
˛̨
Y×Y ) is also a metric

space. If G ⊆ Y is open in (Y; d
˛̨
Y×Y ), then we say that G is relatively open in Y .

(Memory 725) If (X; d) is a metric space and G ⊆ Y ⊆ X, then G is relatively open in Y if and only if G = Y ∩U
for some U ⊆ X that is open in (X; d).

[Definition: Connected] Let (X; d) be a metric space. We say that (X; d) is disconnected if there exist two sets
A, B ⊆ X such that

• A and B are both open in (X; d),
• X = A ∪ B,
• ∅ = A ∩ B,
• A ̸= ∅ ≠ B.

If no such A and B exist then we say that (X; d) is connected.

(Memory 726) Let (X; d) be a metric space and let Y ⊆ X. Then the metric space (Y; d
˛̨
Y×Y ) is disconnected

if and only if there exist two sets A, B ⊆ X such that

• A and B are both open in (X; d),
• Y ⊆ A ∪ B,
• ∅ = A ∩ B,
• A ∩ Y ̸= ∅ ≠ B ∩ Y .

(Memory 727) A subset of R is connected if and only if it is an interval.

(Memory 728) If (X; d) is a connected metric space and f : X → Y is continuous, then f (X) is also connected.

2.7 An uncountable set of measure zero

(Memory 729) By Problem 400 and Proposition 2.4, if E ⊂ R is countable, then E is measurable and has
measure zero.

Proposition 2.19. There is a set of measure zero that is uncountable.



(Elliott, Problem 730) In this problem we begin the construction of an uncountable set of measure zero. We
define the points ak;n and bk;n, for n ∈ N0 and for 1 ≤ k ≤ 2n, as follows.

a1;0 = 0; b1;0 = 1;

a2‘−1;n = a‘;n−1; b2‘−1;n =
2

3
a‘;n−1 +

1

3
b‘;n−1;

a2‘;n =
1

3
a‘;n−1 +

2

3
b‘;n−1; b2‘;n = b‘;n−1:

Show that:

(a) if 1 ≤ k ≤ 2n, then bk;n − ak;n = 3−n.
(b) if 1 < k < k + 1 < 2n and k is even then ak+1;n − bk;n > 3−n.
(c) if 1 ≤ k < k + 1 ≤ 2n and k is odd then ak+1;n − bk;n = 3−n.

0

a1;0

1

b1;0

0

a1;1

1

b2;1

1=3

b1;1

2=3

a2;1

0

a1;2

1=3

b2;2

1

b4;2

2=3

a3;2

2=9

a2;2

8=9

a4;2

1=9

b1;2

7=9

b3;2

0

a1;3

1
27

b1;3

2
27

a2;3

1
9

b2;3

2
9

a3;3

7
27

b3;3

8
27

a4;3

1
3

b4;3

2
3

a5;3

19
27

b5;3

20
27

a6;3

7
9

b6;3

8
9

a7;3

25
27

b7;3

26
27

a1;3

1

b8;3

We prove by induction. Our base case is n = 0. In this case 2n = 1, so in (a) k must also be 1 and so (a)
is true by inspection. (b) and (c) are vacuously true as there are no k that satisfy 1 ≤ k < k +1 ≤ 20 = 1.

Now suppose that the statements are all true for some n − 1 ≥ 0. Let 1 ≤ k ≤ 2n.
If k is even, then k = 2‘ for some 1 ≤ ‘ ≤ 2n−1, and so

bk;n − ak;n = b2‘;n − a2‘;n = b‘;n−1 −
„
1

3
a‘;n−1 +

2

3
b‘;n−1

«
=

1

3
(b‘;n−1 − a‘;n−1)

and thus (a) holds by the induction hypothesis. If in addition k+1 ≤ 2n, then ‘ < 2n−1 and so ‘+1 ≤ 2n−1,
and so

ak+1;n − bk;n = a2(‘+1)−1;n − b2‘;n = a‘+1;n−1 − b‘;n−1:

By assumption (b) and (c) hold for n − 1, and so

ak+1;n − bk;n = a‘+1;n−1 − b‘;n−1 ≥ 31−n > 3−n:

If k is odd, then k = 2‘− 1 for some 1 ≤ ‘ ≤ 2n−1. Then

bk;n − ak;n = b2‘−1;n − a2‘−1;n =

„
2

3
a‘;n−1 +

1

3
b‘;n−1

«
− a‘;n−1 =

1

3
(b‘;n−1 − a‘;n−1)

and thus (a) holds by the induction hypothesis. If in addition k + 1 ≤ 2n, then ‘ ≤ 2n−1 and so

ak+1;n − bk;n = a2‘;n − b2‘−1;n =

„
1

3
a‘;n−1 +

2

3
b‘;n−1

«
−
„
2

3
a‘;n−1 +

1

3
b‘;n−1

«
=

1

3
(b‘;n−1 − a‘;−1):

By assumption (a) holds for n − 1, and so this must equal 3−n. This completes the proof.



(Problem 731) If n ∈ N0 and 1 ≤ k ≤ 2n, let Fk;n = [ak;n; bk;n] be the closed interval of length 3−n with
endpoints at ak;n and bk;n. Show that Fj;n ∩ Fk;n = ∅ if j ̸= k.

0 1

F1;0

0 1
1
3

2
3

F1;1 F2;1

0
1
3 1

2
3

2
9

8
9

1
9

7
9

F1;2 F2;2 F3;2 F4;2

0
1
3 1

2
3

2
9

8
9

1
9

7
9

1
27

2
27

7
27

8
27

19
27

20
27

25
27

26
27

F1;3 F2;3 F3;3 F4;3 F5;3 F6;3 F7;3 F8;3

(Irina, Problem 740) Define Fn =
S2n

k=1[ak;n; bk;n] =
S2n

k=1 Fk;n. Show that Fn ⊆ Fn−1 for all n ∈ N, and that
Fn ∼ Fn−1 may be written as the union of 2n−1 open intervals each of length 3−n.

Let n ≥ 1. Observe that

F2‘−1;n ∪ F2‘;n = [a2‘−1;n; b2‘−1;n] ∪ [a2‘;n; b2‘;n]

= [a‘;n−1; b2‘−1;n] ∪ [a2‘;n; b‘;n−1] ⊂ [a‘;n−1; b‘;n−1] = F‘;n−1:

Thus, if 1 ≤ ‘ ≤ 2n−1, then there are at least two distinct values of k, namely k = 2‘− 1 and k = 2‘, that
satisfy 1 ≤ k ≤ 2n and Fk;n ⊂ F‘;n−1.

Because there are only 2n = 2 · 2n−1 such values of k, and there are 2n−1 such values of ‘, we must
have that each Fk;n is contained in a F‘;n−1. (This may also be seen by choosing ‘ = k=2 if k is even and

‘ = (k +1)=2 if k is odd, and observing that Fk;n ⊂ F‘;n−1 by the above analysis.) Thus Fn =
S2n

k=1 Fk;n ⊂S2n−1

‘=1 F‘;n−1 = Fn−1, as desired.
Again because there are only 2n = 2 · 2n−1 such values of k, and there are 2n−1 such values of ‘, we

must have that each F‘;n−1 contains Fk;n for exactly two values of k, namely k = 2‘ and k = 2‘− 1. (This
may also be seen by observing that if 1 ≤ j ≤ 2n and j =∈ {2‘− 1; 2‘}, then either j > 2‘ or j < 2‘− 1. In
the first case aj;n > b2‘;n = b‘;n−1, while in the second case bj;n < a2‘−1;n = a‘;n−1; in either case [aj;n; bj;n]
is clearly disjoint from [a‘;n−1; b‘;n−1].)

Thus F‘;n−1 ∼ Fn = F‘;n−1 ∼ (F2‘−1;n ∪ F2‘;n), which by the above analysis is equal to the interval
(b2‘−1;n; a2‘;n). There are 2n−1 such intervals (one for each ‘) and by the above analysis, because 2‘− 1 is
odd we have that the interval is of length 3−n.

(Zach, Problem 750) Let C =
T∞
n=0 Fn. The set C is called the Cantor set. Show that m(Fn) = (2=3)n for all

n ∈ N0 and that m(C) = 0.

Each Fk;n is a closed interval, and so is closed. The union of finitely many closed sets is closed, and
so each Fn is closed. The intersection of an arbitrary collection of closed sets is closed, and so C must be
closed.

For each n, C ⊂ Fn, and so m∗(C) ≤ m∗(Fn). But each Fk;n has length (thus measure) 3−n, the Fk;ns
are disjoint for distinct k , and there are 2n intervals Fk;n in Fn; thus m(Fn) =

Pn
k=1m(Fk;n) = (2=3)n.

Recalling from undergraduate analysis that (2=3)n → 0 as n → ∞, we have that m∗(C) = 0. Sets of
measure zero are measurable by Proposition 2.4, and so m(C) exists and equals zero.

[Homework 3.1b] If E ⊆ R and m∗(E) <∞, and if we define f by f (x) = m(E ∩ (−∞; x)), then f : R → R is
continuous.



(Problem 751) Let Λk(x) =
m(Fk∩(−∞;x))

m(Fk )
. Then Λk is continuous and nondecreasing. Sketch the graphs of Λ0,

Λ1, and Λ2.

x

Λ0(x)

x

Λ1(x)

x

Λ2(x)

x

Λ3(x)

(Juan, Problem 760) Suppose that x =∈ Fn. Show that Λ(x) = 2−n|{k ∈ {1; 2; : : : ; 2n} : bk;n < x}|.

(Micah, Problem 770) Show that Λn(R ∼ Fn) = {i2−n : 0 ≤ i ≤ 2n; i ∈ Z} and that, if m ≥ n, then
Λn(x) = Λm(x) for all x =∈ Fn.

(Muhammad, Problem 780) Show that {Λk}∞k=1 is uniformly Cauchy.

[Definition: The Cantor function] Let Λ(x) = limk→∞ Λk(x).

(Ashley, Problem 790) Show that Λ exists and is continuous, nondecreasing, and surjective Λ : [0; 1] → [0; 1].

We have that Λk : R → R is uniformly Cauchy and R is complete. Thus by Problem 722, the sequence
{Λk}∞k=1 converges uniformly to some function Λ : R → R. Thus Λ exists.

By Homework 3.1b, each Λk is continuous, so by Problem 721, Λ must also be continuous.
Suppose x < y . Clearly Λk(x) ≤ Λk(y) for all k ∈ N, and so we must have that Λk(x) ≤ Λk(y) as well.
Finally, observe that Λk(0) = 0 and Λk(1) = 1 for all k ∈ N. Thus Λ(0) = 0 and Λ(1) = 1. By the

intermediate value theorem (Problem 723), if 0 < y < 1 then y = Λ(x) for some x ∈ (0; 1), and so Λ is
surjective [0; 1] → [0; 1].

[Definition: Almost everywhere] Suppose that E ⊆ R is a set. If a property P is true for every x ∈ E ∼ E0,
where m∗(E0) = 0, we say that P is true almost everywhere on E.

(Bashar, Problem 800) Show that Λ′(x) = 0 for every x ∈ R ∼ C, and thus for almost every x ∈ R.

(Dibyendu, Problem 810) Show that Λ([0; 1] ∼ C) is countable.

Note that 0, 1 ∈ C, and so [0; 1] ∼ C = (0; 1) ∼ C.
Because C is closed, we must have that (0; 1) ∼ C is open. Thus by Proposition 1.9, (0; 1) ∼ C =S∞
k=1 Ik , where the Iks are (possibly empty) open intervals. Because Ik ⊂ (0; 1) ∼ C ⊂ R ∼ C, we have



that Λ′ = 0 on Ik and so Λ is constant on each Ik . Because each Λ(Ik) is empty or a single point, and
there are countably many Iks, we must have that Λ((0; 1) ∼ C) =

S∞
k=1 Λ(Ik) is countable.

Alternatively, observe that if x =∈ C then x =∈ Fn for some n. Then Λm(x) = Λn(x) for all m ≥ n, and so
Λ(x) = limm→∞ Λm(x) = Λn(x) ∈ Λn(R ∼ Fn) = {i2−n : 0 ≤ i ≤ 2n; i ∈ Z}. In particular Λ(x) is rational.
Thus Λ((0; 1) ∼ C) ⊂ Q and so must be countable.

(Elliott, Problem 820) Show that C is uncountable.

We know that Λ([0; 1]) = [0; 1] is uncountable. But Λ([0; 1] ∼ C) is countable, and [0; 1] = Λ([0; 1]) =
Λ(C) ∪ Λ([0; 1] ∼ C). Thus Λ(C) must be uncountable, for if it were countable then Λ(C) ∪ Λ([0; 1] ∼ C)
would be countable, which is a contradiction. But if C were countable then Λ(C) would also be countable,
so C must be uncountable.

2.6 Vitali’s Example of a Nonmeasurable Set

Theorem 2.17. If E ⊆ R has positive outer measure, then there is an A ⊆ E that is not measurable.

(Irina, Problem 830) In this problem we begin the proof of Theorem 2.17. Let F ⊂ [−1; 1] and let Vqk be as
in Problem 490. Show that either F ∩ Vqk is not measurable or m∗(F ∩ Vqk ) = 0.

(Zach, Problem 840) Suppose that m∗(F ) > 0. Show that we must have that m∗(F ∩ Vqk ) > 0 for at least one
value of k .

Recall that [−1; 1] ⊆
S∞
k=1 Vqk . Thus F = F ∩ [−1; 1] = F ∩

S∞
k=1 Vqk =

S∞
k=1 F ∩ Vqk .

Thus by Proposition 2.3, we must have that m∗(F ) ≤
P∞

k=1m
∗(F ∩ Vqk ). Because the left hand side is

positive, at least one of the summands on the right hand side must be positive.

(Problem 841) Prove Theorem 2.17.

2.7 A non-measurable set that is not a Borel set

Proposition 2.22. There is a measurable set that is not a Borel set.

(Juan, Problem 850) In this problem we begin the proof of Proposition 2.22. Let Λ be the Cantor-Lebesgue
function and let f (x) = x + Λ(x). Show that f is continuous, strictly increasing, and surjective R → R.

[Chapter 2, Problem 47] If f : R → R is continuous and strictly increasing, and if B is a Borel set, then f (B)
is also a Borel set.

(Micah, Problem 860) Show that f (C) has positive measure.

(Muhammad, Problem 870) Prove Proposition 2.22.

Because m(f (C)) > 0, by Theorem 2.17 there is an A ⊆ f (C) that is not measurable.
Let B = f −1(A)∩C. Then B ⊆ C, and m∗(C) = 0, so m∗(B) = 0; thus B is measurable by Proposition

2.4.
We claim that f (B) = A. Because B ⊆ f −1(A), by definition f (B) ⊆ A. Conversely, suppose that

a ∈ A. Then a ∈ f (C) because A ⊆ f (C), so a = f (b) for some b ∈ C. Then b ∈ f −1(A) by definition,
so b ∈ f −1(A) ∩ C = B. Thus b ∈ B and so a = f (b) ∈ f (B); because a was arbitrary we have that
A ⊆ f (B). Thus A = f (B).

If B were Borel, then by Problem 2.47 we would have that f (B) was Borel and therefore measurable.
But f (B) = A is not measurable, and so B is not Borel. We have seen that B is measurable, and so B
must be a set that is measurable but not Borel.



2.5 Countable Additivity and Continuity of Measure and the Borel-Cantelli Lemma

Theorem 2.15.

(i) Let {Ak}∞k=1 be such that Ak is measurable and Ak ⊆ Ak+1 for all k ∈ N. Then

m
“ ∞[
k=1

Ak

”
= lim

n→∞
m(An):

(ii) Let {Bk}∞k=1 be such that Bk is measurable and Bk ⊇ Bk+1 for all k ∈ N. If m(B‘) <∞ for some ‘ ∈ N,
then

m
“ ∞\
k=1

Bk

”
= lim

n→∞
m(Bn):

(Ashley, Problem 880) Prove part (ii) of Theorem 2.15 without using part (i).

(Problem 881) Prove part (i).

(Bashar, Problem 890) Find a sequence {Bk}∞k=1 such that Bk is measurable and Bk ⊇ Bk+1 for all k ∈ N,
but such that

m
“ ∞\
k=1

Bk

”
̸= lim

n→∞
m(Bn):

Take Bk = (k;∞). Then m(Bn) = ∞ for all k and so limn→∞m(Bn) = ∞, but
T∞
k=1 Bk = ∅ and so

m
`T∞

k=1 Bk) = 0.

The Borel-Cantelli Lemma. Let {Ek}∞k=1 be a sequence of measurable sets. Suppose that
P∞

k=1m(Ek) <∞.
Then |{k ∈ N : x ∈ Ek}| <∞ for almost every x ∈ R.

(Dibyendu, Problem 900) Prove the Borel-Cantelli lemma. Start by writing a formula for the set of x ∈ R such
that |{k ∈ N : x ∈ Ek}| = ∞ using unions and intersections. Explain carefully why your formula is true.

We claim that |{k ∈ N : x ∈ Ek}| = ∞ if and only if, for all n ∈ N, there is a k ∈ N with k ≥ n such
that x ∈ Ek .

To prove the claim, we will prove that the two negations are equivalent. Suppose first that |{k ∈ N :
x ∈ Ek}| ̸= ∞. Then the set {k ∈ N : x ∈ Ek} is finite, and so it contains a largest element K. Then
n = K + 1 ∈ N, but there is no k ∈ N with k ≥ n such that x ∈ Ek .

Suppose to the contrary that for some n, there does not exist a k ≥ n with x ∈ Ek . Then x =∈ Ek for all
k ≥ n. Thus x ∈ Ek for at most n − 1 possible values of k, and so x ∈ Ek for only finitely many k.

Let

A = {x ∈ R : |{k ∈ N : x ∈ Ek}| = ∞}
= {x ∈ R : for all n ∈ N there exists a k ≥ n such that x ∈ Ek}:

For any fixed n ∈ N, the set

{x ∈ R : there exists a k ≥ n such that x ∈ Ek} =
∞[
k=n

Ek :

Thus

A =
n
x ∈ R : for all n ∈ N; x ∈

∞[
k=n

Ek

o
=

∞\
n=1

“ ∞[
k=n

Ek

”
:

Let Bn =
S∞
k=n Ek . Then Bn = En ∪Bn+1 ⊇ Bn+1 for all n. Furthermore, m(B1) ≤

P∞
k=1m(Ek) <∞,

and so by Theorem 2.15ii,

m(A) = m
“ ∞\
n=1

Bn

”
= lim

n→∞
m(Bn):



But

m(Bn) ≤
∞X
k=n

m(Ek):

Because
P∞

k=1m(Ek) < ∞, and each m(Ek) ≥ 0, we have that the series converges absolutely and so
limn→∞

P∞
k=nm(Ek) = 0. Thus m(A) = 0, as desired.

3. Lebesgue Measurable Functions

[Definition: Measurable function] Let E ⊆ R be measurable and let f : E → [−∞;∞]. Suppose that for every
c ∈ R the set

{x ∈ E : f (x) > c} = f −1((c;∞])

is measurable. Then we say that f is a measurable function (or that f is measurable on E).

Proposition 3.3. Let E ⊆ R be measurable and let f : E → R be continuous. Then f is measurable.

(Elliott, Problem 910) Prove Proposition 3.3.

(Irina, Problem 920) Let f : R → [−∞;∞]. Suppose that limy→x f (y) = f (x) for all x ∈ R. Show that f is
measurable.

[Chapter 3, Problem 24] A monotonic function defined on a measurable set is measurable.

Proposition 3.1. Let E ⊆ R be measurable and let f : E → [−∞;∞]. The following statements are equivalent.

(i) If c ∈ R, then {x ∈ E : f (x) > c} = f −1((c;∞]) is measurable. (That is, f is a measurable function.)
(ii) If c ∈ R, then {x ∈ E : f (x) ≥ c} = f −1([c;∞]) is measurable.
(iii) If c ∈ R, then {x ∈ E : f (x) < c} = f −1([−∞; c)) is measurable.
(iv) If c ∈ R, then {x ∈ E : f (x) ≤ c} = f −1([−∞; c]) is measurable.

Furthermore, if any of these conditions is true, then f −1({c}) is measurable for all c ∈ [−∞;∞].

(Zach, Problem 930) Prove Proposition 3.1.

[Chapter 3, Problem 4] If f −1({c}) is measurable for all c ∈ [−∞;∞], is it necessarily the case that f is
measurable?

(Problem 931) Let E ⊆ R be measurable and let f : E → [−∞;∞]. Suppose that, for all c ∈ R, the
set {x ∈ E : f (x) > c} = f −1((c;∞)) is measurable. Is f necessarily measurable? If not, what additional
assumptions must be imposed to show that f is measurable?

f need not be measurable. Let A be a non-measurable set; such sets exist by Theorem 2.17. Let

f (x) =

(
∞; x ∈ A;
−∞; x =∈ A:

Then f −1((c;∞)) = ∅ is measurable for all c ∈ R, but f −1((0;∞]) = f −1({∞}) = A is not measurable.
However, if for all c ∈ R, the set {x ∈ E : f (x) > c} = f −1((c;∞)) is measurable, and if in addition

the set f −1({∞}) is measurable, then f is measurable.

(Problem 932) Let A be a ff-algebra over a set X, let Y ∈ A, and define S = {S ∩ Y : S ∈ A}. Show that S is
a ff-algebra over Y .

(Juan, Problem 940) Let (X;A) be a measurable space (that is, A is a ff-algebra over X). Let f : X → Y be
a function and let F = {S ⊆ Y : f −1(S) ∈ A}. Show that F is a ff-algebra over Y .

[Homework 2.1] The collection B of Borel sets is the smallest ff-algebra containing {(−∞; a) : a ∈ R.
Proposition 3.2. If f is measurable, then f −1(O) is measurable for all open sets O.

(Micah, Problem 950) Prove that in fact, if f is measurable, then then f −1(B) is measurable for all Borel
sets B.

(Muhammad, Problem 960) If g is measurable, is it true that g−1(E) is measurable for all measurable sets E?



(Ashley, Problem 970) If h is measurable, is it true that h−1(B) is Borel for all Borel sets B?

No. Let A be a set that is measurable but not Borel; such an A must exist by Proposition 2.22. Let

h(x) =

(
1; x ∈ A;
0; x =∈ A:

If E ⊆ [−∞;∞], then h−1(E) is either ∅ (if 0, 1 =∈ E), A (if 1 ∈ E, 0 =∈ E), R ∼ A (if 0 ∈ E, 1 =∈ E), or R
(if 0, 1 ∈ E). In any case h−1(E) is measurable, and so h is a measurable function. However, h−1({1}) = A
is not Borel.

Proposition 3.5. Let E ⊆ R be measurable and let f : E → [−∞;∞].

(i) Suppose that g : E → [−∞;∞] satisfies f = g almost everywhere on E and that g is measurable. Then
f is also measurable.

(ii) Suppose that D ⊆ E, that f
˛̨
D
is measurable, and that f

˛̨
E∼D is measurable. Then f is measurable on E.

(Problem 971) Prove Proposition 3.5, part (ii).

(Bashar, Problem 980) Prove Proposition 3.5, part (i).

Let S = {x ∈ E : f (x) ̸= g(x)}. By assumption m∗(S) = 0, and so by Proposition 2.4 S and all of its
subsets are measurable.

Let c ∈ R. Then

{x ∈ E : f (x) > c} =
`
{x ∈ E : g(x) > c} ∪ {x ∈ E : f (x) > c ≥ g(x)}

´
∼ {x ∈ E : g(x) > c ≥ f (x)}:

The first set S1 = {x ∈ E : g(x) > c} is measurable by assumption. The second set S2 = {x ∈ E : f (x) >
c ≥ g(x)} ⊆ {x ∈ E : f (x) ̸= g(x)} = S has outer measure zero and thus is measurable. Thus S1 ∪ S2 is
measurable by Proposition 2.5. The third set S3 = {x ∈ E : g(x) > c ≥ f (x)} ⊆ {x ∈ E : g(x) ̸= f (x)} =
S also has outer measure zero and thus is measurable, and so (S1 ∪S2) ∼ S3 is measurable by Problem 510
and Problem 561. Thus {x ∈ E : f (x) > c} is measurable for all c ∈ R, and so f is a measurable function.

(Problem 981) Let E ⊆ R. Show that E is measurable if and only if the characteristic function fflE is measurable.

[Chapter 3, Problem 6] Let E ⊆ R be measurable. Let f : E → [−∞;∞]. Show that f is measurable on E if
and only if the function

g(x) =

(
f (x); x ∈ E;
0; x =∈ E

is measurable.

(Problem 982) Did we need the condition that E was measurable?

Theorem 3.6. Let E ⊆ R be measureable, and let f , g : E → [−∞;∞] be measurable functions that are finite
almost everywhere in E

If ¸, ˛ ∈ R, then f g and ¸f + ˛g are defined almost everywhere on E and are measurable on E in the sense
of Proposition 3.5, that is, in the sense that any of the extensions of f g and ¸f + ˛g to E are measurable.

(Problem 983) If f is measurable and ¸ ∈ R, then ¸f is measurable.

(Dibyendu, Problem 990) Suppose that f and g are measurable and finite almost everywhere. Show that f + g
is measurable.

First observe that D = {x ∈ E : f (x)+ g(x) does not exist} = {x ∈ E : f (x) = ∞; g(x) = −∞}∪{x ∈
E : f (x) = −∞; g(x) = ∞} and so has measure zero.

Let c ∈ R. Observe that if f (x) + g(x) exists and is greater than c , then neither f (x) nor g(x) can
equal −∞. Thus E =

S
q∈Q{x ∈ E : f (x) > q}.

Now, if f (x) > q and g(x) > c − q, then f (x) + g(x) > c . Conversely, if f (x) + g(x) > c , then
f (x) > c − g(x), the left hand side is not −∞, and the right hand side is not +∞. By density of the



rationals (if both sides are finite) or by the Archimedean property (if f (x) = ∞ or g(x) = ∞ or both),
there is a q ∈ Q with f (x) > q > c − g(x) and so g(x) > c − q. We thus have that

{x ∈ E : f (x) + g(x) > c} =
[
q∈Q

{x ∈ E : f (x) > q} ∩ {x ∈ E : g(x) > c − q}:

Because f and g are measurable, the two sets {x ∈ E : f (x) > q} and {x ∈ E : g(x) > c − q} are
measurable. Thus their intersection is measurable. The rationals are countable, and the union of countably
many measurable sets is measurable. Thus {x ∈ E : f (x) + g(x) > c} is measurable for all c ∈ R, as
desired.

(Elliott, Problem 1000) Suppose that f is measurable. Show that f 2 is measurable. Then prove Proposition
3.5.

If f is measurable and c ∈ R, then
{x ∈ E : f (x)2 ≤ c} = {x ∈ E : −

√
c ≤ f (x) ≤

√
c} = {x ∈ E : f (x) ≤

√
c} ∩ {x ∈ E : f (x) ≥ −

√
c}

is the intersection of two measurable sets, and so is measurable. Thus f 2 is measurable by Proposition 3.1.
Now, observe that

f g =
(f + g)2 − f 2 − g2

2
:

Each of the three elements of the numerator is measurable by the previous argument, while their sum is
measurable by Problem Problem 990 and so f g is measurable by Problem Problem 983.

(Irina, Problem 1010) Give an example a measurable function h and a continuous function g such that h ◦ g
is not measurable.

Proposition 3.7. If D, E ⊆ R are measurable, if h : E → D is measurable, and if g : D → R is continuous, then
g ◦ h is measurable.

[Chapter 3, Problem 8iv] More generally, if E ⊆ R is measurable, if D ⊆ R is a Borel set, if h : E → D is
measurable, and if g : D → R is such that {x ∈ D : g(x) > c} is Borel for all c ∈ R, then g ◦ h is measurable.

(Zach, Problem 1020) Prove Proposition 3.7.

(Problem 1021) If f is measurable, show that |f | is measurable.

(Problem 1022) Define

f +(x) =

(
f (x); f (x) ≥ 0;

0; f (x) ≤ 0;
f −(x) =

(
0; f (x) ≥ 0;

f (x); f (x) ≤ 0:

If f is measurable, show that f + and f − are measurable.

Proposition 3.8. Let E ⊆ R be measurable and let f1, f2; : : : ; fk : E → [−∞;∞] be finitely many measurable
functions. Then f (x) = max{f1(x); : : : ; fk(x)} is also measurable.

(Juan, Problem 1030) Prove Proposition 3.8.

3.2 Sequential Pointwise Limits

[Definition: Pointwise convergence] Let E be a set and let fn, f : E → [−∞;∞]. If fn(x) → f (x) for all
x ∈ E, then we say that fn → f pointwise on E.

[Definition: Almost everywhere convergence] Let E ⊆ R be a set and let fn, f : E → [−∞;∞]. If
fn(x) → f (x) for all x ∈ E ∼ D, where m(D) = 0, then we say that fn → f almost everywhere on E.

[Definition: Uniform convergence] Let E ⊆ R be a set and let fn, f : E → R. Suppose that for all " > 0 there
is a m ∈ N such that, if n ≥ m, then |fn(x)− f (x)| < ". Then we say that fn → f uniformly on E.

(Problem 1031) Show that uniform convergence implies pointwise convergence and that pointwise convergence
implies almost everywhere convergence.

(Problem 1032) Show that none of the reverse implications hold.



Proposition 3.9. Let {fn}∞n=1 be a sequence of measurable functions on a measurable set E. Suppose that
fn → f almost everywhere on E for some f : E → [−∞;∞]. Then f is measurable.

(Micah, Problem 1040) Prove Proposition 3.9 by showing that {x ∈ E : c ≤ f (x)} is measurable for all c ∈ R.
Be sure to explain why your proof works even if fn, f are allowed to be infinite.

3.2 Simple Approximation

[Definition: Characteristic function] If A ⊆ R, then the characteristic function of A, denoted fflA, is defined by

fflA(x) =

(
1; x ∈ A;
0; x =∈ A:

[Definition: Simple function] A function ’ is simple if its domain E ⊆ R is measurable, if ’ is measurable
on E, and if {’(x) : x ∈ E} is a set of of finitely many real numbers.

[Chapter 3, Problem 6] If E is measurable and f : E → R, then f is measurable on E if and only if

g(x) =

(
f (x); x ∈ E;
0; x =∈ E

is measurable on R.
(Problem 1041) A function ’ with domain E ⊆ R is simple if and only if ’ =  

˛̨
E
for some simple function

 : R → R.
(Problem 1042) The set of simple functions contains all of the characteristic functions and is closed under taking
finite linear combinations.

(Muhammad, Problem 1050) Suppose that ’ : R → R is simple. Show that there is a unique list of numbers
c1 < c2 < · · · < cn and a unique list of nonempty measurable sets E1, E2; : : : ; En such that ’ =

Pn
j=1 cjfflEj .

Furthermore, show that R =
Sn
j=1 Ej and Ej ∩ Ek = ∅ for all j ̸= k.

We may write ’(R) = {c1; : : : ; cn} because ’ takes on finitely many values. As ’(R) is a set, we may
require the cks to be distinct. Any finite set can be ordered, so we may require c1 < c2 < · · · < cn. Let
Ek = ’−1({ck}); the given properties are straightforward to check.

(Problem 1051) If ’ and  are simple functions with the same domain, show that max(’; ) is also simple.

The simple approximation lemma. Let f : E → R be measurable and bounded. Let " > 0. Then there are
two simple functions ’" and  " with

 "(x)− " ≤ ’"(x) ≤ f (x) ≤  "(x) ≤ ’"(x) + "

for all x ∈ E.
(Ashley, Problem 1060) Prove the simple approximation lemma.

Let M be such that −M ≤ f (x) ≤ M for all x ∈ E; such an M exists by definition of bounded function.
Let N ∈ N be such that N" > M; such an N exists by the Archimedean property.

For each k ∈ Z, let Dk = f −1([k"; (k +1)")) and let Ek = f −1(((k − 1)"; k"]). If |k| ≥ N +1, then Dk
and Ek are empty. Furthermore, E =

SN
k=−N Dk =

SN
k=−N Ek and Dk ∩Dj = ∅ = Ek ∩ Ej if j ̸= k.

Let ’" =
PN

k=−N k"fflDk and let  " =
PN

k=−N k"fflEk . These functions are simple by construction.
If f (x) = k" for some k ∈ Z, then x ∈ Dk ∩Ek and so ’"(x) = k" = f (x) =  "(x), and thus the desired

inequalities hold.
Otherwise, k" < f (x) < (k + 1)" for some k ∈ Z, and so x ∈ Dk ∩ Ek+1. Thus ’(x) = k" < f (x) <

(k + 1)" =  "(x), and  "(x) = ’"(x) + ", and so the desired inequalities are again satisfied.

The simple approximation theorem. Let f : E → [−∞;∞]. Then f is measurable if and only if there is a
sequence {’n}∞n=1 such that

(a) ’n → f pointwise,



(b) Each ’n is simple,
(c) {|’n(x)|}∞n=1 is nondecreasing for all x ∈ E.

(Problem 1061) Prove the easy direction; that is, suppose that such a sequence {’n}∞n=1 exists and show that
f is measurable.

(Bashar, Problem 1070) Prove the simple approximation theorem.

For each n ∈ N, k ∈ N, let En;k = {x ∈ E : |f (x)| ≥ k=2n}. Define

 n(x) =
n2nX
k=1

1

2n
fflEn;k :

Then  is simple and nonnegative.
If x ∈ En;k and k ≤ n2n, then 2k ≤ n2n+1 ≤ (n + 1)2n+1, x ∈ En+1;2k , and x ∈ En+1;2k−1. ThusP(n+1)2n+1

k=1
1

2n+1fflEn+1;k (x) has at least twice as many nonzero terms as
Pn2n

k=1
1
2nfflEn;k (x), so {| n(x)|}∞n=1 is

nondecreasing.
Finally, for any x and n, either  n(x) = n if |f (x)| ≥ n, or |f (x)| − 1=2n ≤  n(x) ≤ |f (x)| if |f (x)| ≤ n.

It is clear that  n(x) → |f (x)| pointwise.
Now, define ’n(x) =  (x) sgn(f (x)), that is,

’n(x) =

(
 (x); f (x) ≥ 0;

− (x); f (x) < 0:

Then ’n is also simple, |’n| = | n| so {|’n(x)|}∞n=1 is nondecreasing for all x ∈ E, and ’n → f pointwise.

(Dibyendu, Problem 1080) Let ’ : R → R be a simple function and let cj , Ej be as in Problem 1050. What
do you expect

R
R ’dm to equal?

3.3. Undergraduate analysis

(Memory 1081) (Tietze’s Extension Theorem in R). Let F ⊆ R be closed and let f : F → R be continuous.
Then there is a function g : R → R that is continuous on all of R and satisfies g = f on F .

(Memory 1082) Let F and D be two disjoint closed sets and let f : F ∪ D → R be a function. Suppose that
f
˛̨
F
and f

˛̨
D
are continuous on F and D, respectively. Then f is continuous on F ∪D.

3.3 Egoroff’s Theorem and Lusin’s Theorem

Egoroff’s theorem. Let E ⊆ R be measurable with m(E) < ∞. Let {fn}∞n=1 be a sequence of measurable
functions on E that converges pointwise almost everywhere to some function f that is finite almost everywhere.

Then for every " > 0 there is a closed set F ⊆ E with m(E ∼ F ) < " and such that fn → f uniformly on F .

Lemma 3.10. Under the conditions of Egoroff’s theorem, if — > 0 and ‹ > 0, then there is a measurable set
A ⊆ E and a k ∈ N such that m(E ∼ A) < ‹ and such that |fn(x)− f (x)| < — for all x ∈ A and all n ≥ k.

(Elliott, Problem 1090) Prove Lemma 3.10. (Note that we will use Lemma 3.10 to prove Egoroff’s theorem,
and so you may not use Egoroff’s theorem to prove Lemma 3.10.)

(Zach, Problem 1100) Use Lemma 3.10 to prove Egoroff’s theorem.

Let E0 = {x ∈ E : |f (x)| < ∞; fn(x) → f (x)}. By assumption {x ∈ E : |f (x)| = ∞} and {x ∈ E :
fn(x) ̸→ f (x)} have measure zero, so E0 is measurable and m(E0) = m(E).

If ‘ ∈ N, let — = 1=‘ and let ‹ = "=2‘+1, and let A = A‘ and k = k‘ be as in Lemma 3.10. Then
A‘ ⊆ E, m(E ∼ A‘) < "=2‘+1, and |fn(x)− f (x)| < 1=‘ for all x ∈ A‘ and all n ≥ k‘.

Let B =
T∞
‘=1 A‘. Then B is measurable because the sets A‘ are measurable. Then B ⊆ E and

m(E ∼ B) = m
“
E ∼

∞\
‘=1

A‘

”
= m

“ ∞[
‘=1

E ∼ A‘

”
≤

∞X
‘=1

m(E ∼ A‘) <
"

2
:



We claim that fn → f uniformly on B. Let ” > 0. There is a ‘ ∈ N with 1=‘ < ”. If n > k‘, then
|fn(x)− f (x)| < 1=‘ < ” for all x ∈ A‘, and thus all x ∈ B because B ⊆ A‘. Thus fn → f uniformly on B.

Finally, by Theorem 2.11, there is a closed set F with F ⊆ B and m(B ∼ F ) < "=2. Then F ⊆ B ⊆ E
so F ⊆ E, m(E ∼ F ) = m(E ∼ B) + m(B ∼ F ) < ", and fn → f uniformly on F because F ⊆ B and
fn → f uniformly on B. This completes the proof.

(Irina, Problem 1110) Give an example of a sequence of measurable functions on an unbounded measurable
set E that converges pointwise almost everywhere to some function f that is finite almost everywhere, but such
that the conclusion of Egoroff’s theorem fails.

[Chapter 3, Problem 16] Let I ⊆ R be a closed, bounded interval and let E ⊆ I be measurable. Show that,
for each " > 0, there exists a step function h : I → R and a measurable set F ⊆ I such that h = fflE on F and
such that m(I ∼ F ) < ".

Proposition 3.11. Let ’ : R → R be a simple function and let " > 0. Then there is a continuous function
g : R → R such that m∗({x ∈ R : g(x) ̸= ’(x)}) < ".

(Juan, Problem 1120) Prove Proposition 3.11.

Lusin’s theorem. Let E ⊆ R be a measurable set and let f : E → [−∞;∞] be measurable and finite almost
everywhere. If " > 0, then there is a continuous function g : R → R and a closed set F ⊆ E such that f = g
on F and such that m(E ∼ F ) < ".

(Micah, Problem 1130) Prove Lusin’s theorem in the case m(E) <∞.

Let {’n}∞n=1 be as in the simple approximation theorem, so ’n → f pointwise. For each n, apply
Proposition 3.11 to obtain a continuous function gn : R → R such that m({x ∈ R : gn ̸= ’n}) < "

2n+1 .

Let An = {x ∈ R : gn ̸= ’n}. Then m(
S∞
n=1 An) < "=2, and gn = ’n on E ∼

S∞
n=1 An. Thus gn → f

on E ∼
S∞
n=1 An.

By Egoroff’s theorem, there is a closed set F ⊆ E ∼
S∞
n=1 An such that gn → f uniformly on F and

such that m((E ∼
S∞
n=1 An) ∼ F ) < "=2. Thus, F ⊆ E is closed and m(E ∼ F ) < ", and because f is the

uniform limit of a sequence of continuous functions, f is continuous on F .
By Tietze’s extension theorem, there is a continuous function g : R → R such that f = g on F . This

completes the proof.

(Problem 1131) Prove Lusin’s theorem.

By the previous result, for each n ∈ Z, there is a closed set Fn ⊂ (n; n+1)∩E such that f is continuous
on Fn and such that m(E ∩ (n; n + 1) ∼ Fn) < "=2|n|+2.

It is elementary to show that f is continuous on
S
n∈Z Fn, and m(E ∼

S
n∈Z Fn) < ". The conclusion

follows from Tietze’s theorem.

4. Lebesgue Integration

4.1 Comments on the Riemann Integral

[Definition: Step function] If [a; b] ⊂ R is a closed and bounded interval, we say that ’ : [a; b] → R is a step
function if there are finitely many points a = x0 < x1 < · · · < xn = b such that ’ is constant on each of the
intervals (xk−1; xk) for all 1 ≤ k ≤ n.

[Definition: Integral of a step function] If ’ : [a; b] → R is a step function and x0, x1; : : : ; xn are the numbers
in the definition of step function, we defineZ b

a

’ =
nX
k=1

(xk − xk−1)’

„
xk−1 + xk

2

«
:



[Definition: Riemann integrable] Let [a; b] ⊂ R be a closed and bounded interval and let f : [a; b] → R be
bounded. We say that f is Riemann integrable on [a; b] if

sup

ȷZ b

a

’

˛̨̨̨
’ : [a; b] → R is a step function and ’(x) ≤ f (x) for all x ∈ [a; b]

ff
= inf

ȷZ b

a

 

˛̨̨̨
 : [a; b] → R is a step function and  (x) ≥ f (x) for all x ∈ [a; b]

ff
:

If f is Riemann integrable we defineZ b

a

f = sup

ȷZ b

a

’

˛̨̨̨
’ : [a; b] → R is a step function and ’ ≤ f

ff
:

4.2 The Integral of a Bounded, Finitely Supported, Measurable Function

[Definition: Integral of a simple function] Let E ⊆ R be measurable with m(E) < ∞ and let ’ : E → R be
simple. Let ’(E) = {c1; c2; : : : ; cn}; as in Problem 1050, ’ =

Pn
k=1 ck fflEk , where Ek = ’−1({ck}). We defineZ

E

’ =
nX
k=1

ck m(Ek):

(Problem 1132) Let E be a measurable set. Let {D1; : : : ; D‘} be a partition of E: E =
S‘
j=1Dj and Dj∩Dk = ∅

if j ̸= k. Suppose furthermore that each Dj is measurable. Let ’ : E → R and suppose that ’ is constant on
each Dj . Then ’ takes on at most ‘ values, so is simple. Let bj be such that ’(x) = bj for all x ∈ Dj . Show thatZ

E

’ =
‘X
j=1

bj m(Dj)

even if the Djs are not as in Problem 1050.

Let n, ck , and Ek be as in Problem 1050. If 1 ≤ j ≤ ‘, then either Dj = ∅ or Dj contains at least one
point x ∈ E. But then x ∈ Ek for some k, and so bj = ’(x) = ck because x ∈ Dj and x ∈ Ek . Thus
bj = ck and so Dj ⊆ Ek . Thus if Dj is not empty then Dj ⊆ Ek for some k. Conversely, the Eks are
pairwise disjoint and so if Dj ⊆ Ek then Dj ∩ Er ⊆ Ek ∩ Er = ∅ if k ̸= r .

Thus we may write
‘X
j=1

bj m(Dj) =
X

1≤j≤‘
Dj=∅

bj m(Dj) +
nX
k=1

X
1≤j≤‘
Dj ̸=∅
Dj⊆Ek

bj m(Dj):

If Dj = ∅ then m(Dj) = 0. Thus

‘X
j=1

bj m(Dj) =
nX
k=1

X
1≤j≤‘
Dj⊆Ek

bj m(Dj):

But if Dj ⊆ Ek then bj = ck . So

‘X
j=1

bj m(Dj) =
nX
k=1

ck
X

1≤j≤‘
Dj⊆Ek

m(Dj):

Because the Djs are pairwise disjoint and measurable,X
1≤j≤‘
Dj⊆Ek

m(Dj) = m
“ [
1≤j≤‘
Dj⊆Ek

Dj

”
:



By assumption
S

1≤j≤‘
Dj⊆Ek

Dj ⊆ Ek , while Ek ⊆ E =
S‘
j=1Dj and so Ek =

S‘
j=1(Dj ∩ Ek). But either

Dj ∩ Ek = ∅ or Dj ⊆ Ek , and so
S

1≤j≤‘
Dj⊆Ek

Dj = Ek . Thus

‘X
j=1

bj m(Dj) =
nX
k=1

ckm(Ek)

as desired.

(Muhammad, Problem 1140) Suppose that E = [a; b] and that ’ is a step function. Show that ’ is also a

simple function and that
R
E
’ =

R b
a
’.

Lemma 4.1. If E1, E2; : : : ; En are measurable, c1, c2; : : : ; cn ∈ R, ’ =
Pn

k=1 ck fflEk , and
Sn
k=1 Ek ⊆ E for some

measurable set E, then
R
E
’ =

Pn
k=1 ck m(Ek) even if the Eks and cks are not as in Problem 1050.

(Ashley, Problem 1150) Prove Lemma 4.1.

Let S = {1; 2; : : : ; n}. Recall that 2S is the set of all subsets of S. Observe that 2S is also a finite set.
If x ∈ E, let ff(x) = {k ∈ S : x ∈ Ek}; then ff is a well defined function.

For each A ⊆ S, let

DA =
“\
k∈A

Ek

”
∩
“ \
k∈S∼A

E ∼ Ek

”
:

Then each DA is measurable and x ∈ Dff(x) for each x ∈ E.
Furthermore, we claim that A ̸= B then DA ∩ DB = ∅. To see this, observe that if k ∈ A and k =∈ B,

then DA ⊆ Ek and DB ⊆ E ∼ Ek , and so DA ∩DB = ∅. Similarly if k ∈ B and k =∈ A then DA ∩DB = ∅.
If A ̸= B there is at least one such k .

Thus {DA : A ∈ 2S} is a partition of E. Furthermore, observe that

’(x) =
nX
k=1

ck fflEk (x) =
X
k∈ff(x)

ck

and so ’ =
P

k∈A ck on DA, and in particular is constant on DA.
Thus by Problem 1132, Z

E

’ =
X
A∈2S

X
k∈A

ckm(DA):

Changing the order of summation, we see thatZ
E

’ =
nX
k=1

ck
X
A∈2S
A∋k

m(DA):

The DAs are a partition of E, and each DA is either a subset of Ek or a subset of E ∼ Ek (that is, disjoint
from Ek); thus Ek =

S
A∈2S
DA⊆Ek

DA and m(Ek) =
P

A∈2S
A∋k

m(DA). Thus

Z
E

’ =
nX
k=1

ckm(Ek)

as desired.

Proposition 4.2. Let ’,  be simple functions defined on a set of finite measure E.

(i) If ¸, ˛ ∈ R, then
R
E
(¸’+ ˛ ) = ¸

R
E
’+ ˛

R
E
 .

(ii) If ’ ≤  on E, then
R
E
’ ≤

R
E
 .



(Bashar, Problem 1160) Prove Proposition 4.2, part (i).

Because ’ and  are simple, we may write ’ =
Pn

k=1 ak fflDk and  =
P‘

k=1 bk fflSk for some real
numbers ak , bk and some measurable sets Dk , Sk ⊆ E.

Define

eak =

(
ak ; 1 ≤ k ≤ n;

0; n + 1 ≤ k ≤ n + ‘;
ebk =

(
0; 1 ≤ k ≤ n;

bk−n; n + 1 ≤ k ≤ n + ‘;
Ek =

(
Dk ; 1 ≤ k ≤ n;

Sk−n; n + 1 ≤ k ≤ n + ‘:

Then ’ =
Pn+‘

k=1 eak fflEk ,  =
Pn+‘

k=1
ebk fflEk , and ¸’+ ˛ =

Pn+‘
k=1(¸eak + ˛ebk)fflEk , and so by Lemma 4.1

¸

Z
E

’+ ˛

Z
E

 = ¸
n+‘X
k=1

eak m(Ek) + ˛
n+‘X
k=1

ebk m(Ek) =
n+‘X
k=1

(¸eak + ˛ebk)m(Ek) =

Z
E

(¸’+ ˛ )

as desired.

(Dibyendu, Problem 1170) Prove Proposition 4.2, part (ii).

Let ” =  − ’. Then ” ≥ 0 on E. Furthermore, ” is simple. Let {c1; : : : ; cn} = ”(E) and let
Ek = ”−1({ck}). Then by part (i) and by definitionZ

E

 −
Z
E

’ =

Z
E

( − ’) =

Z
E

” =
nX
k=1

ck m(Ek):

But each m(Ek) ≥ 0 by definition of measure, and each ck ≥ 0 because ” ≥ 0 and so ”(E) ⊂ [0;∞). ThusPn
k=1 ck m(Ek) ≥ 0, so

R
E
 ≥

R
E
’, as desired.

[Definition: Integral of a bounded function over a bounded set] Let E ⊂ R be measurable with m(E) <∞
and let f : E → [−M;M] be a bounded function. We say that f is Lebesgue integrable over E if

sup

ȷZ
E

’

˛̨̨̨
’ : [a; b] → R is a simple function and ’(x) ≤ f (x) for all x ∈ E

ff
= inf

ȷZ
E

 

˛̨̨̨
 : [a; b] → R is a simple function and  (x) ≥ f (x) for all x ∈ E

ff
:

If f is Lebesgue integrable we defineZ
E

f = sup

ȷZ
E

’

˛̨̨̨
’ : [a; b] → R is a simple function and ’(x) ≤ f (x) for all x ∈ E

ff
:

(Problem 1171) Let E ⊂ R be measurable with m(E) <∞ and let „ : E → R be simple. Show thatZ
E

„ = sup

ȷZ
E

’

˛̨̨̨
’ : [a; b] → R is a simple function and ’(x) ≤ „(x) for all x ∈ E

ff
= inf

ȷZ
E

 

˛̨̨̨
 : [a; b] → R is a simple function and  (x) ≥ „(x) for all x ∈ E

ff
:

Thus all simple functions with domains of bounded measure are integrable and there is no ambiguity in using
R
E
„

to denote both the integral of a simple function and of an arbitrary Lebesgue integrable function.

Theorem 4.3. If f is Riemann integrable on [a; b], then f is Lebesgue integrable over [a; b] and
R b
a
f =

R
[a;b]

f .



(Elliott, Problem 1180) Prove Theorem 4.3 and give an example of a bounded measurable function defined on
an interval [a; b] that is Lebesgue integrable over [a; b] but is not Riemann integrable.

Assume that f : [a; b] → R is bounded and Riemann integrable. By Problem 1140, if ’ is a step function

on [a; b], then ’ is a simple function and
R b
a
’ =

R
[a;b]

’. Thus,

sup

ȷZ b

a

’

˛̨̨̨
’ : [a; b] → R is a step function and ’(x) ≤ f (x) for all x ∈ [a; b]

ff
= sup

ȷZ
[a;b]

’

˛̨̨̨
’ : [a; b] → R is a step function and ’(x) ≤ f (x) for all x ∈ [a; b]

ff
:

Because all step functions are simple functions, by definition of supremum

sup

ȷZ
[a;b]

’

˛̨̨̨
’ : [a; b] → R is a step function and ’(x) ≤ f (x) for all x ∈ [a; b]

ff
≤ sup

ȷZ
[a;b]

’

˛̨̨̨
’ : [a; b] → R is a simple function and ’(x) ≤ f (x) for all x ∈ [a; b]

ff
:

Now, if ’ and  are simple functions and ’ ≤ f ≤  , then ’ ≤  and so by Proposition 4.2
R
[a;b]

’ ≤
R
[a;b]

 .

Thus, again by definition of supremum and infimum,

sup

ȷZ
[a;b]

’

˛̨̨̨
’ : [a; b] → R is a simple function and ’(x) ≤ f (x) for all x ∈ [a; b]

ff
≤ inf

ȷZ
[a;b]

 

˛̨̨̨
 : [a; b] → R is a simple function and  (x) ≥ f (x) for all x ∈ [a; b]

ff
:

Again by Problem 1140 and because all step functions are simple functions,

inf

ȷZ
[a;b]

 

˛̨̨̨
 : [a; b] → R is a simple function and  (x) ≥ f (x) for all x ∈ [a; b]

ff
≤ inf

ȷZ b

a

 

˛̨̨̨
 : [a; b] → R is a step function and  (x) ≥ f (x) for all x ∈ [a; b]

ff
:

But because f is Riemann integrable, we have that

inf

ȷZ b

a

 

˛̨̨̨
 : [a; b] → R is a step function and  (x) ≥ f (x) for all x ∈ [a; b]

ff
= sup

ȷZ b

a

’

˛̨̨̨
’ : [a; b] → R is a step function and ’(x) ≤ f (x) for all x ∈ [a; b]

ff
:

Thus the chain of inequalities collapses and we must have that all of the above quantities are equal. In
particular,

sup

ȷZ
[a;b]

’

˛̨̨̨
’ : [a; b] → R is a simple function and ’(x) ≤ f (x) for all x ∈ [a; b]

ff
= inf

ȷZ
[a;b]

 

˛̨̨̨
 : [a; b] → R is a simple function and  (x) ≥ f (x) for all x ∈ [a; b]

ff
This is the definition of Lebesgue integrability. This completes the proof.

Now let f = fflQ∩[0;1] be the characteristic function of the rationals restricted to [0; 1]. By Problem 370,
f is not Riemann integrable. However, f is simple (the set Q is measurable because it has outer measure
zero), and so is Lebesgue integrable by Problem 1171.

Theorem 4.4. Let E ⊂ R be measurable with m(E) <∞ and let f : E → [−M;M] be bounded and measurable.
Then f is Lebesgue integrable.

(Irina, Problem 1190) Prove Theorem 4.4.



Let

L = sup

ȷZ
E

’

˛̨̨̨
’ : E → R is a simple function and ’(x) ≤ f (x) for all x ∈ E

ff
;

U = inf

ȷZ
E

 

˛̨̨̨
 : E → R is a simple function and  (x) ≥ f (x) for all x ∈ E

ff
:

As before, by Proposition 4.2, L ≤ U.
By the simple approximation lemma, if " > 0, then there exist simple functions ’",  " : E → R such

that

 "(x)− " ≤ ’"(x) ≤ f (x) ≤  "(x) ≤ ’"(x) + "

for all x ∈ E.
Thus, if " > 0, then

L ≥
Z
E

’"

and

U ≤
Z
E

 ":

Thus

0 ≤ U − L ≤
Z
E

 " −
Z
E

’"

and so by Proposition 4.2

0 ≤ U − L ≤
Z
E

( " − ’") ≤
Z
E

" = "m(E)

for all " > 0. Thus U − L ≤ 0 and so U − L = 0. By definition of U, L, and Lebesgue integrablility, we
have that f is Lebesgue integrable, as desired.

Theorem 5.7. Let E ⊂ R be measurable with m(E) < ∞ and let f : E → [−M;M] be bounded. Then f is
measurable if and only if it is Lebesgue integrable. (You may not use this result until we prove it in Chapter 5,
but you may find it interesting at this point.)

Theorem 4.5. Let f and g be bounded measurable functions defined on a set of finite measure E.

(i) If ¸, ˛ ∈ R, then
R
E
(¸f + ˛g) = ¸

R
E
f + ˛

R
E
g .

(ii) If f ≤ g on E, then
R
E
f ≤

R
E
g .

(Zach, Problem 1200) Prove Theorem 4.5, part (i).

(Juan, Problem 1210) Prove Theorem 4.5, part (ii).

Because f and g are measurable, we have that g − f is measurable by Theorem 3.6, and so g − f is
integrable by Theorem 4.4. By part (i), Z

E

g −
Z
E

f =

Z
E

(g − f ):

But ’ = 0 is a simple function with ’ ≤ g − f on E, so

0 =

Z
E

’ ≤ sup

ȷZ
E

’

˛̨̨̨
’ : E → R is a simple function and ’(x) ≤ g(x)−f (x) for all x ∈ E

ff
=

Z
E

(g−f ) =
Z
E

g−
Z
E

f

and so Z
E

f ≤
Z
E

g

as desired.

Corollary 4.6. If A and B are two disjoint measurable sets of finite measure and f : A ∪B → R is bounded and
measurable, then

R
A∪B f =

R
A
f +

R
B
f .



(Micah, Problem 1220) Prove Corollary 4.6.

Corollary 4.7. If E ⊂ R is measurable and has finite measure, and if f : E → R is bounded and measurable,
then ˛̨̨̨Z

E

f

˛̨̨̨
≤
Z
E

|f |:

Proposition 4.8. If E ⊂ R is measurable and has finite measure, if fn : E → R is bounded and measurable for
each n, and if fn → f uniformly on E, then

lim
n→∞

Z
E

fn =

Z
E

f :

(Muhammad, Problem 1230) Prove Proposition 4.8.

(Ashley, Problem 1240) Give an example of a sequence of measurable functions {fn}∞n=1, each of which is
bounded, defined on a common measurable domain E of finite measure, such that fn → f pointwise on E for
some bounded measurable function f : E → R, but such thatZ

E

fn ̸→
Z
E

f :

(The failure can be either because limn→∞
R
E
fn does not exist, or because it exists but is not equal to

R
E
f .)

The bounded convergence theorem. If E ⊂ R is measurable and has finite measure, if fn : E → R is
measurable for each n, if there is a M such that |fn(x)| < M for all x ∈ E and all n ∈ N, and if fn → f pointwise
on E, then

lim
n→∞

Z
E

fn =

Z
E

f :

(Bashar, Problem 1250) Prove the Bounded Convergence Theorem. Hint: Use Egoroff’s theorem.

Choose some " > 0.
Let F ⊆ E be as in Egoroff’s theorem, so F is closed, m(E ∼ F ) < ", and fn → f uniformly on F . Thus,

there is a N ∈ N such that, if n ≥ N, then |fn(x)− f (x)| < " for all x ∈ F .
If n ≥ N, then by Theorem 4.5(i), Corollary 4.7, and Corollary 4.6,˛̨̨̨Z

E

fn −
Z
E

f

˛̨̨̨
=

˛̨̨̨Z
E

(fn − f )

˛̨̨̨
≤
Z
E

|fn − f | =
Z
F

|fn − f |+
Z
E∼F

|fn − f |:

Then by Theorem 4.5(ii),Z
F

|fn − f |+
Z
E∼F

|fn − f | ≤
Z
F

"+

Z
E∼F

2M = m(F )"+ 2Mm(E ∼ F ) ≤ m(E)"+ 2M":

Thus, if n ≥ N then ˛̨̨̨Z
E

fn −
Z
E

f

˛̨̨̨
≤ m(E)"+ 2M":

This suffices to show that
R
E
fn →

R
E
f .

4.3 The Integral of a Non-Negative Measurable Function

[Definition: Finite support] Let E ⊆ R be measurable and let h : E → R. Suppose that there is a measurable
set E0 ⊆ E with m(E0) <∞ and such that h(x) = 0 for all x ∈ E ∼ E0. Then we say that h has finite support;
if h is also bounded then we define

R
E
h =

R
E0
h.

[Definition: Integral of a nonnegative function] Let E ⊆ R be measurable and let f : E → [0;∞] be
measurable. We defineZ

E

f = sup

ȷZ
E

h

˛̨̨̨
h is bounded, measurable, of finite support, and 0 ≤ h ≤ f on E

ff
:

(Problem 1251) Show that if m(E) < ∞ and f : E → [0;M] is measurable, nonnegative, and bounded, then
the above definition coincides with that in Section 4.2.



Chebychev’s inequality. Let f be a nonnegative measurable function on a measurable set E. Let – > 0. Then

m({x ∈ E : f (x) ≥ –}) ≤ 1

–

Z
E

f :

(Dibyendu, Problem 1260) Prove Chebychev’s Inequality.

Let E–;N = {x ∈ E ∩ [−N;N] : f (x) ≥ –}. Because f is measurable, so is E–;N . Let hN = –fflE–;N .
Because f is nonnegative, hN(x) = 0 ≤ f (x) for all x ∈ E ∼ E–;N ; by definition of E–;N , hN(x) = – ≤ f (x)
for all x ∈ E–;N .

Furthermore, hN is clearly a set of finite support.
Thus by definition of

R
E
f ,
R
E
f ≥

R
E
hN = –m(E–;N) and so m(E–;N) ≤ 1

–

R
E
f .

Observe that {x ∈ E : f (x) ≥ –} =
S∞
N=1 E–;N . Thus

m({x ∈ E : f (x) ≥ –}) = m
“ ∞[
N=1

E–;N

”
:

The sets E–;N are nondecreasing in N, so by Theorem 2.15,

m({x ∈ E : f (x) ≥ –}) = m
“ ∞[
N=1

E–;N

”
= lim

N→∞
m(E–;N):

Because the sets E–;N are nondecreasing in N, the right hand side is the limit of a nondecreasing sequence
of real numbers, and so

m({x ∈ E : f (x) ≥ –}) = sup
N
m(E–;N):

But m(E–;N) ≤ 1
–

R
E
f for each N, and so supN m(E–;N) ≤ 1

–

R
E
f , as desired.

Proposition 4.9. Let f be a nonnegative measurable function on a measurable set E. Then
R
E
f = 0 if and only

if f (x) = 0 for almost every x ∈ E.

(Elliott, Problem 1270) Prove Proposition 4.9.

Suppose that f ≥ 0 and
R
E
f = 0. Let En = {x ∈ E : f (x) ≥ 1

n
}. Then {x ∈ E : f (x) > 0} =

S
n∈N En

by the Archimedean property of the real numebrs. By Chebychev’s inequality, m(En) ≤ n
R
E
f = 0 for each

n ∈ N, and so by the subadditivity of Lebesgue measure (Proposition 2.3), m({x ∈ E : f (x) > 0}) ≤P∞
n=1m(En) = 0, as desired.
We now come to the converse. If ’ is a simple function that is nonpositive almost everywhere, thenR

E
’ ≤ 0 by definition of integral of a simple function.
If h is a bounded measurable function of finite support, then h is Lebesgue integrable by Theorem 4.4

and so Z
E

h = sup

ȷZ
E

’

˛̨̨̨
’ : E → R is simple, ’ ≤ h}:

If h ≤ 0 almost everywhere, then ’ ≤ 0 almost everywhere for all such ’, and so
R
E
h ≤ 0.

Finally, if f ≥ 0 is measurable and f = 0 almost everywhere, thenZ
E

f = sup

ȷZ
E

h

˛̨̨̨
h : E → R is bounded measurable and finitely supported, h ≤ f }:

All of the terms on the right hand side are nonnegative, so
R
E
f ≤ 0. But h ≡ 0 is a bounded measurable

finitely supported function, and so
R
E
f ≥

R
E
0 = 0; thus

R
E
f = 0, as desired.

Theorem 4.10. Let f and g be nonnegative measurable functions defined on a measurable set E.

(i) If ¸ > 0 and ˛ > 0, then
R
E
(¸f + ˛g) = ¸

R
E
f + ˛

R
E
g .

(ii) If f ≤ g on E, then
R
E
f ≤

R
E
g .



(Irina, Problem 1280) Prove Theorem 4.10, part (i).

(Problem 1281) Prove Theorem 4.10, part (ii).

Theorem 4.11. If A and B are two disjoint measurable sets and f : A ∪B → R is measurable and nonnegative,
then

R
A∪B f =

R
A
f +

R
B
f . In particular, if m(E0) = 0 and E0 ⊆ E for a measurable set E, then

R
E
f =

R
E∼E0

f

for every nonnegative measurable function f : E → [0;∞].

(Juan, Problem 1290) Prove Theorem 4.11.

Fatou’s lemma. Let E ⊆ R be measurable and let {fn}∞n=1 be a sequence of nonnegative measurable functions
fn : E → [0;∞]. Then Z

E

lim inf
n→∞

fn ≤ lim inf
n→∞

Z
E

fn:

(Zach, Problem 1300) Prove Fatou’s lemma.

The monotone convergence theorem. Let E ⊆ R be measurable and let {fn}∞n=1 be a sequence of nonnegative
measurable functions fn : E → [0;∞]. Suppose in addition that fn(x) ≤ fn+1(x) for all x ∈ E. ThenZ

E

lim
n→∞

fn = lim
n→∞

Z
E

fn:

(Micah, Problem 1310) Prove the monotone convergence theorem.

Corollary 4.12. Let E ⊆ R be measurable and let {fn}∞n=1 be a sequence of nonnegative measurable functions
fn : E → [0;∞]. Then Z

E

∞X
n=1

fn = sum∞
n=1

Z
E

fn:

(Problem 1311) Prove Corollary 4.12.

[Definition: Integrable function] A nonnegative measurable function f on a measurable set E is said to be
integrable, integrable over E, or in L1(E), if Z

E

f <∞:

Proposition 4.13. If f is integrable then f is finite almost everywhere.

(Muhammad, Problem 1320) Prove Proposition 4.13.

4.4 The General Lebesgue Integral

Proposition 4.14. Let E ⊆ R be measurable and let f : E → [−∞;∞] be measurable. Then |f | is integrable
(that is,

R
E
|f | <∞) if and only if both f + and f − are integrable.

[Definition: General Lebesgue integral] Suppose that f : E → [−∞;∞] is measurable and that |f | is integrable.
Then we say that f is integrable and that Z

E

f =

Z
E

f + −
Z
E

f −:

(Problem 1321) Show that if f is integrable over E and nonnegative, then the above definition of
R
E
f coincides

with that in Section 4.3.

Proposition 4.15. If f is integrable over E, then f is finite almost everywhere on E and
R
E
f =

R
E∼E0

f whenever

m(E0) = 0.

(Problem 1322) Prove Proposition 4.15.

Proposition 4.16. (The integral comparison test.) Suppose that g is nonnegative and integrable over E and
that |f | ≤ g on E. If f is measurable, then f is also integrable and

˛̨R
E
f
˛̨
≤
R
E
|f | ≤

R
E
g .

(Ashley, Problem 1330) Prove Proposition 4.16.

Theorem 4.17. Let f and g be functions integrable over a measurable set E.



(i) If ¸ ∈ R and ˛ ∈ R, then ¸f + ˛g is integrable over E and
R
E
(¸f + ˛g) = ¸

R
E
f + ˛

R
E
g .

(ii) If f ≤ g on E, then
R
E
f ≤

R
E
g .

(Bashar, Problem 1340) Prove Theorem 4.17, part (i).

(Elliott, Problem 1350) Prove Theorem 4.17, part (ii).

Corollary 4.18. If A and B are two disjoint measurable sets and f : A ∪ B → R is integrable over A ∪ B, thenR
A∪B f =

R
A
f +

R
B
f .

(Dibyendu, Problem 1360) Prove Corollary 4.18.

The Lebesgue dominated convergence theorem. Let E ⊆ R be measurable and let f , fn, and g be measurable
functions with domain E. Suppose that g is nonnegative and integrable, that |fn(x)| ≤ g(x) for all n ∈ N and all
x ∈ E, and that fn → f pointwise almost everywhere on E. Then

R
E
fn →

R
E
f .

(Zach, Problem 1370) Prove the Lebesgue dominated convergence theorem.

4.5 Countable Additivity and Continuity of Integration

Theorem 4.20. Let {En}∞n=1 be a countable sequence of pairwise disjoint measurable sets. Let E =
S∞
n=1 En. If

f : E → [−∞;∞] is integrable (that is, measurable and
R
E
|f | <∞), thenZ

E

f =
∞X
n=1

Z
En

f :

(Irina, Problem 1380) Prove Theorem 4.20.

Theorem 4.21. Let {En}∞n=1 be a countable sequence of measurable sets, let E =
S∞
n=1 En, and suppose that

f : E → [−∞;∞] is integrable (that is, measurable and
R
E
|f | <∞).

Suppose that either:

• En ⊆ En+1 for all n and D = E =
S∞
n=1 En.

• En ⊇ En+1 for all n and D =
T∞
n=1 En.

Then Z
D

f = lim
n→∞

Z
En

f :

[Chapter 4, Problem 39] Prove Theorem 4.21.

4.6 Uniform Integrability: the Vitali Convergence Theorem

Lemma 4.22. Let E ⊂ R be measurable and suppose m(E) < ∞. Let ‹ > 0. Then there is a n ∈ N and a list
of pairwise disjoint sets E1, E2; : : : ; En such that m(Ek) < ‹ for all k and such that E =

Sn
k=1 Ek .

(Micah, Problem 1390) Prove Lemma 4.22.

Proposition 4.23. Let E ⊆ R be measurable and let f be a measurable function on E.

(a) Suppose that
R
E
|f | < ∞ (that is, f is integrable) and that " > 0. Then there is a ‹ > 0 such that, if

A ⊆ E is measurable and m(A) < ‹, then
R
A
|f | < ".

(b) Suppose that m(E) < ∞ and that, for at least one " > 0, there is a ‹ > 0 such that, if A ⊆ E is
measurable and m(A) < ‹, then

R
A
|f | < ". Then

R
E
|f | <∞.

(Muhammad, Problem 1400) Prove Proposition 4.23, part (a).

(Juan, Problem 1410) Prove Proposition 4.23, part (b).

[Definition: Uniformly integrable] Let E ⊆ R be measurable and let F be a family of measurable functions
on E. We say that F is uniformly integrable over E if, for each " > 0, there is a ‹ > 0 such that, for all f ∈ F ,
we have that if A ⊆ E is measurable and m(A) < ‹, then

R
A
|f | < ".

(Ashley, Problem 1420) Let E ⊆ R be measurable and let g be integrable over E. Show that F = {f |f : E →
[−∞;∞] is measurable and |f (x)| ≤ |g(x)| for all x ∈ E} is a uniformly integrable family.

Proposition 4.24. Any finite collection of integrable functions over a common domain E is uniformly integrable.



(Bashar, Problem 1430) Prove Proposition 4.24.

Proposition 4.25. Let E ⊂ R be measurable and assume m(E) <∞. Let {fn}∞n=1 be a sequence of measurable
functions on E and suppose that F = {fn : n ∈ N} is uniformly integrable. Suppose that fn → f pointwise almost
everywhere on E for some f . Then f is measurable.

(Elliott, Problem 1440) Prove Proposition 4.25.

(Dibyendu, Problem 1450)

(a) Provide a counterexample to show that the condition that m(E) < ∞ is a necessary condition; that is,
give a sequence of uniformly integrable functions that converge pointwise on a set of infinite measure to
a function that is not integrable.

(b) Provide a counterexample to show that the condition that F = {fn : n ∈ N} be uniformly integrable is a
necessary condition; that is, give a sequence of integrable functions that converge pointwise to a function
that is not integrable.
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