
Math 2584, Spring 2024

The final exam will occur on Wednesday, May 8, 2024, at 3:00 p.m.,
in SCEN 407. You are allowed a non-graphing calculator and two double-
sided 3 inch by 5 inch cards of notes.

I am including the review sheets for Exams 1–3 to emphasize that
the final is cumulative. New material appears in Problems 34, 37, –71,
87, 88, 91, and from Problem 92 onwards.

Please complete the online course evaluation at course-

val.uark.edu on or before Friday, May 3. If at least 80% of the class
completes the course evaluation before the deadline, I will drop your 2
lowest group project scores; otherwise, I will drop your 1 lowest group
project score.

Please check your final exam schedule. If you have 3 or more final
exams scheduled for the same day, and you need to reschedule the final
exam for this class, please let me know by email immediately.

The following theorems will be written on the cover page of the exam:

Picard-Lindelöf theorem. Consider dy
dt

= f (t; y). If the functions of two

variables f and @f
@y

are continuous near the point (t0; y0), we call (t0; y0)

a “good” point for f . If (t0; y0) is a “good” point for f , then exists is a
unique solution to the initial value problem dy

dt
= f (y; t), y(t0) = y0.

The solution will continue to exist and be unique until either it ap-
proaches a “bad” point, or until the solution becomes unbounded.

Theorem 4.1.1. Consider the initial-value problem

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ : : :+ a1(x)

dy

dt
+ a0(x) y = g(x);

y(x0) = y0; y ′(x0) = y1; y ′′(x0) = y2; : : : ; y
(n−1)(x0) = yn−1:

Suppose that a0(x), a1(x), : : : , an(x) and g(x) are all continuous ev-
erywhere, and an(x) 6= 0 for all real numbers x . Then there is a unique
solution to the initial-value problem for all x .

courseval.uark.edu/
courseval.uark.edu/


The following Laplace transforms will be written on the last page of
the exam:

If ¸, ˛, a, and k are real numbers, n ≥ 0 is an integer, f (t) and g(t)

are functions with Laplace transforms, F (s) is the Laplace transform of

some function, and y is a differentiable function such that both y and dy
dt

have Laplace transforms, then

L
ndy
dt

o
= s L{y(t)} − y(0)

L{f (t)} =

Z ∞
0

e−st f (t) dt

L{¸f (t) + ˛g(t)} = ¸L{f (t)}+ ˛ L{g(t)}

L{1} =
1

s
s > 0

L{tn} =
n!

sn+1
s > 0

L{eat} =
1

s − a s > a

L{cos(kt)} =
s

s2 + k2
s > 0

L{sin(kt)} =
k

s2 + k2
s > 0

L−1{L{f (t)}} = f (t); L{L−1{F (s)}} = F (s)

L{f (t)} = F (s) if and only if L−1{F (s)} = f (t)

L−1{F (s)} = eat L−1{F (s + a)}

If L{f (t)} = F (s) then L{eat f (t)} = F (s − a)

L{U(t − c)} =
e−cs

s
s > 0; c ≥ 0

L{‹(t − c)} = e−cs s > 0; c ≥ 0



L{U(t − c)f (t)} = e−cs L{f (t + c)} c ≥ 0

L{U(t − c)g(t − c)} = e−cs L{g(t)} c ≥ 0

L{t f (t)} = − d

ds
L{f (t)}

L
nZ t

0

f (r) g(t − r) dr
o

= L
nZ t

0

f (t − r) g(r) dr
o

= L{f (t)}L{g(t)}



(AB 1) Here is a grid. Draw a small direction field (with nine slanted
segments) for the differential equation dy

dt
= t − y .
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(AB 2) Consider the differential equation dy
dx

= (y2 − x2)=3. Here is the
direction field for this differential equation. Sketch, approximately, the
solution to

dy

dx
= (y2 − x2)=3; y(−2) = 1:
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(AB 3) Consider the differential equation dy
dx

= 2
2−y2 . Here is the direc-

tion field for this differential equation. Sketch, approximately, the solution
to

dy

dx
=

2

2− y2 ; y(1) = 0:

Based on your sketch, what is the (approximate) domain of definition of
the solution to this differential equation?
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(AB 4) Consider the differential equation dy
dx

= y5. Here is the direction
field for this differential equation. Sketch, approximately, the solution to

dy

dx
= y5; y(1) = −1:

Based on your sketch, what is the (approximate) domain of definition of
the solution to this differential equation?
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(AB 5) Consider the differential equation dy
dx

= 1=y2. Here is the direc-
tion field for this differential equation. Sketch, approximately, the solution
to

dy

dx
=

1

y2
; y(3) = 2:

Based on your sketch, what is the (approximate) domain of definition of
the solution to this differential equation?
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(AB 6) A lake initially has a population of 600 trout. The birth rate of
trout is proportional to the number of trout living in the lake. Fishermen
are allowed to harvest 30 trout/year from the lake. Write an initial value
problem for the fish population. Specify your independent and dependent
variables, any unknown parameters, and your initial condition.



(AB 7) Five songbirds are blown off course onto an island with no birds
on it. The birth rate of songbirds on the island is then proportional to the
number of birds living on the island, and the death rate is proportional to
the square of the number of birds living on the island. Write an initial value
problem for the bird population. Specify your independent and dependent
variables, any unknown parameters, and your initial condition.

(AB 8) A tank contains nitrogen dioxide. Initially, there are 200 grams
of NO2. The gas decays (converts to molecular oxygen and nitrogen) at
a rate proportional to the square of the amount of NO2 remaining. Write
an initial value problem for the amount of NO2 in the tank. Specify your
independent and dependent variables, any unknown parameters, and your
initial condition.

(AB 9) A tank contains hydrogen gas and iodine gas. Initially, there
are 50 grams of hydrogen and 3000 grams of iodine. These two gases
react to form hydrogen iodide at a rate proportional to the product of
the amount of iodine remaining and the amount of hydrogen remaining.
The reaction consumes 126.9 grams of iodine for every gram of hydrogen
consumed. Write an initial value problem for the amount of hydrogen in
the tank. Specify your independent and dependent variables, any unknown
parameters, and your initial condition.

(AB 10) According to Newton’s law of cooling, the temperature of an
object changes at a rate proportional to the difference between its temper-
ature and that of its surroundings. Suppose that a cup of coffee is initially
at a temperature of 95◦C and is placed in a room at a temperature of
25◦C. Write an initial value problem for the temperature of the cup of
coffee. Specify your independent and dependent variables, any unknown
parameters, and your initial condition.



(AB 11) A large tank initially contains 600 liters of water in which 3
kilograms of salt have been dissolved. Every minute, 2 liters of a salt
solution with a concentration of 5 grams per liter flows in, and 3 liters
of the well-mixed solution flows out. Write an initial value problem for
the amount of salt in the tank. Specify your independent and dependent
variables, any unknown parameters, and your initial condition.

(AB 12) I want to buy a house. I borrow $300,000 and can spend
$1600 per month on mortgage payments. My lender charges 4% interest
annually, compounded continuously. Suppose that my payments are also
made continuously. Write an initial value problem for the amount of
money I owe. Specify your independent and dependent variables, any
unknown parameters, and your initial condition.

(AB 13) A hole in the ground is in the shape of a cone with radius
1 meter and depth 20 cm. Initially, it is empty. Water leaks into the
hole at a rate of 1 cm3 per minute. Water evaporates from the hole at a
rate proportional to the area of the exposed surface. Write an initial value
problem for the volume of water in the hole. Specify your independent and
dependent variables, any unknown parameters, and your initial condition.

(AB 14) According to the Stefan-Boltzmann law, a black body in a dark
vacuum radiates energy (in the form of light) at a rate proportional to
the fourth power of its temperature (in kelvins). Suppose that a planet in
space is currently at a temperature of 400 K. Write an initial value problem
for the planet’s temperature. Specify your independent and dependent
variables, any unknown parameters, and your initial condition.



(AB 15) According to the Stefan-Boltzmann law, a black body in a vac-
uum radiates energy (in the form of light) at a rate proportional to the
fourth power of its temperature (in kelvins). If there is some ambient
light in the vacuum, then the black body absorbs energy at a rate propor-
tional to the fourth power of the effective temperature of the light. The
proportionality constant is the same in both cases.

Suppose that a planet in space is currently at a temperature of 400
K. The effective temperature of its surroundings is 3 K. Write an initial
value problem for the planet’s temperature. Specify your independent and
dependent variables, any unknown parameters, and your initial condition.

(AB 16) A ball is thrown upwards with an initial velocity of 10 meters
per second. The ball experiences a downwards force due to the Earth’s
gravity and a drag force proportional to its velocity. Write an initial value
problem for the ball’s velocity. Specify your independent and dependent
variables, any unknown parameters, and your initial condition.

(AB 17) A ball of mass 300 g is thrown upwards with an initial velocity
of 20 meters per second. The ball experiences a downwards force due
to the Earth’s gravity and a drag force proportional to the square of its
velocity. Write an initial value problem for the ball’s velocity. Specify your
independent and dependent variables, any unknown parameters, and your
initial condition.

(AB 18) Consider the autonomous first-order differential equation dy
dx

=
(y − 2)(y + 1)2. By hand, sketch some typical solutions.

(AB 19) Find the critical points and draw the phase portrait of the differ-
ential equation dy

dx
= sin y . Classify each critical point as asymptotically

stable, unstable, or semistable.



(AB 20) Find the critical points and draw the phase portrait of the
differential equation dy

dx
= y2(y − 2). Classify each critical point as

asymptotically stable, unstable, or semistable.

(AB 21) Trout live in a lake. Each trout produces, on average, one baby
trout every two years. Fishermen are allowed to harvest 100 trout/year
from the lake. You may neglect other reasons why trout die.

(a) Formulate a differential equation for the number of trout in the
lake.

(b) Find the critical points of this differential equation and classify
them as to stability.

(c) What is the real-world meaning of the critical points?

(AB 22) I owe my bank a debt of B dollars. The bank assesses an
interest rate of 5% per year, compounded continuously. I pay the debt
off continuously at a rate of 1600 dollars per month.

(a) Formulate a differential equation for the amount of money I owe.

(b) Find the critical points of this differential equation and classify
them as to stability.

(c) What is the real-world meaning of the critical points?

(AB 23) A large tank contains 600 liters of water in which salt has been
dissolved. Every minute, 2 liters of a salt solution with a concentration
of 5 grams per liter flows in, and 2 liters of the well-mixed solution flows
out.

(a) Write the differential equation for the amount of salt in the tank.

(b) Find the critical points of this differential equation and classify
them as to stability.

(c) What is the real-world meaning of the critical points?



(AB 24) A skydiver with a mass of 70 kg falls from an airplane. She de-
ploys a parachute, which produces a drag force of magnitude 2v2 newtons,
where v is her velocity in meters per second.

(a) Write a differential equation for her velocity. Assume her velocity
is always downwards.

(b) Find the critical points of this differential equation and classify
them as to stability. Be sure to include units.

(c) What is the real-world meaning of these critical points?

(AB 25) A tank contains hydrogen gas and iodine gas. Initially, there
are 50 grams of hydrogen and 3000 grams of iodine. These two gases
react to form hydrogen iodide at a rate proportional to the product of the
amount of iodine remaining and the amount of hydrogen remaining. The
reaction consumes 126.9 grams of iodine for every gram of hydrogen.

(a) Write a differential equation for the amount of hydrogen left in
the tank.

(b) Find the critical points of this differential equation and classify
them as to stability. Be sure to include units.

(c) What is the real-world meaning of these critical points?

(AB 26) Young oak trees grow in a large field with area 1 square kilome-
ter. Initially, there are 30 trees in the field. Each tree shades 20 square
meters. The trees produce acorns. Squirrels scatter the acorns across the
field at random. Squirrels eat most of the acorns; on average, each tree
produces two acorns per year that are not eaten by squirrels. Every acorn
not eaten by squirrels and planted in sunlight sprouts.

(a) Write a differential equation for the number of trees in the field.

(b) Find the critical points of this differential equation and classify
them as to stability.

(c) What is the real-world meaning of these critical points?



(AB 27) A hole in the ground is in the shape of a cone with radius 1
meter and depth 20 cm. Water leaks into the hole at a rate of 1 cm3 per
minute. Water evaporates from the hole at a rate of 3 cm3 per exposed
cm2 per hour.

(a) Write a differential equation for the amount of water in the tank.

(b) Find the critical points of this differential equation and classify
them as to stability.

(c) What is the real-world meaning of these critical points?

(AB 28) Is y = et a solution to the differential equation d2y
dt2

+ 4t
1−2t

dy
dt
−

4
1−2t y = 0?

(AB 29) Is y = e2t a solution to the differential equation d2y
dt2

+ 4t
1−2t

dy
dt
−

4
1−2t y = 0?

(AB 30) Is y = e3t a solution to the initial value problem dy
dt

= 2y ,
y(0) = 1?

(AB 31) Is y = e3t a solution to the initial value problem dy
dt

= 3y ,
y(0) = 2?

(AB 32) Is y = e3t a solution to the initial value problem dy
dt

= 3y ,
y(0) = 1?

(AB 33) Is y = e3t a solution to the initial value problem dy
dt

= 2y ,
y(0) = 2?



(AB 34) For each of the following differential equations, determine
whether it is linear, separable, exact, Bernoulli, of the form dy

dt
= f (y=t),

or of the form dy
dt

= f (At+By+C). Then solve the differential equation.

(a) t + cos t + (y − sin y) dy
dt

= 0

(b) ln y + y + x +
`
x
y

+ x
´
dy
dx

= 0

(c) 1 + t2 − ty + (t2 + 1) dy
dt

= 0

(d) ty − y2 − t2 + t2 dy
dt

= 0

(e) 4ty3 + 6t3 + (3 + 6t2y2 + y5)dy
dt

= 0

(f ) y tan 2x + y3 cos 2x + dy
dx

= 0

(g) 3t − 5x + (t + x) dx
dt

= 0

(h) dy
dt

= 1
3t+2y+7 .

(i) y3 cos(2t) + dy
dt

= 0

(j) 4ty dy
dt

= 3y2 − 2t2

(k) t dy
dt

= 3y − t2

y5

(l) sin2(x − t) dx
dt

= csc2(x − t).

(m) dy
dt

= 8y − y8
(n) t dz

dt
= − cos t − 3z

(o) dy
dt

= cot(y=t) + y=t

(p) dy
dt

= ty + t2 3
√
y

(AB 35) For each of the following differential equations, find all the
equilibrium solutions or state that no such solutions exist. You do not
need to find the nonequilibrium solutions.

(a) dy
dt

= y3 − yt
(b) dy

dt
= t2ey

(c) dy
dt

= ty + t3

(d) dy
dt

= (y2 + 3y + 2) sin(t)

(e) dy
dt

= ln(y t)

(AB 36) Suppose that dy
dt

= cos(t) sin(y), y(0) = 3ı. Find y(2).



(AB 37) For each of the following differential equations, determine
whether it is linear or separable, exact, Bernoulli, of the form dy

dt
= f (y=t),

or a function of a linear term. Then solve the given initial-value problem.
(a) cos(t + y3) + 2t + 3y2 cos(t + y3) dy

dt
= 0, y(ı=2) = 0

(b) ty2 − 4t3 + 2t2y dy
dt

= 0, y(1) = 3.

(c) 1 + y2 + t dy
dt

= 0, y(1) = 1

(d) dy
dt

= (2y + 2t − 5)2, y(0) = 3.

(e) dy
dt

= 2y − 6
y2

, y(0) = 7.

(f ) 3y + e−3t sin t + dy
dt

= 0, y(0) = 2

(g) dy
dt

= (y2 − 5y + 4)tet
2

, y(0) = 4

(AB 38) Solve the initial-value problem dy
dt

= t−5
y

, y(0) = 3. Determine
the domain of definition of the solution to the initial value problem. If
the solution ceases to exist at a finite point, tell me whether the solution
ceases to exist by approaching a “bad” point (in the sense of the Picard-
Lindelöf theorem) or by becoming unbounded.

(AB 39) Solve the initial-value problem dy
dt

= y2, y(0) = 1=4. Determine
the domain of definition of the solution to the initial value problem. If
the solution ceases to exist at a finite point, tell me whether the solution
ceases to exist by approaching a “bad” point (in the sense of the Picard-
Lindelöf theorem) or by becoming unbounded.

(AB 40) Find all of the “bad” points (in the sense of the Picard-Lindelöf
theorem) for the differential equation dy

dt
= 1

(t−3) ln y .

(AB 41) Find all of the “bad” points (in the sense of the Picard-Lindelöf
theorem) for the differential equation dy

dt
= 3

p
(y − 4)(t − 2).



(AB 42)
(a) Find all equilibrium solutions to the differential equation dy

dt
=

2 3

p
(y − 4)(t − 2).

(b) Use the method of separation of variables to find a solution to the
initial value problem dy

dt
= 2 3

p
(y − 4)(t − 2), y(3) = 3.

(c) Use the method of separation of variables to find a solution to the
initial value problem dy

dt
= 2 3

p
(y − 4)(t − 2), y(3) = 5.

(d) You have found three solutions to the differential equation dy
dt

=

2 3

p
(y − 4)(t − 2). Do your solutions cross at any point?

(e) Find two piecewise-defined solutions to the initial value problem
dy
dt

= 2 3

p
(y − 4)(t − 2), y(3) = 3 that are different from each

other and also different from the solution you found in Problem (b).

(AB 43) The function y1(t) = et is a solution to the differential equation

t d
2y
dt2
− (1 + 2t)dy

dt
+ (t + 1)y = 0. Find the general solution to this

differential equation on the interval t > 0.

(AB 44) The function y1(t) = t is a solution to the differential equation

t2 d
2y
dt2
− (t2 + 2t) dy

dt
+ (t + 2)y = 0. Find the general solution to this

differential equation on the interval t > 0.

(AB 45) The function y1(x) = x3 is a solution to the differential equation

x2 d
2y
dx2

+(x2 tan x−6x) dy
dx

+(12−3 x tan x)y = 0. Find the general solution
to this differential equation on the interval 0 < x < ı=2.



(AB 46) For each of the following initial-value problems, tell me whether
we expect to have an infinite family of solutions, no solutions, or a unique
solution. Do not find the solution to the differential equation.

(a) dy
dt

+ arctan(t) y = et , y(3) = 7.

(b) 1
1+t2

dy
dt
− t5y = cos(6t), y(2) = −1, y ′(2) = 3.

(c) d2y
dt2
− 5 sin(t) y = t, y(1) = 2, y ′(1) = 5, y ′′(1) = 0.

(d) et d
2y
dt2

+ 3(t − 4) dy
dt

+ 4t6y = 2, y(3) = 1, y ′(3) = −1.

(e) d2y
dt2

+ cos(t) dy
dt

+ 3 ln(1 + t2) y = 0, y(2) = 3.

(f ) d3y
dt3
−t7 d

2y
dt2

+ dy
dt

+5 sin(t) y = t3, y(1) = 2, y ′(1) = 5, y ′′(1) = 0,
y ′′′(1) = 3.

(g) (1 + t2) d
3y
dt3
− 3 d

2y
dt2

+ 5 dy
dt

+ 2y = t3, y(3) = 9, y ′(3) = 7,
y ′′(3) = 5.

(h) d3y
dt3
− et d

2y
dt2

+ e2t dy
dt

+ e3ty = e4t , y(−1) = 1, y ′(−1) = 3.

(i) (2 + sin t) d
3y
dt3

+ cos t d
2y
dt2

+ dy
dt

+ 5 sin(t) y = t3, y(7) = 2.

(AB 47) For each of the following initial-value problems, tell me whether
we expect to have an infinite family of solutions, no solutions, or a unique
solution. Do not find the solution to the differential equation.

(a) et dy
dt

+ y = cos t, y(0) = 3, y ′(0) = −2.

(b) (t2 + 4) d
2y
dt2

+ 3t dy
dt

+ 6y = 7t3, y(2) = 4, y ′(2) = 4, y ′′(2) = 1.

(c) d3y
dt3

+ 3d
2y
dt2

+ 3dy
dt

+ y = 0, y(4) = 3, y ′(4) = −2, y ′′(4) = 0,
y ′′′(4) = 3.

(AB 48) Find the general solution to the following differential equations.

(a) d2x
dt2

+ 12 dx
dt

+ 85x = 0.

(b) d2y
dt2

+ 4 dy
dt

+ 2y = 0.

(c) d4z
dt4

+ 7 d
2z
dt2
− 144z = 0.

(d) d4w
dt4
− 8 d

2w
dt2

+ 16w = 0.



(AB 49) Solve the following initial-value problems. Express your answers
in terms of real functions.

(a) 9 d
2v
dt2

+ 6 dv
dt

+ 2v = 0, v(0) = 3, v ′(0) = 2.

(b) d2u
dt2

+ 10 du
dt

+ 25u = 0, u(0) = 1, u′(0) = 4.

(c) 8 d
2f
dt2
− 6 df

dt
+ f = 0, f (0) = 3, f ′(0) = 1.

(AB 50) A spring is suspended vertically. When an object with mass 5
kg is attached, it stretches the spring to a new equilibrium 4 cm lower.
The system moves in a medium which damps it with damping constant
16 newton · seconds/meter. The object is pulled down an additional 2 cm
and is released with initial velocity 3 meters/second upwards.

Write the differential equation and initial conditions that describe
the position of the object. You may use 9.8 meters/second2 for the
acceleration of gravity.

(AB 51) A 2-kg object is attached to a spring with constant 80 N/m
and to a viscous damper with damping constant ˛. The object is pulled
down to 10cm below its equilibrium position and released with no initial
velocity.

Write the differential equation and initial conditions that describe the
position of the object.

If ˛ = 20 N · s/m, is the system overdamped, underdamped, or criti-
cally damped? Do you expect to see decaying oscillations in the solutions?

If ˛ = 30 N · s/m, is the system overdamped, underdamped, or crit-
ically damped? Do you expect to see decaying oscillations in the solu-
tions?

(AB 52) A 3-kg object is attached to a spring with constant k and to a
viscous damper with damping constant 42 N·sec/m. The object is set in
motion from its equilibrium position with initial velocity 5 m/s downwards.

Write the differential equation and initial conditions that describe the
position of the object.

Find the values of k for which the system is underdamped, over-
damped, and critically damped. Be sure to include units for k.



(AB 53) A 4-kg object is attached to a spring with constant 70 N/m and
to a viscous damper with damping constant ˛. The object is pushed up
to 5cm above its equilibrium position and released with initial velocity 3
m/s downwards.

Write the differential equation and initial conditions that describe the
position of the object. Then find the values of ˛ for which the system
is underdamped, overdamped, and critically damped. Be sure to include
units for ˛.

(AB 54) An object of mass m is attached to a spring with constant 80
N/m and to a viscous damper with damping constant 20 N·s/m. The
object is pulled down to 5cm below its equilibrium position and released
with initial velocity 3 m/s downwards.

Write the differential equation and initial conditions that describe the
position of the object. Then find the value of m for which the system is
underdamped, overdamped, or critically damped. Be sure to include units
for m.



(AB 55) Five objects, each with mass 3 kg, are attached to five springs,
each with constant 48 N/m. Five dampers with unknown constants are
attached to the objects. In each case, the object is pulled down to a
distance 1 cm below the equilibrium position and released from rest. You
are given that the system is critically damped in exactly one of the five
cases.

Here are the graphs of the objects’ positions with respect to time:

Damper A

0 1 2

−1

0

1

Damper B

0 1 2

−1

0

1

Damper C

0 1 2

−1

0

1

Damper D

0 1 2

−1

0

1

Damper E

0 1 2

−1

0

1

(a) For which damper is the system critically damped?
(b) For which dampers is the system overdamped?
(c) For which dampers is the system underdamped?
(d) Which damper has the highest damping constant? Which damper

has the lowest damping constant?



(AB 56) An object with mass 5 kg stretches a spring 4 cm. It is attached
to a viscous damper with damping constant 16 newton · seconds/meter.
The object is pulled down an additional 2 cm and is released with initial
velocity 3 meters/second upwards.

Using only first derivatives, write the differential equations and initial
conditions for the object’s position. That is, write a first-order system
involving the object’s position. You may use 9.8 meters/second2 for the
acceleration of gravity.

(AB 57) Imperial stormtroopers and Rebel Alliance fighters battle each
other on an open plain, where both groups can easily see and aim at all
members of the other group. Every minute, each stormtrooper has a 2%
chance of killing a rebel, and each rebel has a 5% chance of killing a
stormtrooper. There are initially 4000 stormtroopers and 1000 rebels.

Write the initial value problem for the number of stormtroopers and
rebels still alive.

(AB 58) Jedi knights and Sith lords battle in a dense forest. Every
minute, each Jedi has a 1% chance of finding each Sith lord. If a Jedi
finds a Sith lord, they fight; the Jedi has a 60% chance of dying and the
Sith lord has a 40% chance of dying. Initially there are 90 Jedi and 50
Sith lords.

Write the initial value problem for the number of Jedi and Sith lords
still alive.



(AB 59) Consider the following system of tanks. Tank A initially contains
200 L of water in which 3 kg of salt have been dissolved, and Tank B
initially contains 300 L of water in which 2 kg of salt have been dissolved.
Salt water flows into each tank at the rates shown, and the well-stirred
solution flows between the two tanks and is drained away through the
pipes shown at the indicated rates.

A B

2 L/min
5 g/L

4 L/min
6 L/min
pure water

5 L/min
mixture

3 L/min

4 L/min
mixture

Write the differential equations and initial conditions that describe the
amount of salt in each tank.

(AB 60) An isolated town has a population of 9000 people. Three of
them are simultaneously infected with a contagious disease to which no
member of the town has previously been exposed, but from which one
eventually recovers and which cannot be caught twice. Each infected
person encounters an average of 8 other townspeople per day. Encoun-
ters are distributed among susceptible, infected, and recovered people ac-
cording to their proportion of the total population. If an infected person
encounters a susceptible person, the susceptible person has a 5% chance
of contracting the disease. Each infected person has a 17% chance of
recovering from the disease on any given day.

Set up the initial value problem that describes the number of sus-
ceptible, infected, and recovered people.



(AB 61) Suppose that a disease is spreading through a town of 5000
people, and that its transmission in the absence of vaccination is given
by the Kermack-McKendrick SIR model dS

dt
= − 0:2

5000SI, dI
dt

= 0:2
5000SI −

0:1I, dR
dt

= 0:1I where t denotes time (in days), S denotes the number
of susceptible people, I denotes the number of infected people, and R
denotes the number of recovered, disease-resistant people.

Suppose we modify the model by assuming that 15 susceptible people
are vaccinated each day (and thus become resistant without being infected
first).

Set up the system of differential equations that describes the number
of susceptible, infected, and recovered people. You may use the same
variable names as before. (You may let R denote all disease-resistant
people, both vaccinated and recovered.)

(AB 62) Suppose that a disease is spreading through a town of 5000
people, and that its transmission in the absence of vaccination is given
by the Kermack-McKendrick SIR model dS

dt
= − 0:2

5000SI, dI
dt

= 0:2
5000SI −

0:1I, dR
dt

= 0:1I where t denotes time (in days), S denotes the number
of susceptible people, I denotes the number of infected people, and R
denotes the number of recovered, disease-resistant people.

Suppose we modify the model by assuming that 15 people are vacci-
nated each day (and thus become resistant without being infected first).
No testing is available, and so vaccines are distributed among susceptible,
resistant, and infected people according to their proportion of the total
population. A vaccine administered to an infected or resistant person has
no effect.

Set up the system of differential equations that describes the number
of susceptible, infected, and resistant people. You may use the same
variable names as before. (You may let R denote all disease-resistant
people, both vaccinated and recovered.)



(AB 63) An isolated town has a population of 9000 people. Three of
them are simultaneously infected with a contagious disease to which no
member of the town has previously been exposed, but from which one
eventually recovers.

Each infected person encounters an average of 20 other townspeople
per day. Encounters are distributed among susceptible, infected, and
recovered people according to their proportion of the total population.
If an infected person encounters a susceptible person, the susceptible
person has a 5% chance of contracting the disease. If an infected person
encounters a recovered person, the recovered person has a 1% chance of
contracting the disease again. Each infected person has a 12% chance of
recovering from the disease on any given day.

Set up the initial value problem that describes the number of sus-
ceptible, infected, and recovered people.

(AB 64) Here is a grid. Draw a small phase plane (vector field) with nine
arrows for the autonomous system dx

dt
= y , dy

dt
= x .

−1 0 1

−1

0

1

x

y

•

•

•

•

•

•

•

•

•



(AB 65) Here is the phase plane for the system

dx

dt
= 2y − x; dy

dt
= −2x − y

Sketch the solution to the initial value problem

dx

dt
= 2y − x; dy

dt
= −2x − y; x(0) = 2; y(0) = 1:

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3



(AB 66) Find the solution to the initial-value problem

dx

dt
= 5y;

dy

dt
= −x + 4y; x(0) = −3; y(0) = 2:

Express your final answer in terms of real functions (no complex numbers
or complex exponentials).

Note: On the exam I may ask you to find the general solution instead.
However, for a problem like this there are always many ways to write the
general solution, not all of which are obviously equivalent; solutions to
initial value problems take much more predictable forms and therefore
make the answer key much easier to read.

(AB 67) Find the solution to the initial-value problem

dx

dt
= 13x − 39y;

dy

dt
= 12x − 23y; x(0) = 5; y(0) = 2:

Express your final answer in terms of real functions (no complex numbers
or complex exponentials).

(AB 68) Find the solution to the initial-value problem

dx

dt
= −6x + 9y;

dy

dt
= −5x + 6y; x(0) = 1; y(0) = −3:

Express your final answer in terms of real functions (no complex numbers
or complex exponentials).



(AB 69) Find the solution to the initial-value problem

dx

dt
= 4x+y−z; dy

dt
= x+4y−z; dz

dt
= 4z−x−y; x(0) = 3; y(0) = 9; z(0) = 0:

Express your final answer in terms of real functions (no complex numbers
or complex exponentials).

Hint: det

0@ 4−m 1 −1
1 4−m −1
−1 −1 4−m

1A = −(m − 3)2(m − 6).

(AB 70) Find the solution to the initial-value problem

dx

dt
= 3x+y;

dy

dt
= 2x+3y−2z;

dz

dt
= y+3z; x(0) = 3; y(0) = 2; z(0) = 1:

Express your final answer in terms of real functions (no complex numbers
or complex exponentials).

Hint: det

0@ 3−m 1 0
2 3−m −2
0 1 3−m

1A = −(m − 3)3.

(AB 71) Find the solution to the initial-value problem

dx

dt
= x+y+z;

dy

dt
= x+3y−z; dz

dt
= 2y+2z; x(0) = 4; y(0) = 3; z(0) = 5:

Express your final answer in terms of real functions (no complex numbers
or complex exponentials).

Hint: det

0@ 1−m 1 1
1 3−m −1
0 2 2−m

1A = −(m − 2)3.



(AB 72) Find the solution to the initial-value problem

dx

dt
= −6x+9y−15;

dy

dt
= −5x+6y−8; x(0) = 2; y(0) = 5:

Express your final answer in terms of real functions (no complex numbers
or complex exponentials).

(AB 73) Find the solution to the initial-value problem

dx

dt
= 6x + 8y + t8e2t ;

dy

dt
= −2x − 2y; x(0) = 1; y(0) = 0:

Express your final answer in terms of real functions (no complex numbers
or complex exponentials).

(AB 74) Find the solution to the initial-value problem

dx

dt
= 5y + e2t cos t;

dy

dt
= −x + 4y; x(0) = 5; y(0) = 0:

Express your final answer in terms of real functions (no complex numbers
or complex exponentials).

(AB 75) Find the solution to the initial-value problem

dx

dt
= 2x+ 3y + sin(et);

dy

dt
= −4x−5y; x(0) = 0; y(0) = 0:

Express your final answer in terms of real functions (no complex numbers
or complex exponentials).

(AB 76) Find the general solution to the equation 9d
2y
dt2
− 6dy

dt
+ y =

9et=3 ln t on the interval 0 < t <∞.



(AB 77) Find the general solution to the equation 2d
2y
dt2

+ 3 dy
dt

+ y =

sin(et=2).

(AB 78) The general solution to the differential equation t2 d
2x
dt2
− t dx

dt
−

3x = 0, t > 0, is x(t) = C1t
3 + C2t

−1. Find the general solution to the

differential equation t2 d
2y
dt2
− t dy

dt
− 3y = 6t−1.

(AB 79) The general solution to the differential equation t2 d
2x
dt2
−2x = 0,

t > 0, is x(t) = C1t
2 + C2t

−1. Solve the initial-value problem t2 d
2y
dt2
−

2y = 9
√
t, y(1) = 1, y ′(1) = 2 on the interval 0 < t <∞.

(AB 80) You are given that the general solution to the differential equa-

tion (1− t) d
2x
dt2

+ t dx
dt
− x = 0 on the interval t < 1 is x(t) = C1t+C2e

t .

Find the general solution to (1 − t) d
2y
dt2

+ t dy
dt
− y = (1 − t)2et on the

interval t < 1.

(AB 81) Find the general solution to the following differential equations.

(a) 6 d
2y
dt2

+ 5 dy
dt

+ y = 3e4t .

(b) 16 d
2y
dt2
− y = et=4 sin t.

(c) d2y
dt2

+ 49y = 3t sin 7t.

(d) d2y
dt2
− 4 dy

dt
= 4e3t .

(e) d2y
dt2

+ 12 dy
dt

+ 85y = t sin(3t).

(f ) d2y
dt2

+ 3 dy
dt
− 10y = 7e−5t .

(g) 16 d
2y
dt2
− 24dy

dt
+ 9y = 6t2 + cos(2t).

(h) d2y
dt2
− 6 dy

dt
+ 25y = t2e3t .

(i) d2y
dt2

+ 10 dy
dt

+ 25y = 3e−5t .

(j) d2y
dt2

+ 5 dy
dt

+ 6y = 3 cos(2t).

(k) d2y
dt2

+ 6 dy
dt

+ 9y = 5 sin(4t).

(l) d2y
dt2

+ 9y = 5 sin(3t).



(m) d2y
dt2

+ 2 dy
dt

+ y = 2t2.

(n) d2y
dt2

+ 2 dy
dt

= 3t.

(o) d2y
dt2
− 7 dy

dt
+ 12y = 5t + cos(2t).

(p) d2y
dt2
− 9y = 2et + e−t + 5t + 2.

(q) d2y
dt2
− 4 dy

dt
+ 4y = 3e2t + 5 cos t.

(AB 82) A 3-kg mass stretches a spring 5 cm. It is attached to a vis-
cous damper with damping constant 27 N · s/m and is initially at rest at
equilibrium. At time t = 0, an external force begins to act on the object;
at time t seconds, the force is 3 cos(20t) N upwards. You may take the
acceleration of gravity to be 9.8 meters/second2.

Write the differential equation and initial conditions that describe the
position of the object.

(AB 83) An object weighing 4 lbs stretches a spring 2 inches. It is initially
at rest at equilibrium. At time t = 0, an external force begins to act on
the object; at time t seconds, the force is 3 cos(!t) pounds, directed
upwards. There is no damping. You may take the acceleration of gravity
to be 32 feet/second2.

Write the differential equation and initial conditions that describe
the position of the object. Then find the value of ! for which resonance
occurs. Be sure to include units for !.

(AB 84) A 4-kg object is suspended from a spring. There is no damping.
It is initially at rest at equilibrium. At time t = 0, an external force begins
to act on the object; at time t seconds, the force is 7 sin(!t) newtons,
directed upwards.

(a) Write the differential equation and initial conditions that describe
the position of the object.

(b) It is observed that resonance occurs when ! = 20 rad/sec. What
is the constant of the spring? Be sure to include units.



(AB 85) A 1-kg object is suspended from a spring with constant 225
N/m. There is no damping. It is initially at rest at equilibrium. At time
t = 0, an external force begins to act on the object; at time t seconds, the
force is 15 cos(!t) newtons, directed upwards. Illustrated are the object’s
position as a function of time for three different values of !. You are given
that the three values are ! = 15 radians/second, ! = 16 radians/second,
and ! = 17 radians/second. Determine the value of ! that will produce
each image.

System A

0 1 2 3 4 5

−2

−1

0

1

2

System B

0 1 2 3 4 5

−2

−1

0

1

2

System C

0 1 2 3 4 5

−2

−1

0

1

2



(AB 86) Using the definition L{f (t)} =
R∞
0
e−st f (t) dt (not the ta-

ble on the cover page of this exam), find the Laplace transforms of the
following functions.

(a) f (t) = e−11t

(b) f (t) = t

(c) f (t) =


3et ; 0 < t < 4,
0; 4 ≤ t:

(AB 87) Find the Laplace transforms of the following functions. You
may use the table in your notes, on Blackboard, or in your book.

(a) f (t) = t4 + 5t2 + 4
(b) f (t) = (t + 2)3

(c) f (t) = 9e4t+7

(d) f (t) = −e3(t−2)
(e) f (t) = (et + 1)2

(f ) f (t) = 8 sin(3t)− 4 cos(3t)
(g) f (t) = t2e5t

(h) f (t) = 7e3t cos 4t
(i) f (t) = 4e−t sin 5t
(j) f (t) = t et sin t
(k) f (t) = t2 sin 5t

(l) f (t) =
R t
0
e−4r sin(3r) dr

(m) You are given that L{J0(t)} = 1√
s2+1

. Find L{t J0(t)}. (The

function J0 is called a Bessel function and is important in the
theory of partial differential equations in polar coordinates.)

(n) You are given that L{ 1√
t
e−1=t} =

√
ı√
s
e−2
√
s . Find L{

√
t e−1=t}.

(o) f (t) =


0; t < 3,
et ; t ≥ 3;

(p) f (t) =


0; t < 1,
t2 − 2t + 2; t ≥ 1;

(q) f (t) =

(
0; t < 1,
t − 2; 1 ≤ t < 2,
0; t ≥ 2



(r) f (t) =


5e2t ; t < 3,
0; t ≥ 3

(s) f (t) =


7t2e−t ; t < 3,
0; t ≥ 3

(t) f (t) =


cos 3t; t < ı,
sin 3t; t ≥ ı

(u) f (t) =

(
0; t < ı=2,
cos t; ı=2 ≤ t < ı,
0; t ≥ ı

(AB 88) For each of the following problems, find y .
(a) L{y} = 2s+8

s2+2s+5

(b) L{y} = 5s−7
s4

(c) L{y} = s+2
(s+1)4

(d) L{y} = 2s−3
s2−4

(e) L{y} = 1
s2(s−3)2

(f ) L{y} = s+2
s(s2+4)

(g) L{y} = s
(s2+1)(s2+9)

(h) L{y} = s
(s2+9)2 . Hint: Start by finding L{t sin 3t} and

L{t cos 3t}.
(i) L{y} = 4

(s2+4s+8)2 . You may express your answer as a definite

integral.
(j) L{y} = s

s2−9 L{
√
t}. You may express your answer as a definite

integral.
(k) L{y} = s

s4(s2+36) . You may express your answer as a definite

integral.

(l) L{y} = (2s−1)e−2s

s2−2s+2

(m) L{y} = (s−2)e−s

s2−4s+3

(AB 89) If a and b are constants, find L{a sin(4t) + b t cos(4t)}. Then
find values of a and b such that L{a sin(4t) + b t cos(4t)} = 1

(s2+16)2 .



(AB 90) Sketch the graph of y = t2 − t2 U(t − 1) + (2− t)U(t − 1).

(AB 91) Solve the following initial-value problems using the Laplace

transform. Do you expect the graphs of y , dy
dt

, or d2y
dt2

to show any
corners or jump discontinuities? If so, at what values of t?

(a) dy
dt
− 9y = sin 3t, y(0) = 1

(b) dy
dt
− 2y = 3e2t , y(0) = 2

(c) dy
dt

+ 5y = t3, y(0) = 3

(d) d2y
dt2
− 4 dy

dt
+ 4y = 0, y(0) = 1, y ′(0) = 1

(e) d2y
dt2
− 2 dy

dt
+ 2y = e−t , y(0) = 0, y ′(0) = 1

(f ) d2y
dt2
− 7 dy

dt
+ 12y = e3t , y(0) = 2, y ′(0) = 3

(g) d2y
dt2
− 6 dy

dt
+ 8y = t2e2t , y(0) = 3, y ′(0) = 2

(h) d2y
dt2
− 4y = et sin(3t), y(0) = 0, y ′(0) = 0

(i) d2y
dt2

+ 9y = cos(2t), y(0) = 1, y ′(0) = 5

(j) d2y
dt2

+ 9y = t sin(3t), y(0) = 0, y ′(0) = 0

(k) d2y
dt2

+ 9y = sin(3t), y(0) = 0, y ′(0) = 0

(l) d2y
dt2

+ 5 dy
dt

+ 6y =
√
t + 1, y(0) = 2, y ′(0) = 1

(m) y(t) +
R t
0
r y(t − r) dr = t.

(n) y(t) = tet +
R t
0

(t − r) y(r) dr .

(o) dy
dt

= 1− sin t −
R t
0
y(r) dr , y(0) = 0.

(p) dy
dt

+ 2y + 10
R t
0
e4ry(t − r) dr = 0, y(0) = 7.

(q) dy
dt

+ 3y =


2; 0 ≤ t < 4,
0; 4 ≤ t ; y(0) = 2, y ′(0) = 0

(r) d2y
dt2

+ 4y =


sin t; 0 ≤ t < 2ı,
0; 2ı ≤ t ; y(0) = 0, y ′(0) = 0

(s) d2y
dt2

+ 3 dy
dt

+ 2y =


1; 0 ≤ t < 10,
0; 10 ≤ t ; y(0) = 0, y ′(0) = 0

(t) d3y
dt3

+ 3 d
2y
dt2

+ 3 dy
dt

+ y =


0; 0 ≤ t < 2,
4; 2 ≤ t ; y(0) = 3, y ′(0) = 1,

y ′′(0) = 2.



(u) d2y
dt2

+ 4 dy
dt

+ 4y =


0; 0 ≤ t < 2,
3; 2 ≤ t ; y(0) = 2, y ′(0) = 1

(v) 6 d
2y
dt2

+ 5 dy
dt

+ y = 4U(t − 2), y(0) = 0, y ′(0) = 1.

(w) dy
dt

+ 9y = 7‹(t − 2), y(0) = 3.

(x) d2y
dt2

+ 4y = −2‹(t − 4ı), y(0) = 1=2, y ′(0) = 0

(y) d2y
dt2

+ 4dy
dt

+ 3y = 2‹(t − 1) + U(t − 2), y(0) = 1, y ′(0) = 0

(z) d3y
dt3
−2 d

2y
dt2

+ dy
dt
−2y = 5‹(t−4), y(0) = 1, y ′(0) = 0, y ′′(0) = 2.

(AB 92) Consider the initial value problem dx
dt

= x cos y , dy
dt

= x2 sin y ,
x(0) = 4, y(0) = ı=2. Use the phase plane method to find a nondiffer-
ential equation relating x and y .

(AB 93) Consider the system of differential equations dx
dt

= 3x − 4y ,
dy
dt

= 4x − 3y . Use the phase plane method to find a nondifferential
equation relating x and y .

(AB 94) Consider the system of differential equations dx
dt

= 3y − 2xy ,
dy
dt

= 4xy − 3y . Use the phase plane method to find a nondifferential
equation relating x and y .

(AB 95) Consider the system of differential equations dx
dt

= 3x − 4xy ,
dy
dt

= 5xy − 2y . Use the phase plane method to find a nondifferential
equation relating x and y .

(AB 96) Imperial stormtroopers and Rebel Alliance fighters battle each
other on an open plain, where both groups can easily see and aim at all
members of the other group. Every minute, each stormtrooper has a 2%
chance of killing a rebel, and each rebel has a 5% chance of killing a
stormtrooper. There are initially 4000 stormtroopers and 1000 rebels.

Find a nondifferential equation relating the number of surviving rebels
and the number of surviving stormtroopers.



(AB 97) Jedi knights and Sith lords battle in a dense forest. Every
minute, each Jedi has a 1% chance of finding each Sith lord. If a Jedi
finds a Sith lord, they fight; the Jedi has a 60% chance of dying and the
Sith lord has a 40% chance of dying. Initially there are 90 Jedi and 50
Sith lords.

Find a nondifferential equation relating the number of Jedi and Sith
lords still alive.

(AB 98) An isolated town has a population of 9000 people. Three of
them are simultaneously infected with a contagious disease to which no
member of the town has previously been exposed, but from which one
eventually recovers and which cannot be caught twice. Each infected
person encounters an average of 8 other townspeople per day. Encoun-
ters are distributed among susceptible, infected, and recovered people ac-
cording to their proportion of the total population. If an infected person
encounters a susceptible person, the susceptible person has a 5% chance
of contracting the disease. Each infected person has a 17% chance of
recovering from the disease on any given day.

(a) Set up the initial value problem that describes the number of sus-
ceptible, infected, and recovered people.

(b) Use the phase plane method to find a nondifferential equation
relating the number of susceptible and infected people.

(c) Use the phase plane method to find a nondifferential equation
relating the number of resistant and susceptible people.

(d) What is the maximum number of people that are infected at any
one time?



(AB 99) Suppose that a disease is spreading through a town of 5000
people, and that its transmission in the absence of vaccination is given
by the Kermack-McKendrick SIR model dS

dt
= − 0:2

5000SI, dI
dt

= 0:2
5000SI −

0:1I, dR
dt

= 0:1I where t denotes time (in days), S denotes the number
of susceptible people, I denotes the number of infected people, and R
denotes the number of recovered, disease-resistant people.

Suppose we modify the model by assuming that 15 susceptible people
are vaccinated each day (and thus become resistant without being infected
first).

Set up the system of differential equations that describes the number
of susceptible, infected, and recovered people. You may use the same
variable names as before. (You may let R denote all disease-resistant
people, both vaccinated and recovered.)

(AB 100) Suppose that a disease is spreading through a town of 5000
people, and that its transmission in the absence of vaccination is given
by the Kermack-McKendrick SIR model dS

dt
= − 0:2

5000SI, dI
dt

= 0:2
5000SI −

0:1I, dR
dt

= 0:1I where t denotes time (in days), S denotes the number
of susceptible people, I denotes the number of infected people, and R
denotes the number of recovered, disease-resistant people.

Suppose we modify the model by assuming that 15 people are vacci-
nated each day (and thus become resistant without being infected first).
No testing is available, and so vaccines are distributed among susceptible,
resistant, and infected people according to their proportion of the total
population. A vaccine administered to an infected or resistant person has
no effect.

(a) Set up the system of differential equations that describes the num-
ber of susceptible, infected, and resistant people. You may use the
same variable names as before. (You may let R denote all disease-
resistant people, both vaccinated and recovered.)

(b) Assume that there are initially no recovered or vaccinated people
and 7 infected people. Use the phase plane method to find a
nondifferential equation relating S and I.

(c) Find a nondifferential equation involving the maximum number of



people that are infected with the virus at any one time.

(AB 101) A small town has a population of 16,000 people. It is expected
that soon, one of them will be infected with a contagious disease.

Epidemiologists observe the town and expect each infected person
to encounter 10 people per day, who are distributed among susceptible,
vaccinated, recovered and infected people according to their proportion of
the total population. Each time an infected person encounters a suscep-
tible person, there is a 6% chance that the susceptible person becomes
infected. Each infected person has a 25% chance per day of recovering.
A recovered person can never contract the disease again.

A (not very effective) vaccine can be distributed before the epidemic
starts. Each time an infected person encounters a vaccinated person,
there is a 2% chance they become infected. (Once a vaccinated person
becomes infected, they are identical to an infected person who was never
vaccinated.)

The mayor of the town would like to be sure that no more than 2,000
people are ever infected.

(a) Set up the initial value problem that describes the number of sus-
ceptible, infected, and recovered people.

(b) Use the phase plane method to find a nondifferential equation
relating the number of susceptible and recovered people.

(c) Use the phase plane method to find a nondifferential equation re-
lating the number of recovered people to the number of vaccinated
(and never-infected) people.

(d) Find a nondifferential equation relating the number of infected
people to the number of recovered people.

(e) How many people must be vaccinated in order for there to be at
most 2000 previously-infected (and thus resistant) people when
the epidemic ends?



(AB 102) An isolated town has a population of 9000 people. Three of
them are simultaneously infected with a contagious disease to which no
member of the town has previously been exposed, but from which one
eventually recovers.

Each infected person encounters an average of 20 other townspeople
per day. Encounters are distributed among susceptible, infected, and
recovered people according to their proportion of the total population.
If an infected person encounters a susceptible person, the susceptible
person has a 5% chance of contracting the disease. If an infected person
encounters a recovered person, the recovered person has a 1% chance of
contracting the disease again. Each infected person has a 12% chance of
recovering from the disease on any given day.

(a) Set up the initial value problem that describes the number of sus-
ceptible, infected, and recovered people.

(b) Use the phase plane method to find a nondifferential equation
relating the number of susceptible and recovered people. Solve for
the number of recovered people.

(c) Write a nondifferential equation relating the number of infected
people to the number of susceptible people.

(d) Does the number of infected people ever approach zero? If so,
how many susceptible people are left at that time?

(e) Does the number of susceptible people ever approach zero? If so,
how many infected people and how many resistant people are there
at that time?

(AB 103) Suppose that d2x
dt2

= 18x3, x(0) = 1, x ′(0) = 3. Let v = dx
dt

.
Find a formula for v in terms of x . Then find a formula for x in terms
of t.



(AB 104) Suppose that a rocket of mass m = 1000 kg is launched
straight up from the surface of the planet Gallifrey with initial velocity
10 km/sec. The radius of Gallifrey is 3,000 km. When the rocket is r
meters from the center of Gallifrey, it experiences a force due to gravity
of magnitude GMm=r2, where GM = 6× 1014 meters3/second2.

(a) Formulate the initial value problem for the rocket’s position.

(b) Find the velocity of the rocket as a function of position.
(c) How far away from the earth is the rocket when it stops moving

and starts to fall back?

(AB 105) A 5-kg toolbox is dropped (from rest) out of a spaceship at
an altitude of 9,000 km above the surface of Gallifrey. The radius of
Gallifrey is 3,000 km. When the toolbox is r meters from the center of
the earth, it experiences a force due to gravity of magnitude 5GM=r2,
where GM = 6× 1014 meters3/second2.

(a) Formulate the initial value problem for the toolbox’s position.

(b) Find the velocity of the toolbox as a function of position.
(c) How fast is the toolbox moving when it strikes the surface of

Gallifrey?

(AB 106) A particle of mass m = 3 kg a distance r from an infinitely
long string experiences a force due to gravity of magnitude Gm=r , where
G = 2000 meters2/second2, directed directly toward the string. Suppose
that the particle is initially 1000 meters from the string and takes off with
initial velocity 200 meters/second directly away from the string.

(a) Formulate the initial value problem for the particle’s position.

(b) Find the velocity of the particle as a function of position.
(c) How far away from the string is the particle when it stops moving

and starts to fall back?



(AB 107) A charged particle of mass m = 20 g a distance r meters from
an electric dipole experiences a force of 3=r3 newtons, directed directly
toward the dipole. Suppose that the particle is initially 3 meters from
the dipole and is set in motion with initial velocity 5 meters/second away
from the dipole.

(a) Formulate the initial value problem for the particle’s position.

(b) Find the velocity of the particle as a function of position.

(c) What is the limiting velocity of the particle?

(AB 108) Suppose that a bob of mass 300g hangs from a pendulum of
length 15cm. The pendulum is set in motion from its equilibrium point
with an initial velocity of 3 meters/second.

If „ denotes the angle between the pendulum and the vertical, then

the pendulum satisfies the equation of motion m d2„
dt2

= −mg
‘

sin „, where
m is the mass of the pendulum bob, ‘ is the length of the pendulum
and g is the acceleration of gravity (which you may take to be 9:8
meters/second2).

Find a formula for ! = d„
dt

in terms of „.



(AB 109) Here are some phase planes. To which of the following systems
do these phase planes correspond? How do you know?

(a)

„
x ′

y ′

«
=

„
2:2 −0:6
0:4 0:8

«„
x
y

«
, solution„

x(t)
y(t)

«
= C1e

t

„
1
2

«
+ C2e

2t

„
3
1

«

(b)

„
x ′

y ′

«
=

„
−2:6 1:8
−1:2 1:6

«„
x
y

«
, solution„

x(t)
y(t)

«
= C1e

t

„
1
2

«
+ C2e

−2t
„

3
1

«

(c)

„
x ′

y ′

«
=

„
4=3 −1=6
2=3 2=3

«„
x
y

«
, solution„

x(t)
y(t)

«
= C1e

t

„
1
2

«
+ C2e

t

„
t + 3

2t

«

(d)

„
x ′

y ′

«
=

„
1 4:5
−2 1

«„
x
y

«
, solution„

x(t)
y(t)

«
= C1e

t

„
3 sin 3t
2 cos 3t

«
+ C2e

t

„
−3 cos 3t

2 sin 3t

«

(e)

„
x ′

y ′

«
=

„
2 5
−4 −2

«„
x
y

«
, solution„

x(t)
y(t)

«
= C1

„
5 sin 4t

4 cos 4t − 2 sin 4t

«
+C2

„
5 cos 4t

−4 sin 4t − 2 cos 4t

«

(f )

„
x ′

y ′

«
=

„
3 0
0 3

«„
x
y

«
, solution„

x(t)
y(t)

«
= C1e

3t

„
1
0

«
+ C2e

3t

„
0
1

«



x

y

x

y

x

y

x

y

x

y

x

y



(AB 110) Here is a direction field and phase plane corresponding to

the system

„
dx=dt
dy=dt

«
=

„
a b
c d

«„
x
y

«
. What can you say about the

matrix

„
a b
c d

«
, eigenvalues of the matrix

„
a b
c d

«
, or the solutions

to the system?

x

y

x

y



(AB 111) Here is a direction field and phase plane corresponding to

the system

„
dx=dt
dy=dt

«
=

„
a b
c d

«„
x
y

«
. What can you say about the

matrix

„
a b
c d

«
, eigenvalues of the matrix

„
a b
c d

«
, or the solutions

to the system?

x

y

x

y



(AB 112) Here is a direction field and phase plane corresponding to

the system

„
dx=dt
dy=dt

«
=

„
a b
c d

«„
x
y

«
. What can you say about the

matrix

„
a b
c d

«
, eigenvalues of the matrix

„
a b
c d

«
, or the solutions

to the system?

x

y

x

y



(AB 113) Here is a direction field and phase plane corresponding to

the system

„
dx=dt
dy=dt

«
=

„
a b
c d

«„
x
y

«
. What can you say about the

matrix

„
a b
c d

«
, eigenvalues of the matrix

„
a b
c d

«
, or the solutions

to the system?

x

y

x

y



(AB 114) Here is a direction field and phase plane corresponding to

the system

„
dx=dt
dy=dt

«
=

„
a b
c d

«„
x
y

«
. What can you say about the

matrix

„
a b
c d

«
, eigenvalues of the matrix

„
a b
c d

«
, or the solutions

to the system?

x

y

x

y



(AB 115) Here is a direction field and phase plane corresponding to

the system

„
dx=dt
dy=dt

«
=

„
a b
c d

«„
x
y

«
. What can you say about the

matrix

„
a b
c d

«
, eigenvalues of the matrix

„
a b
c d

«
, or the solutions

to the system?

x

y

x

y



(AB 116) Here is a direction field and phase plane corresponding to

the system

„
dx=dt
dy=dt

«
=

„
a b
c d

«„
x
y

«
. What can you say about the

matrix

„
a b
c d

«
, eigenvalues of the matrix

„
a b
c d

«
, or the solutions

to the system?

x

y

x

y



(AB 117) Here are some phase planes. To which of the following sys-
tems do these phase planes correspond? How do you know?

(a)

„
x ′

y ′

«
=

„
2:2 −0:6
0:4 0:8

«„
x
y

«
, solution

„
x(t)
y(t)

«
= C1e

t

„
1
2

«
+

C2e
2t

„
3
1

«
(b)

„
x ′

y ′

«
=

„
5 −2
−1 4

«„
x
y

«
, solution

„
x(t)
y(t)

«
= C1e

3t

„
1
1

«
+

C2e
6t

„
2
−1

«

x

y



(AB 118) Here are some phase planes. To which of the following sys-
tems do these phase planes correspond? How do you know?

(a)

„
x ′

y ′

«
=

„
2 −2
−1 3

«„
x
y

«
, solution

„
x(t)
y(t)

«
=

C1e
4t

„
1
−1

«
+ C2e

t

„
2
1

«
(b)

„
x ′

y ′

«
=

„
3 2
1 2

«„
x
y

«
, solution

„
x(t)
y(t)

«
= C1e

t

„
1
−1

«
+

C2e
4t

„
2
1

«



(AB 119) Here are some phase planes. To which of the following sys-
tems do these phase planes correspond? How do you know?

(a)

„
x ′

y ′

«
=

„
4 6
9 −11

«„
x
y

«
, solution

„
x(t)
y(t)

«
= C1e

7t

„
2
1

«
+

C2e
−14t

„
1
−3

«
(b)

„
x ′

y ′

«
=

„
−4 −6
−9 11

«„
x
y

«
, solution

„
x(t)
y(t)

«
= C1e

−7t
„

2
1

«
+

C2e
14t

„
1
−3

«



(AB 120) Here are some phase planes. To which of the following sys-
tems do these phase planes correspond? How do you know?

(a)

„
x ′

y ′

«
=

„
−3 4
−8 5

«„
x
y

«
, eigenvalues r = 1± 4i

(b)

„
x ′

y ′

«
=

„
3 −4
8 −5

«„
x
y

«
, eigenvalues r = −1± 4i



Answer key

(AB 1) Here is a grid. Draw a small direction field (with nine slanted
segments) for the differential equation dy

dt
= t − y .

(Answer 1) Here is the direction field for the differential equation dy
dt

=
t − y .

0 1 2

0

1

2

t

y

(AB 2) Consider the differential equation dy
dx

= (y2−x2)=3. Here is the
direction field for this differential equation. Sketch, approximately, the
solution to

dy

dx
= (y2 − x2)=3; y(−2) = 1:



(Answer 2)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

•

(AB 3) Consider the differential equation dy
dx

= 2
2−y2 . Here is the di-

rection field for this differential equation. Sketch, approximately, the
solution to

dy

dx
=

2

2− y2 ; y(1) = 0:

Based on your sketch, what is the (approximate) domain of definition of
the solution to this differential equation?



(Answer 3)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

•

The domain of definition of the solution appears to be 0 < t < 2.

(AB 4) Consider the differential equation dy
dx

= y5. Here is the di-
rection field for this differential equation. Sketch, approximately, the
solution to

dy

dx
= y5; y(1) = −1:

Based on your sketch, what is the (approximate) domain of definition of
the solution to this differential equation?



(Answer 4)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

•

The domain of definition of the solution appears to be approxi-
mately t < 1:3.

(AB 5) Consider the differential equation dy
dx

= 1=y2. Here is the di-
rection field for this differential equation. Sketch, approximately, the
solution to

dy

dx
=

1

y2
; y(3) = 2:

Based on your sketch, what is the (approximate) domain of definition of
the solution to this differential equation?



(Answer 5)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

•

The domain of definition of the solution appears to be 1
4 < t.

(AB 6) A lake initially has a population of 600 trout. The birth rate of
trout is proportional to the number of trout living in the lake. Fisher-
men are allowed to harvest 30 trout/year from the lake. Write an initial
value problem for the fish population. Specify your independent and de-
pendent variables, any unknown parameters, and your initial condition.

(Answer 6) Independent variable: t = time (in years).
Dependent variable: P = Number of trout in the lake
Initial condition: P (0) = 600.
Parameters: ¸ = birth rate (in 1=years).
Differential equation: dP

dt
= ¸P − 30.



(AB 7) Five songbirds are blown off course onto an island with no birds
on it. The birth rate of songbirds on the island is then proportional to
the number of birds living on the island, and the death rate is propor-
tional to the square of the number of birds living on the island. Write
an initial value problem for the bird population. Specify your indepen-
dent and dependent variables, any unknown parameters, and your initial
condition.

(Answer 7) Independent variable: t = time (in years).
Dependent variable: P = Number of birds on the island.
Parameters: ¸ = birth rate parameter (in 1=years); ˛ = death rate

parameter (in 1=(bird·years)).
Initial condition: P (0) = 5.
Differential equation: dP

dt
= ¸P − ˛P 2.

(AB 8) A tank contains nitrogen dioxide. Initially, there are 200 grams
of NO2. The gas decays (converts to molecular oxygen and nitrogen)
at a rate proportional to the square of the amount of NO2 remain-
ing. Write an initial value problem for the amount of NO2 in the tank.
Specify your independent and dependent variables, any unknown param-
eters, and your initial condition.

(Answer 8) Independent variable: t = time (in minutes).
Dependent variable: M = Amount of NO2 in the tank (in grams).
Parameters: ¸ = reaction rate parameter (in 1=second·grams).
Initial condition: M(0) = 200.
Differential equation: dM

dt
= −¸M2.



(AB 9) A tank contains hydrogen gas and iodine gas. Initially, there
are 50 grams of hydrogen and 3000 grams of iodine. These two gases
react to form hydrogen iodide at a rate proportional to the product of
the amount of iodine remaining and the amount of hydrogen remaining.
The reaction consumes 126.9 grams of iodine for every gram of hydro-
gen consumed. Write an initial value problem for the amount of hydro-
gen in the tank. Specify your independent and dependent variables, any
unknown parameters, and your initial condition.

(Answer 9) Independent variable: t = time (in minutes).
Dependent variable: H = Amount of hydrogen in the tank (in

grams).
Parameters: ¸ = reaction rate parameter (in 1=minute·grams).
Initial condition: H(0) = 50.
Differential equation: dH

dt
= −¸H(126:9H − 3345).

(AB 10) According to Newton’s law of cooling, the temperature of an
object changes at a rate proportional to the difference between its tem-
perature and that of its surroundings. Suppose that a cup of coffee is
initially at a temperature of 95◦C and is placed in a room at a temper-
ature of 25◦C. Write an initial value problem for the temperature of the
cup of coffee. Specify your independent and dependent variables, any
unknown parameters, and your initial condition.

(Answer 10) Independent variable: t = time (in seconds).
Dependent variable: T = Temperature of the cup (in degrees Cel-

sius)
Initial condition: T (0) = 95.
Differential equation: dT

dt
= −¸(T − 25), where ¸ is a positive

parameter (constant of proportionality) with units of 1=seconds.



(AB 11) A large tank initially contains 600 liters of water in which 3
kilograms of salt have been dissolved. Every minute, 2 liters of a salt
solution with a concentration of 5 grams per liter flows in, and 3 liters
of the well-mixed solution flows out. Write an initial value problem for
the amount of salt in the tank. Specify your independent and depen-
dent variables, any unknown parameters, and your initial condition.

(Answer 11) Independent variable: t = time (in minutes).
Dependent variable: Q = amount of dissolved salt (in kilograms).
Initial condition: Q(0) = 3.
Differential equation: dQ

dt
= 0:01− 3Q

600−t .

(AB 12) I want to buy a house. I borrow $300,000 and can spend
$1600 per month on mortgage payments. My lender charges 4% inter-
est annually, compounded continuously. Suppose that my payments are
also made continuously. Write an initial value problem for the amount
of money I owe. Specify your independent and dependent variables, any
unknown parameters, and your initial condition.

(Answer 12) Independent variable: t = time (in years).
Dependent variable: B = balance of my loan (in dollars).
Initial condition: B(0) = 300;000.
Differential equation: dB

dt
= 0:04B − 12 · 1600

(AB 13) A hole in the ground is in the shape of a cone with radius 1
meter and depth 20 cm. Initially, it is empty. Water leaks into the hole
at a rate of 1 cm3 per minute. Water evaporates from the hole at a
rate proportional to the area of the exposed surface. Write an initial
value problem for the volume of water in the hole. Specify your inde-
pendent and dependent variables, any unknown parameters, and your
initial condition.



(Answer 13) Independent variable: t = time (in minutes).
Dependent variables:
h = depth of water in the hole (in centimeters)
V = volume of water in the hole (in cubic centimeters); notice that

V = 1
3ı(5h)2h
Initial condition: V (0) = 0.
Differential equation: dV

dt
= 1− ¸ı(5h)2 = 1− 25¸ı(3V =25ı)2=3,

where ¸ is a proportionality constant with units of cm/s.

(AB 14) According to the Stefan-Boltzmann law, a black body in a
dark vacuum radiates energy (in the form of light) at a rate propor-
tional to the fourth power of its temperature (in kelvins). Suppose that
a planet in space is currently at a temperature of 400 K. Write an initial
value problem for the planet’s temperature. Specify your independent
and dependent variables, any unknown parameters, and your initial con-
dition.

(Answer 14) Independent variable: t = time (in seconds).
Dependent variable: T = object’s temperature (in kelvins)
Parameter: ff = proportionality constant (in 1/(seconds·kelvin3))
Initial condition: T (0) = 400.
Differential equation: dT

dt
= −ffT 4.

(AB 15) According to the Stefan-Boltzmann law, a black body in a
vacuum radiates energy (in the form of light) at a rate proportional to
the fourth power of its temperature (in kelvins). If there is some ambi-
ent light in the vacuum, then the black body absorbs energy at a rate
proportional to the fourth power of the effective temperature of the
light. The proportionality constant is the same in both cases.

Suppose that a planet in space is currently at a temperature of 400
K. The effective temperature of its surroundings is 3 K. Write an initial
value problem for the planet’s temperature. Specify your independent
and dependent variables, any unknown parameters, and your initial con-
dition.



(Answer 15) Independent variable: t = time (in seconds).
Dependent variable: T = object’s temperature (in kelvins)
Parameter: ff = proportionality constant (in 1/(seconds·kelvin3))
Initial condition: T (0) = 400.
Differential equation: dT

dt
= −ffT 4 + 81ff.

(AB 16) A ball is thrown upwards with an initial velocity of 10 me-
ters per second. The ball experiences a downwards force due to the
Earth’s gravity and a drag force proportional to its velocity. Write an
initial value problem for the ball’s velocity. Specify your independent
and dependent variables, any unknown parameters, and your initial con-
dition.

(Answer 16) Independent variable: t = time (in seconds).
Dependent variable: v = velocity of the ball (in meters/second,

where a positive velocity denotes upward motion).
Parameters: ¸ = proportionality constant of the drag force (in

newton·seconds/meter)
m = mass of the ball (in kilograms)

Initial condition: v(0) = 10.
Differential equation: dv

dt
= −9:8− (¸=m)v .

(AB 17) A ball of mass 300 g is thrown upwards with an initial velocity
of 20 meters per second. The ball experiences a downwards force due
to the Earth’s gravity and a drag force proportional to the square of its
velocity. Write an initial value problem for the ball’s velocity. Specify
your independent and dependent variables, any unknown parameters,
and your initial condition.



(Answer 17) Independent variable: t = time (in seconds).
Dependent variable: v = velocity of the ball (in meters/second,

where a positive velocity denotes upward motion).
Parameter: ¸ = proportionality constant of the drag force (in

newton·seconds/meter).
Initial condition: v(0) = 20.
Differential equation: dv

dt
= −9:8 − (¸=0:3)v |v |, or dv

dt
=

−9:8− (¸=0:3)v2; v ≥ 0,
−9:8 + (¸=0:3)v2; v < 0.

(AB 18) Consider the autonomous first-order differential equation dy
dx

=
(y − 2)(y + 1)2. By hand, sketch some typical solutions.



(Answer 18)

t

y

(AB 19) Find the critical points and draw the phase portrait of the
differential equation dy

dx
= sin y . Classify each critical point as asymp-

totically stable, unstable, or semistable.



(Answer 19)
Critical points: y = kı for any integer k .

0
•

ı
•

−ı
•

2ı
•

−2ı
•

If k is even then y = kı is unstable.
If k is odd then y = kı is stable.

(AB 20) Find the critical points and draw the phase portrait of the
differential equation dy

dx
= y2(y − 2). Classify each critical point as

asymptotically stable, unstable, or semistable.

(Answer 20)
Critical points: y = 0 and y = 2.

0
•

2
•

y = 0 is semistable. y = 2 is unstable.

(AB 21) Trout live in a lake. Each trout produces, on average, one
baby trout every two years. Fishermen are allowed to harvest 100
trout/year from the lake. You may neglect other reasons why trout die.

(a) Formulate a differential equation for the number of trout in the
lake.
dP
dt

= 1
2P − 100, where t denotes time in years and P denotes

the number of trout in the lake.
(b) Find the critical points of this differential equation and classify

them as to stability.
The critical point is P = 200. It is unstable.

(c) What is the real-world meaning of the critical points?
If there are initially fewer than 200 trout in the lake, then even-
tually the trout will go extinct. If there are initially more than
200 trout in the lake, the trout population will grow without
limit (or at least, until the present model stops being applicable).



(AB 22) I owe my bank a debt of B dollars. The bank assesses an in-
terest rate of 5% per year, compounded continuously. I pay the debt off
continuously at a rate of 1600 dollars per month.

(a) Formulate a differential equation for the amount of money I owe.

dB
dt

= 0:05B − 19200, where t denotes time in years.
(b) Find the critical points of this differential equation and classify

them as to stability.
The critical point is B = $384;000. It is unstable.

(c) What is the real-world meaning of the critical points?
If my initial debt is less than $384,000, then I will eventually
pay it off (have a debt of zero dollars), but if my initial debt is
greater than $384,000, my debt will grow exponentially. The
critical point B = 384;000 corresponds to the balance that will
allow me to make interest-only payments on my debt.

(AB 23) A large tank contains 600 liters of water in which salt has
been dissolved. Every minute, 2 liters of a salt solution with a con-
centration of 5 grams per liter flows in, and 2 liters of the well-mixed
solution flows out.

(a) Write the differential equation for the amount of salt in the
tank.
dQ
dt

= 10− Q=300, where Q denotes the amount of salt in grams
and t denotes time in minutes.

(b) Find the critical points of this differential equation and classify
them as to stability.
The critical point is Q = 3000. It is stable.

(c) What is the real-world meaning of the critical points?
No matter the initial amount of salt in the tank, as time passes
the amount of salt will approach 3000 g or 3 kg.



(AB 24) A skydiver with a mass of 70 kg falls from an airplane. She
deploys a parachute, which produces a drag force of magnitude 2v2

newtons, where v is her velocity in meters per second.
(a) Write a differential equation for her velocity. Assume her velocity

is always downwards.
If v ≤ 0 then 70dv

dt
= −70 ∗ 9:8 + 2v2. (If v > 0 then 70dv

dt
=

−70 ∗ 9:8− 2v2.)
(b) Find the critical points of this differential equation and classify

them as to stability. Be sure to include units.
v = −

√
343 meters/second is a stable critical point.

(c) What is the real-world meaning of these critical points?
As t → ∞, her velocity will approach the stable critical point of
v = −

√
343 meters/second.

(AB 25) A tank contains hydrogen gas and iodine gas. Initially, there
are 50 grams of hydrogen and 3000 grams of iodine. These two gases
react to form hydrogen iodide at a rate proportional to the product of
the amount of iodine remaining and the amount of hydrogen remaining.
The reaction consumes 126.9 grams of iodine for every gram of hydro-
gen.

(a) Write a differential equation for the amount of hydrogen left in
the tank.
dH
dt

= −¸H(126:9H − 3345), where H is the amount of hydro-
gen remaining (in grams), t denotes time in minutes, and ¸ is a
positive parameter.

(b) Find the critical points of this differential equation and classify
them as to stability. Be sure to include units.
H = 0 grams (unstable) and H = 26:36 grams (stable).

(c) What is the real-world meaning of these critical points?
As t → ∞, the amount of hydrogen in the tank will tend to-
wards 26.36 grams. The H = 0 critical point is not physically
meaningful, as if H = 0 grams then the model predicts −3345
grams of iodine in the tank.



(AB 26) Young oak trees grow in a large field with area 1 square kilo-
meter. Initially, there are 30 trees in the field. Each tree shades 20
square meters. The trees produce acorns. Squirrels scatter the acorns
across the field at random. Squirrels eat most of the acorns; on aver-
age, each tree produces two acorns per year that are not eaten by squir-
rels. Every acorn not eaten by squirrels and planted in sunlight sprouts.

(a) Write a differential equation for the number of trees in the field.

dP
dt

= 2P (1− 20P=1;000;000), where P is the number of trees in
the field and t denotes time in years.

(b) Find the critical points of this differential equation and classify
them as to stability.
P = 0 (unstable) and P = 50;000 trees (stable).

(c) What is the real-world meaning of these critical points?
If there are initially no trees in the field, then the number of
trees will remain at the P = 0 equilibrium. However, if there
are initially any trees in the field, then as t → ∞, the number of
trees will approach 50;000.

(AB 27) A hole in the ground is in the shape of a cone with radius 1
meter and depth 20 cm. Water leaks into the hole at a rate of 1 cm3

per minute. Water evaporates from the hole at a rate of 3 cm3 per ex-
posed cm2 per hour.

(a) Write a differential equation for the amount of water in the tank.

dV
dt

= 1− 75ı(3V =25ı)2=3, where t denotes time in hours and V
is the volume of water in the hole in cm3.

(b) Find the critical points of this differential equation and classify
them as to stability.
V = (25=3)(1=75ı)3=2. The critical point is stable.

(c) What is the real-world meaning of these critical points?
As t → ∞, the amount of water in the hole will approach
(25=3)(1=75ı)3=2 cubic centimeters.



(AB 28) Is y = et a solution to the differential equation d2y
dt2

+ 4t
1−2t

dy
dt
−

4
1−2t y = 0?

(Answer 28) No, y = et is not a solution to the differential equation
d2y
dt2

+ 4t
1−2t

dy
dt
− 4

1−2t y = 0.

(AB 29) Is y = e2t a solution to the differential equation d2y
dt2

+
4t

1−2t
dy
dt
− 4

1−2t y = 0?

(Answer 29) Yes, y = e2t is a solution to the differential equation
d2y
dt2

+ 4t
1−2t

dy
dt
− 4

1−2t y = 0.

(AB 30) Is y = e3t a solution to the initial value problem dy
dt

= 2y ,
y(0) = 1?

(Answer 30) No.

(AB 31) Is y = e3t a solution to the initial value problem dy
dt

= 3y ,
y(0) = 2?

(Answer 31) No.

(AB 32) Is y = e3t a solution to the initial value problem dy
dt

= 3y ,
y(0) = 1?

(Answer 32) Yes.

(AB 33) Is y = e3t a solution to the initial value problem dy
dt

= 2y ,
y(0) = 2?

(Answer 33) No.



(AB 34) For each of the following differential equations, determine
whether it is linear, separable, exact, Bernoulli, of the form dy

dt
=

f (y=t), or of the form dy
dt

= f (At + By + C). Then solve the differ-
ential equation.

(a) t + cos t + (y − sin y) dy
dt

= 0

t + cos t + (y − sin y) dy
dt

= 0 is separable (and also exact) and

has solution 1
2y

2 + cos y = − 1
2 t

2 − sin t + C.

(b) ln y + y + x +
`
x
y

+ x
´
dy
dx

= 0

ln y + y + x +
`
x
y

+ x
´
dy
dx

= 0 is exact and has solution x ln y +

xy + 1
2x

2 = C.

(c) 1 + t2 − ty + (t2 + 1) dy
dt

= 0

1 + t2 − ty + (t2 + 1)dy
dt

= 0 is linear and has solution y =

−
√
t2 + 1 ln(t +

√
t2 + 1) + C

√
t2 + 1.

(d) ty − y2 − t2 + t2 dy
dt

= 0

ty − y2 − t2 + t2 dy
dt

= 0 is of the form dy
dt

= f (y=t) and has
solution y = t

C−ln|t| + t.

(e) 4ty3 + 6t3 + (3 + 6t2y2 + y5)dy
dt

= 0

4ty3 + 6t3 + (3 + 6t2y2 + y5) dy
dt

= 0 is exact and has solution

2t2y3 + 3
2 t

4 + 3y + 1
6y

6 = C.

(f ) y tan 2x + y3 cos 2x + dy
dx

= 0

y tan 2x + y3 cos 2x + dy
dx

= 0 is Bernoulli. Let v = y−2. Then
dv
dx

= 2v tan 2x+2 cos 2x , so v = 1
2 sin(2x)+x sec(2x)+C sec(2x)

and y = 1√
1

2
sin(2x)+x sec(2x)+C sec(2x)

.

(g) 3t − 5x + (t + x) dx
dt

= 0

3t − 5x + (t + x) dx
dt

= 0 is of the form dy
dt

= f (y=t) and has
solution (x − 3t)2 = C(x − t).

(h) dy
dt

= 1
3t+2y+7 .

If dy
dt

= 1
3t+2y+7 , then 3t+2y+7

3 − 2
9 ln|3t+2y+7+2=3| = ln|t|+C.

(i) y3 cos(2t) + dy
dt

= 0



y3 cos(2t) + dy
dt

= 0 is separable and has solution y =

± 1√
sin(2t)+C

or y = 0.

(j) 4ty dy
dt

= 3y2 − 2t2

4ty dy
dt

= 3y2 − 2t2 is of the form dy
dt

= f (y=t) (and also
Bernoulli) and has solution 2 ln(y2=t2 + 2) = − ln|t|+ C.

(k) t dy
dt

= 3y − t2

y5

t dy
dt

= 3y − t2

y5
is a Bernoulli equation. Let v = y6. Then

t dv
dt

= 18v − 6t2, so v = Ct18 + 3
8 t

2 and y = 6

q
Ct18 + 3

8 t
2.

(l) sin2(x − t) dx
dt

= csc2(x − t).

If dx
dt

= csc2(x − t), then tan(x − t)− x = C.

(m) dy
dt

= 8y − y8
dy
dt

= 8y − y8 is Bernoulli (and also separable, but separating
variables results in an impossible integral). Make the substitu-
tion v = y−7. Then dv

dt
= −56v + 7, so v = Ce−56t + 1

8 and

y = 1
7
√
Ce−56t+1=8

.

(n) t dz
dt

= − cos t − 3z

t dz
dt

= − cos t − 3z is linear and has solution z = 1
t

sin t +
2
t2

cos t − 2
t3

sin t + C
t3

.

(o) dy
dt

= cot(y=t) + y=t
dy
dt

= cot(y=t) +y=t is of the form dy
dt

= f (y=t) and has solution
sec(y=t) = Ct.

(p) dy
dt

= ty + t2 3
√
y

dy
dt

= ty + t2 3
√
y is Bernoulli. Make the substitution v = y2=3.

Then v = −t − 3
2 + Cet

2=3 and so y =
q

(−t − 3
2 + Cet2=3)3.



(AB 35) For each of the following differential equations, find all the
equilibrium solutions or state that no such solutions exist. You do not
need to find the nonequilibrium solutions.

(a) dy
dt

= y3 − yt
y = 0.

(b) dy
dt

= t2ey

There are no equilibrium solutions.
(c) dy

dt
= ty + t3

There are no equilibrium solutions.
(d) dy

dt
= (y2 + 3y + 2) sin(t)

y = −1 and y = −2.
(e) dy

dt
= ln(y t)

y = 1.

(AB 36) Suppose that dy
dt

= cos(t) sin(y), y(0) = 3ı. Find y(2).

(Answer 36) y(t) = 3ı is an equilibrium solution to the differential
equation and satisfies y(0) = 3ı, so we must have that y(t) = 3ı for
all t. In particular, y(2) = 3ı.



(AB 37) For each of the following differential equations, determine
whether it is linear or separable, exact, Bernoulli, of the form dy

dt
=

f (y=t), or a function of a linear term. Then solve the given initial-value
problem.

(a) cos(t + y3) + 2t + 3y2 cos(t + y3) dy
dt

= 0, y(ı=2) = 0

If cos(t + y3) + 2t + 3y2 cos(t + y3) dy
dt

= 0, y(ı=2) = 0, then
sin(t + y3) + t2 = 1 + ı2=4.

(b) ty2 − 4t3 + 2t2y dy
dt

= 0, y(1) = 3.

If ty2 − 4t3 + 2t2y dy
dt

= 0, y(1) = 3, then y =
q

4
3 t

2 + 23
3t .

(c) 1 + y2 + t dy
dt

= 0, y(1) = 1

If 1 + y2 + t dy
dt

= 0, y(1) = 1, then y = tan(ı=4− ln t).

(d) dy
dt

= (2y + 2t − 5)2, y(0) = 3.

If dy
dt

= (2y+2t−5)2, y(0) = 3, then y = 1
2 tan(2t+ı=4)+ 5

2−t.
(e) dy

dt
= 2y − 6

y2
, y(0) = 7.

If dy
dt

= 2y − 6
y2

, y(0) = 7, then y = 3
√

340e6t + 3.

(f ) 3y + e−3t sin t + dy
dt

= 0, y(0) = 2

If 3y + e−3t sin t + dy
dt

= 0, y(0) = 2, then y = e−3t cos t + e−3t .

(g) dy
dt

= (y2 − 5y + 4)tet
2

, y(0) = 4

If dy
dt

= (y2 − 5y + 4)tet
2

, y(0) = 4, then y = 4 for all t.

(AB 38) Solve the initial-value problem dy
dt

= t−5
y

, y(0) = 3. Deter-
mine the domain of definition of the solution to the initial value prob-
lem. If the solution ceases to exist at a finite point, tell me whether the
solution ceases to exist by approaching a “bad” point (in the sense of
the Picard-Lindelöf theorem) or by becoming unbounded.

(Answer 38) y =
p

(t − 5)2 − 16 =
p

(t − 1)(t − 9) =
√
t2 − 10t + 9.

The solution is valid for all t < 1. The solution ceases to exist by ap-
proaching a “bad” point.



(AB 39) Solve the initial-value problem dy
dt

= y2, y(0) = 1=4. Deter-
mine the domain of definition of the solution to the initial value prob-
lem. If the solution ceases to exist at a finite point, tell me whether the
solution ceases to exist by approaching a “bad” point (in the sense of
the Picard-Lindelöf theorem) or by becoming unbounded.

(Answer 39) y = 1
4−t . The solution is valid for all t < 4. The solution

ceases to exist by becoming unbounded.

(AB 40) Find all of the “bad” points (in the sense of the Picard-
Lindelöf theorem) for the differential equation dy

dt
= 1

(t−3) ln y .

(Answer 40) The “bad” points occur when either t = 3 or y = 1.

(AB 41) Find all of the “bad” points (in the sense of the Picard-
Lindelöf theorem) for the differential equation dy

dt
= 3

p
(y − 4)(t − 2).

(Answer 41) The “bad” points occur when y = 4.



(AB 42)
(a) Find all equilibrium solutions to the differential equation dy

dt
=

2 3

p
(y − 4)(t − 2).

The equilibrium solution is y = 4.
(b) Use the method of separation of variables to find a solution to

the initial value problem dy
dt

= 2 3

p
(y − 4)(t − 2), y(3) = 3.

One such solution is y = 4− (t − 2)2 = 4t − t2.
(c) Use the method of separation of variables to find a solution to

the initial value problem dy
dt

= 2 3

p
(y − 4)(t − 2), y(3) = 5.

One such solution is y = 4 + (t − 2)2.
(d) You have found three solutions to the differential equation dy

dt
=

2 3

p
(y − 4)(t − 2). Do your solutions cross at any point?

Yes, all three solutions cross at the point (2; 4).
(e) Find two piecewise-defined solutions to the initial value problem

dy
dt

= 2 3

p
(y − 4)(t − 2), y(3) = 3 that are different from each

other and also different from the solution you found in Prob-
lem (b).
One such solution is

y(t) =


4; t < 2,
4− (t − 2)2; 2 ≤ t.

Another such solution is

y(t) =


4 + (t − 2)2; t < 2,
4− (t − 2)2; 2 ≤ t.

(AB 43) The function y1(t) = et is a solution to the differential equa-

tion t d
2y
dt2
− (1 + 2t) dy

dt
+ (t + 1)y = 0. Find the general solution to this

differential equation on the interval t > 0.

(Answer 43) y(t) = C1 e
t + C2 t

2et .



(AB 44) The function y1(t) = t is a solution to the differential equa-

tion t2 d
2y
dt2
− (t2 + 2t) dy

dt
+ (t + 2)y = 0. Find the general solution to

this differential equation on the interval t > 0.

(Answer 44) y(t) = C1 t + C2 te
t .

(AB 45) The function y1(x) = x3 is a solution to the differential equa-

tion x2 d
2y
dx2

+ (x2 tan x − 6x) dy
dx

+ (12− 3 x tan x)y = 0. Find the general
solution to this differential equation on the interval 0 < x < ı=2.

(Answer 45) y(x) = C1 x
3 + C2 x

3 sin x .



(AB 46) For each of the following initial-value problems, tell me
whether we expect to have an infinite family of solutions, no solutions,
or a unique solution. Do not find the solution to the differential equa-
tion.

(a) dy
dt

+ arctan(t) y = et , y(3) = 7.
We expect a unique solution.

(b) 1
1+t2

dy
dt
− t5y = cos(6t), y(2) = −1, y ′(2) = 3.

We do not expect any solutions.

(c) d2y
dt2
− 5 sin(t) y = t, y(1) = 2, y ′(1) = 5, y ′′(1) = 0.

We do not expect any solutions.

(d) et d
2y
dt2

+ 3(t − 4) dy
dt

+ 4t6y = 2, y(3) = 1, y ′(3) = −1.
We expect a unique solution.

(e) d2y
dt2

+ cos(t) dy
dt

+ 3 ln(1 + t2) y = 0, y(2) = 3.
We expect an infinite family of solutions.

(f ) d3y
dt3
− t7 d

2y
dt2

+ dy
dt

+ 5 sin(t) y = t3, y(1) = 2, y ′(1) = 5,
y ′′(1) = 0, y ′′′(1) = 3.
We do not expect any solutions.

(g) (1 + t2) d
3y
dt3
− 3d

2y
dt2

+ 5 dy
dt

+ 2y = t3, y(3) = 9, y ′(3) = 7,
y ′′(3) = 5.
We expect a unique solution.

(h) d3y
dt3
− et d

2y
dt2

+ e2t dy
dt

+ e3ty = e4t , y(−1) = 1, y ′(−1) = 3.
We expect an infinite family of solutions.

(i) (2 + sin t) d
3y
dt3

+ cos t d
2y
dt2

+ dy
dt

+ 5 sin(t) y = t3, y(7) = 2.
We expect an infinite family of solutions.



(AB 47) For each of the following initial-value problems, tell me
whether we expect to have an infinite family of solutions, no solutions,
or a unique solution. Do not find the solution to the differential equa-
tion.

(a) et dy
dt

+ y = cos t, y(0) = 3, y ′(0) = −2.
We expect a unique solution.

(b) (t2 + 4) d
2y
dt2

+ 3t dy
dt

+ 6y = 7t3, y(2) = 4, y ′(2) = 4, y ′′(2) = 1.
We expect a unique solution.

(c) d3y
dt3

+ 3 d
2y
dt2

+ 3 dy
dt

+ y = 0, y(4) = 3, y ′(4) = −2, y ′′(4) = 0,
y ′′′(4) = 3.
We expect a unique solution.

(AB 48) Find the general solution to the following differential equa-
tions.

(a) d2x
dt2

+ 12 dx
dt

+ 85x = 0.

If d2x
dt2

+12 dx
dt

+85x = 0, then x = C1e
−6t cos(7t)+C2e

−6t sin(7t).

(b) d2y
dt2

+ 4 dy
dt

+ 2y = 0.

If d2y
dt2

+ 4 dy
dt

+ 2y = 0, then y = C1e
(−2+

√
2)t + C2e

(−2−
√
2)t .

(c) d4z
dt4

+ 7 d
2z
dt2
− 144z = 0.

If d4z
dt4

+ 7 d
2z
dt2
− 144z = 0, then z = C1e

3t +C2e
−3t +C3 cos 4t +

C4 sin 4t.
(d) d4w

dt4
− 8 d

2w
dt2

+ 16w = 0.

If d4w
dt4
− 8 d

2w
dt2

+ 16w = 0, then w = C1e
2t + C2te

2t + C3e
−2t +

C4te
−2t .



(AB 49) Solve the following initial-value problems. Express your an-
swers in terms of real functions.

(a) 9 d
2v
dt2

+ 6 dv
dt

+ 2v = 0, v(0) = 3, v ′(0) = 2.

If 9 d
2v
dt2

+ 6dv
dt

+ 2v = 0, v(0) = 3, v ′(0) = 2, then v =

3e−t=3 cos(t=3) + 9e−t=3 sin(t=3).

(b) d2u
dt2

+ 10 du
dt

+ 25u = 0, u(0) = 1, u′(0) = 4.

If d2u
dt2

+ 10 du
dt

+ 25u = 0, u(0) = 1, u′(0) = 4, then u =
e−5t + 9te−5t .

(c) 8 d
2f
dt2
− 6 df

dt
+ f = 0, f (0) = 3, f ′(0) = 1.

If 8 d
2f
dt2
− 6 df

dt
+ f = 0, then f = et=2 + 2et=4.

(AB 50) A spring is suspended vertically. When an object with mass 5
kg is attached, it stretches the spring to a new equilibrium 4 cm lower.
The system moves in a medium which damps it with damping constant
16 newton · seconds/meter. The object is pulled down an additional 2
cm and is released with initial velocity 3 meters/second upwards.

Write the differential equation and initial conditions that describe
the position of the object. You may use 9.8 meters/second2 for the ac-
celeration of gravity.

(Answer 50) Let t denote time (in seconds) and let x denote the ob-
ject’s displacement above equilibrium (in meters). Then

5
d2x

dt2
+ 16

dx

dt
+ 1225x = 0; x(0) = −0:04; x ′(0) = 3:



(AB 51) A 2-kg object is attached to a spring with constant 80 N/m
and to a viscous damper with damping constant ˛. The object is pulled
down to 10cm below its equilibrium position and released with no initial
velocity.

Write the differential equation and initial conditions that describe
the position of the object.

If ˛ = 20 N · s/m, is the system overdamped, underdamped, or
critically damped? Do you expect to see decaying oscillations in the
solutions?

If ˛ = 30 N · s/m, is the system overdamped, underdamped, or
critically damped? Do you expect to see decaying oscillations in the
solutions?

(Answer 51) Let t denote time (in seconds) and let x denote the ob-
ject’s displacement above equilibrium (in meters). Then

2
d2x

dt2
+ ˛

dx

dt
+ 80x = 0; x(0) = −0:1; x ′(0) = 0:

If ˛ = 20 N · s/m, then the system is underdamped, and we do
expect to see decaying oscillations.

If ˛ = 30 N · s/m, then the system overdamped, and we do not
expect to see decaying oscillations.

(AB 52) A 3-kg object is attached to a spring with constant k and to
a viscous damper with damping constant 42 N·sec/m. The object is
set in motion from its equilibrium position with initial velocity 5 m/s
downwards.

Write the differential equation and initial conditions that describe
the position of the object.

Find the values of k for which the system is underdamped, over-
damped, and critically damped. Be sure to include units for k.



(Answer 52) Let t denote time (in seconds) and let x denote the ob-
ject’s displacement above equilibrium (in meters). Then

3
d2x

dt2
+ 42

dx

dt
+ kx = 0; x(0) = 0; x ′(0) = −5:

The system is critically damped if k = 147 newtons/meter. It is under-
damped if k > 147 newtons/meter and overdamped if 0 < k < 147
newtons/meter.

(AB 53) A 4-kg object is attached to a spring with constant 70 N/m
and to a viscous damper with damping constant ˛. The object is
pushed up to 5cm above its equilibrium position and released with ini-
tial velocity 3 m/s downwards.

Write the differential equation and initial conditions that describe
the position of the object. Then find the values of ˛ for which the sys-
tem is underdamped, overdamped, and critically damped. Be sure to
include units for ˛.

(Answer 53) Let t denote time (in seconds) and let x denote the ob-
ject’s displacement above equilibrium (in meters). Then

4
d2x

dt2
+ ˛

dx

dt
+ 70x = 0; x(0) = 0:05; x ′(0) = −3:

Critical damping occurs when ˛ = 4
√

70 N · s/m. The system is
underdamped if 0 < ˛ < 4

√
70 N · s/m and is overdamped if ˛ > 4

√
70

N · s/m.



(AB 54) An object of mass m is attached to a spring with constant 80
N/m and to a viscous damper with damping constant 20 N·s/m. The
object is pulled down to 5cm below its equilibrium position and released
with initial velocity 3 m/s downwards.

Write the differential equation and initial conditions that describe
the position of the object. Then find the value of m for which the sys-
tem is underdamped, overdamped, or critically damped. Be sure to in-
clude units for m.

(Answer 54) Let t denote time (in seconds) and let x denote the ob-
ject’s displacement above equilibrium (in meters). Then

m
d2x

dt2
+ 20

dx

dt
+ 80x = 0; x(0) = −0:05; x ′(0) = −3:

Critical damping occurs when m = 5
4 kg. The system is under-

damped if m > 5
4 kg and overdamped if 0 < m < 5

4 kg.



(AB 55) Five objects, each with mass 3 kg, are attached to five
springs, each with constant 48 N/m. Five dampers with unknown con-
stants are attached to the objects. In each case, the object is pulled
down to a distance 1 cm below the equilibrium position and released
from rest. You are given that the system is critically damped in exactly
one of the five cases.

Here are the graphs of the objects’ positions with respect to time:

System D

0 1 2

−1

0

1

System E

0 1 2

−1

0

1

System F

0 1 2

−1

0

1

System G

0 1 2

−1

0

1

System H

0 1 2

−1

0

1

(a) For which damper is the system critically damped?
The system is critically damped for Damper F.

(b) For which dampers is the system overdamped?
The system overdamped for Dampers H and D.

(c) For which dampers is the system underdamped?
The system underdamped for Dampers E and G.

(d) Which damper has the highest damping constant? Which dam-
per has the lowest damping constant?
Damper D has the highest damping constant. Damper G has the
lowest damping constant.



(AB 56) An object with mass 5 kg stretches a spring 4 cm. It is
attached to a viscous damper with damping constant 16 newton ·
seconds/meter. The object is pulled down an additional 2 cm and is
released with initial velocity 3 meters/second upwards.

Using only first derivatives, write the differential equations and ini-
tial conditions for the object’s position. That is, write a first-order sys-
tem involving the object’s position. You may use 9.8 meters/second2

for the acceleration of gravity.

(Answer 56) Let t denote time (in seconds), let x denote the object’s
displacement above equilibrium (in meters), and let v denote the ob-
ject’s velocity (in meters per second). Then

5
dv

dt
+ 16v + 1225x = 0;

dx

dt
= v; x(0) = −0:04; v(0) = 3:

(AB 57) Imperial stormtroopers and Rebel Alliance fighters battle each
other on an open plain, where both groups can easily see and aim at all
members of the other group. Every minute, each stormtrooper has a
2% chance of killing a rebel, and each rebel has a 5% chance of killing
a stormtrooper. There are initially 4000 stormtroopers and 1000 rebels.

Write the initial value problem for the number of stormtroopers
and rebels still alive.

(Answer 57) Let t denote time (in minutes), let S denote the number
of stormtroopers, and let R denote the number of rebels.

Then

dR

dt
= −0:02S;

dS

dt
= −0:05R; R(0) = 1000; S(0) = 4000:



(AB 58) Jedi knights and Sith lords battle in a dense forest. Every
minute, each Jedi has a 1% chance of finding each Sith lord. If a Jedi
finds a Sith lord, they fight; the Jedi has a 60% chance of dying and the
Sith lord has a 40% chance of dying. Initially there are 90 Jedi and 50
Sith lords.

Write the initial value problem for the number of Jedi and Sith
lords still alive.

(Answer 58) Let t denote time (in minutes), let S denote the number
of Sith lords, and let J denote the number of Jedi.

Then

dJ

dt
= −0:006JS;

dS

dt
= −0:004JS; J(0) = 90; S(0) = 50:

(AB 59) Consider the following system of tanks. Tank A initially con-
tains 200 L of water in which 3 kg of salt have been dissolved, and
Tank B initially contains 300 L of water in which 2 kg of salt have been
dissolved. Salt water flows into each tank at the rates shown, and the
well-stirred solution flows between the two tanks and is drained away
through the pipes shown at the indicated rates.

A B

2 L/min
5 g/L

4 L/min
6 L/min
pure water

5 L/min
mixture

3 L/min

4 L/min
mixture

Write the differential equations and initial conditions that describe the
amount of salt in each tank.



(Answer 59) Let t denote time (in minutes).
Let x denote the amount of salt (in grams) in tank A.
Let y denote the amount of salt (in grams) in tank B.
Then x(0) = 3000 and y(0) = 2000.
If t < 50, then

dx

dt
= 10− 9x

200− 4t
+

3y

300 + 3t
;

dy

dt
=

4x

200− 4t
− 7y

300 + 3t
:

(AB 60) An isolated town has a population of 9000 people. Three of
them are simultaneously infected with a contagious disease to which
no member of the town has previously been exposed, but from which
one eventually recovers and which cannot be caught twice. Each in-
fected person encounters an average of 8 other townspeople per day.
Encounters are distributed among susceptible, infected, and recovered
people according to their proportion of the total population. If an in-
fected person encounters a susceptible person, the susceptible person
has a 5% chance of contracting the disease. Each infected person has a
17% chance of recovering from the disease on any given day.

Set up the initial value problem that describes the number of sus-
ceptible, infected, and recovered people.

(Answer 60) Let t denote time (in days), let S denote the num-
ber of susceptible people (who have never had the disease), let
I denote the number of infected people (who currently have the
disease), and let R denote the number of recovered people (who
now are resistant, that is, cannot get the disease again). Then
dS
dt

= − 1
22500SI, dI

dt
= 1

22500SI − 0:17I, dR
dt

= 0:17I, S(0) = 8997, I(0) = 3, R(0) = 0.



(AB 61) Suppose that a disease is spreading through a town of 5000
people, and that its transmission in the absence of vaccination is given
by the Kermack-McKendrick SIR model dS

dt
= − 0:2

5000SI, dI
dt

= 0:2
5000SI −

0:1I, dR
dt

= 0:1I where t denotes time (in days), S denotes the number
of susceptible people, I denotes the number of infected people, and R
denotes the number of recovered, disease-resistant people.

Suppose we modify the model by assuming that 15 susceptible
people are vaccinated each day (and thus become resistant without be-
ing infected first).

Set up the system of differential equations that describes the num-
ber of susceptible, infected, and recovered people. You may use the
same variable names as before. (You may let R denote all disease-
resistant people, both vaccinated and recovered.)

(Answer 61) dS
dt

= − 0:2
5000SI− 15, dI

dt
= 0:2

5000SI− 0:1I, dR
dt

= 0:1I+ 15.

(AB 62) Suppose that a disease is spreading through a town of 5000
people, and that its transmission in the absence of vaccination is given
by the Kermack-McKendrick SIR model dS

dt
= − 0:2

5000SI, dI
dt

= 0:2
5000SI −

0:1I, dR
dt

= 0:1I where t denotes time (in days), S denotes the number
of susceptible people, I denotes the number of infected people, and R
denotes the number of recovered, disease-resistant people.

Suppose we modify the model by assuming that 15 people are vac-
cinated each day (and thus become resistant without being infected
first). No testing is available, and so vaccines are distributed among
susceptible, resistant, and infected people according to their proportion
of the total population. A vaccine administered to an infected or resis-
tant person has no effect.

Set up the system of differential equations that describes the num-
ber of susceptible, infected, and resistant people. You may use the
same variable names as before. (You may let R denote all disease-
resistant people, both vaccinated and recovered.)



(Answer 62) dS
dt

= − 0:2
5000SI − 15 S

5000 , dI
dt

= 0:2
5000SI − 0:1I, dR

dt
= 0:1I + 15 S

5000 .

(AB 63) An isolated town has a population of 9000 people. Three of
them are simultaneously infected with a contagious disease to which no
member of the town has previously been exposed, but from which one
eventually recovers.

Each infected person encounters an average of 20 other townspeo-
ple per day. Encounters are distributed among susceptible, infected,
and recovered people according to their proportion of the total popula-
tion. If an infected person encounters a susceptible person, the suscep-
tible person has a 5% chance of contracting the disease. If an infected
person encounters a recovered person, the recovered person has a 1%
chance of contracting the disease again. Each infected person has a
12% chance of recovering from the disease on any given day.

Set up the initial value problem that describes the number of sus-
ceptible, infected, and recovered people.

(Answer 63) Let t denote time (in days), let S denote the number of
susceptible people (who have never had the disease), let I denote the
number of infected people (who currently have the disease), and let R
denote the number of recovered people (who now are resistant, that is,
are less likely to get the disease again). Then dS

dt
= − 1

9000SI, dI
dt

=
1

9000SI + 1
45000RI − 0:12I, dR

dt
= 0:12I − 1

45000RI, S(0) = 8997,
I(0) = 3, R(0) = 0.



(AB 64) Here is a grid. Draw a small phase plane (vector field) with
nine arrows for the autonomous system dx

dt
= y , dy

dt
= x .

−1 0 1

−1

0

1

x

y

•

•

•

•

•

•

•

•

•

(Answer 64) Here is the direction field for the differential equation sys-
tem dx

dt
= y , dy

dt
= x .

−1 0 1

−1

0

1

x

y



(AB 65) Here is the phase plane for the system

dx

dt
= 2y − x; dy

dt
= −2x − y

Sketch the solution to the initial value problem

dx

dt
= 2y − x; dy

dt
= −2x − y; x(0) = 2; y(0) = 1:

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3



(Answer 65)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

•

(AB 66) Find the solution to the initial-value problem

dx

dt
= 5y;

dy

dt
= −x + 4y; x(0) = −3; y(0) = 2:

Express your final answer in terms of real functions (no complex num-
bers or complex exponentials).



(Answer 66) If

dx

dt
= 5y;

dy

dt
= −x + 4y; x(0) = −3; y(0) = 2

then „
x(t)
y(t)

«
= e2t

„
−3 cos t + 16 sin t

2 cos t + 7 sin t

«
:

(AB 67) Find the solution to the initial-value problem

dx

dt
= 13x − 39y;

dy

dt
= 12x − 23y; x(0) = 5; y(0) = 2:

Express your final answer in terms of real functions (no complex num-
bers or complex exponentials).

(Answer 67) If

dx

dt
= 13x − 39y;

dy

dt
= 12x − 23y; x(0) = 5; y(0) = 2

then „
x(t)
y(t)

«
= e−5t

„
5 cos 12t + sin 12t

2 cos 12t + 2 sin 12t

«
:

(AB 68) Find the solution to the initial-value problem

dx

dt
= −6x + 9y;

dy

dt
= −5x + 6y; x(0) = 1; y(0) = −3:

Express your final answer in terms of real functions (no complex num-
bers or complex exponentials).



(Answer 68) If

dx

dt
= −6x + 9y;

dy

dt
= −5x + 6y; x(0) = 1; y(0) = −3

then „
x(t)
y(t)

«
=

„
cos 3t − 11 sin 3t

−3 cos 3t − (23=3) sin 3t

«
:

(AB 69) Find the solution to the initial-value problem

dx

dt
= 4x+y−z; dy

dt
= x+4y−z; dz

dt
= 4z−x−y; x(0) = 3; y(0) = 9; z(0) = 0:

Express your final answer in terms of real functions (no complex num-
bers or complex exponentials).

Hint: det

0@ 4−m 1 −1
1 4−m −1
−1 −1 4−m

1A = −(m − 3)2(m − 6).

(Answer 69) If

dx

dt
= 4x+y−z; dy

dt
= x+4y−z; dz

dt
= 4z−x−y; x(0) = 3; y(0) = 9; z(0) = 0

then 0@ x(t)
y(t)
z(t)

1A = e3t

0@−1
5
4

1A+ e6t

0@ 4
4
−4

1A :



(AB 70) Find the solution to the initial-value problem

dx

dt
= 3x+y;

dy

dt
= 2x+3y−2z;

dz

dt
= y+3z; x(0) = 3; y(0) = 2; z(0) = 1:

Express your final answer in terms of real functions (no complex num-
bers or complex exponentials).

Hint: det

0@ 3−m 1 0
2 3−m −2
0 1 3−m

1A = −(m − 3)3.

(Answer 70) If

dx

dt
= 3x+y;

dy

dt
= 2x+3y−2z;

dz

dt
= y+3z; x(0) = 3; y(0) = 2; z(0) = 1

then 0@ x(t)
y(t)
z(t)

1A = e3t

0@ 2t2 + 2t + 3
4t + 2

2t2 + 2t + 1

1A :

(AB 71) Find the solution to the initial-value problem

dx

dt
= x+y+z;

dy

dt
= x+3y−z; dz

dt
= 2y+2z; x(0) = 4; y(0) = 3; z(0) = 5:

Express your final answer in terms of real functions (no complex num-
bers or complex exponentials).

Hint: det

0@ 1−m 1 1
1 3−m −1
0 2 2−m

1A = −(m − 2)3.



(Answer 71) If

dx

dt
= x+y+z;

dy

dt
= x+3y−z; dz

dt
= 2y+2z; x(0) = 4; y(0) = 3; z(0) = 5

then 0@ x(t)
y(t)
z(t)

1A = e2t

0@ 4 + 4t + 2t2

2t + 3
5 + 6t + 2t2

1A :

(AB 72) Find the solution to the initial-value problem

dx

dt
= −6x+9y−15;

dy

dt
= −5x+6y−8; x(0) = 2; y(0) = 5:

Express your final answer in terms of real functions (no complex num-
bers or complex exponentials).

(Answer 72) If

dx

dt
= −6x+9y−15;

dy

dt
= −5x+6y−8; x(0) = 2; y(0) = 5

then „
x(t)
y(t)

«
=

„
6 sin 3t

4 sin 3t + 2 cos 3t

«
+

„
2
3

«
:

(AB 73) Find the solution to the initial-value problem

dx

dt
= 6x + 8y + t8e2t ;

dy

dt
= −2x − 2y; x(0) = 1; y(0) = 0:

Express your final answer in terms of real functions (no complex num-
bers or complex exponentials).



(Answer 73) If

dx

dt
= 6x + 8y + t8e2t ;

dy

dt
= −2x − 2y; x(0) = 1; y(0) = 0

then „
x(t)
y(t)

«
= e2t

„
(2=45)t10 + (1=9)t9 + 4t + 1

−(1=45)t10 − 2t

«
:

(AB 74) Find the solution to the initial-value problem

dx

dt
= 5y + e2t cos t;

dy

dt
= −x + 4y; x(0) = 5; y(0) = 0:

Express your final answer in terms of real functions (no complex num-
bers or complex exponentials).

(Answer 74) If

dx

dt
= 5y + e2t cos t;

dy

dt
= −x + 4y; x(0) = 5; y(0) = 0

then„
x(t)
y(t)

«
= e2t

„
−t sin t + (1=2)t cos t + 5 cos t − (19=2) sin t

−(1=2)t sin t − 5 sin t

«
:

(AB 75) Find the solution to the initial-value problem

dx

dt
= 2x+ 3y + sin(et);

dy

dt
= −4x−5y; x(0) = 0; y(0) = 0:

Express your final answer in terms of real functions (no complex num-
bers or complex exponentials).



(Answer 75) If

dx

dt
= 2x + 3y + sin(et);

dy

dt
= −4x − 5y; x(0) = 0; y(0) = 0

then„
x(t)
y(t)

«
= e−t

„
4− 4 cos(et)
4 cos(et)− 4

«
+e−2t

„
3 sin(et)− 3et cos(et)− 3 sin 1 + 3 cos 1
4et cos(et)− 4 sin(et)− 4 cos 1 + 4 sin 1

«
:

(AB 76) Find the general solution to the equation 9 d
2y
dt2
− 6 dy

dt
+ y =

9et=3 ln t on the interval 0 < t <∞.

(Answer 76) If 9 d
2y
dt2
− 6 dy

dt
+ y = 9et=3 ln t, then y(t) = c1 e

t=3 +

c2 t e
t=3 + 1

2 t
2et=3 ln t − 3

4 t
2et=3 for all t > 0.

(AB 77) Find the general solution to the equation 2d
2y
dt2

+ 3 dy
dt

+ y =

sin(et=2).

(Answer 77) If 2 d
2y
dt2

+ 3 dy
dt

+ y = sin(et=2), then y = c1e
−t + c2e

−t=2−
2e−t sin(et=2).

(AB 78) The general solution to the differential equation t2 d
2x
dt2
− t dx

dt
−

3x = 0, t > 0, is x(t) = C1t
3 + C2t

−1. Find the general solution to the

differential equation t2 d
2y
dt2
− t dy

dt
− 3y = 6t−1.

(Answer 78) If t2 d
2y
dt2
− t dy

dt
− 3y = 6t−1, then y(t) = − 3

2 t
−1 ln t +

C1t
3 + C2t

−1 for all t > 0.

(AB 79) The general solution to the differential equation t2 d
2x
dt2
− 2x =

0, t > 0, is x(t) = C1t
2 + C2t

−1. Solve the initial-value problem

t2 d
2y
dt2
− 2y = 9

√
t, y(1) = 1, y ′(1) = 2 on the interval 0 < t <∞.



(Answer 79) If t2 d
2y
dt2
− 2y = 9

√
t, y(1) = 1, y ′(1) = 2, then y(t) =

−4
√
t + 3t2 + 2

t
for all 0 < t <∞.

(AB 80) You are given that the general solution to the differential

equation (1 − t) d
2x
dt2

+ t dx
dt
− x = 0 on the interval t < 1 is x(t) =

C1t+C2e
t . Find the general solution to (1−t) d

2y
dt2

+t dy
dt
−y = (1−t)2et

on the interval t < 1.

(Answer 80) If (1 − t) d
2y
dt2

+ t dy
dt
− y = (1 − t)2et , then y(t) =

tet − 1
2 t

2et + C1t + C2e
t .



(AB 81) Find the general solution to the following differential equa-
tions.

(a) 6 d
2y
dt2

+ 5 dy
dt

+ y = 3e4t .

The general solution to 6 d
2y
dt2

+ 5dy
dt

+ y = 0 is yg = C1e
−t=2 +

C2e
−t=3. To solve 6 d

2y
dt2

+ 5dy
dt

+ y = 2e4t we make the guess

yp = Ae4t . The solution is y = C1e
−t=2 + C2e

−t=3 + 1
39e

4t .

(b) 16 d
2y
dt2
− y = et=4 sin t.

The general solution to 16 d
2y
dt2
− y = 0 is yg = C1e

t=4 + C2e
−t=4.

To solve 16 d
2y
dt2
− y = et=4 sin t we make the guess yp =

Aet=4 sin t +Bet=4 cos t. The solution is y = C1e
t=4 + C2e

−t=4 −
(1=20)et=4 sin t − (1=40)et=4 cos t.

(c) d2y
dt2

+ 49y = 3t sin 7t.

The general solution to d2y
dt2

+ 49y = 0 is yg = C1 sin 7t +

C2 cos 7t. To solve d2y
dt2

+ 49y = 3t sin 7t we make the guess
yp = At2 sin 7t +Bt sin 7t + Ct2 cos 7t +Dt cos 7t. The solution
is y = C1 sin 7t + C2 cos 7t − (3=28)t2 cos 7t + (3=4)t sin 7t.

(d) d2y
dt2
− 4 dy

dt
= 4e3t .

The general solution to d2y
dt2
− 4 dy

dt
= 0 is yg = C1 + C2e

4t . To

solve d2y
dt2
− 4 dy

dt
= 4e3t we make the guess yp = Ae3t . The

solution is y = C1 + C2e
4t − (4=3)e3t .

(e) d2y
dt2

+ 12 dy
dt

+ 85y = t sin(3t).

The general solution to d2y
dt2

+ 12 dy
dt

+ 85y = 0 is yg =

C1e
−6t cos(7t) + C2e

−6t sin(7t). To solve d2y
dt2

+ 12 dy
dt

+ 85y =
t sin(3t) we make the guess yp = At sin(3t) + Bt cos(3t) +
C sin(3t) + D cos(3t). The solution is y = C1e

−6t cos(7t) +
C2e

−6t sin(7t) + 19
1768 t sin(3t) − 9

1768 t cos(3t) − 1353
781456 sin(3t) +

606
781456 cos(3t):

(f ) d2y
dt2

+ 3 dy
dt
− 10y = 7e−5t .

The general solution to d2y
dt2

+ 3dy
dt
− 10y = 0 is yg = C1e

2t +



C2e
−5t . To solve d2y

dt2
+ 3 dy

dt
− 10y = 7e−5t we make the guess

yp = Ate−5t . The solution is y = C1e
2t + C2e

−5t − (1=7)te−5t .

(g) 16 d
2y
dt2
− 24dy

dt
+ 9y = 6t2 + cos(2t).

The general solution to 16 d
2y
dt2
−24dy

dt
+9y = 0 is yg = C1e

(3=4)t+

C2te
(3=4)t . To solve 16 d

2y
dt2
−24dy

dt
+ 9y = 6t2 + cos(2t) we make

the guess yp = At2 + Bt + C + D cos(2t) + E sin(2t). The
solution is y = C1e

(3=4)t + C2te
(3=4)t + (2=3)t2 + (32=9)t +

64=9− (48=5329) cos(2t)− (55=5329) sin(2t).

(h) d2y
dt2
− 6 dy

dt
+ 25y = t2e3t .

The general solution to d2y
dt2
− 6 dy

dt
+ 25y = 0 is yg =

C1e
3t cos(4t) + C2e

3t sin(4t). To solve d2y
dt2
− 6 dy

dt
+ 25y = t2e3t

we make the guess yp = At2e3t + Bte3t + Ce3t . The solution is
y = C1e

3t cos(4t) + C2e
3t sin(4t) + (1=16)t2e3t − (1=128)e3t .

(i) d2y
dt2

+ 10 dy
dt

+ 25y = 3e−5t .

The general solution to d2y
dt2

+ 10 dy
dt

+ 25y = 0 is yg = C1e
−5t +

C2te
−5t . To solve d2y

dt2
+ 10 dy

dt
+ 25y = 3e−5t we make the

guess yp = At2e−5t . The solution is y = C1e
−5t + C2te

−5t +
(3=2)t2e−5t .

(j) d2y
dt2

+ 5 dy
dt

+ 6y = 3 cos(2t).

The general solution to d2y
dt2

+ 5dy
dt

+ 6y = 0 is yg = C1e
−2t +

C2e
−3t . To solve d2y

dt2
+ 5 dy

dt
+ 6y = 3 cos(2t), we make the

guess yp = A cos(2t) + B sin(2t). The solution is y = C1e
−2t +

C2e
−3t + 15

52 sin(2t) + 3
52 cos(2t).

(k) d2y
dt2

+ 6 dy
dt

+ 9y = 5 sin(4t).

The general solution to d2y
dt2

+ 6dy
dt

+ 9y = 0 is yg = C1e
−3t +

C2te
−3t . To solve d2y

dt2
+ 6 dy

dt
+ 9y = 5 sin(4t), we make the

guess yp = A cos(4t) + B sin(4t). The solution is y = C1e
−3t +

C2te
−3t − 7

125 sin(4t)− 24
125 cos(4t).

(l) d2y
dt2

+ 9y = 5 sin(3t).

The general solution to d2y
dt2

+ 9y = 0 is yg = C1 cos(3t) +



C2 sin(3t). To solve d2y
dt2

+ 9y = 5 sin(3t), we make the guess
yp = C1t cos(3t) + C2t sin(3t). The solution is y = C1 cos(3t) +
C2 sin(3t)− 5

6 t cos(3t).

(m) d2y
dt2

+ 2 dy
dt

+ y = 2t2.

The general solution to d2y
dt2

+ 2 dy
dt

+ y = 0 is yg = C1e
−t +

C2te
−t . To solve d2y

dt2
+ 2dy

dt
+ y = 2t2, we make the guess yp =

At2+Bt+C. The solution is y = C1e
−t+C2te

−t+2t2−8t+12.

(n) d2y
dt2

+ 2 dy
dt

= 3t.

The general solution to d2y
dt2

+ 2dy
dt

= 0 is yg = C1 + C2e
−2t . To

solve d2y
dt2

+ 2 dy
dt

= 3t, we make the guess yp = At2 + Bt. The

solution is y = C1 + C2e
−2t + 3

4 t
2 − 3

4 t.

(o) d2y
dt2
− 7 dy

dt
+ 12y = 5t + cos(2t).

The general solution to d2y
dt2
− 7 dy

dt
+ 12y = 0 is yg = C1e

3t +

C2e
4t . To solve d2y

dt2
− 7 dy

dt
+ 12y = 5t + cos(2t), we make the

guess yp = At + B + C cos(2t) + D sin(2t). The solution is
y = C1e

3t + C2e
4t + 5

12 t + 35
144 + 16

177 cos 2t − 28
177 sin 2t.

(p) d2y
dt2
− 9y = 2et + e−t + 5t + 2.

The general solution to d2y
dt2
− 9y = 0 is yg = C1e

3t + C2e
−3t .

To solve d2y
dt2
− 9y = 2et + e−t + 5t + 2, we make the guess

yp = Aet + Be−t + Ct + D. The solution is y = C1e
3t +

C2e
−3t − 1

4e
t − 1

8e
−t − 5

9 t −
2
9 .

(q) d2y
dt2
− 4 dy

dt
+ 4y = 3e2t + 5 cos t.

The general solution to d2y
dt2
− 4 dy

dt
+ 4y = 0 is yg = C1e

2t +

C2te
2t . To solve d2y

dt2
− 4 dy

dt
+ 4y = 3e2t + 5 cos t, we make

the guess yp = At2e2t + B cos t + C sin t. The solution is y =
C1e

2t + C2te
2t + 3

2 t
2e2t + 3

5 cos t − 4
5 sin t.



(AB 82) A 3-kg mass stretches a spring 5 cm. It is attached to a vis-
cous damper with damping constant 27 N · s/m and is initially at rest
at equilibrium. At time t = 0, an external force begins to act on the
object; at time t seconds, the force is 3 cos(20t) N upwards. You may
take the acceleration of gravity to be 9.8 meters/second2.

Write the differential equation and initial conditions that describe
the position of the object.

(Answer 82) Let t denote time (in seconds) and let x denote the ob-
ject’s displacement above equilibrium (in meters).

Then

3
d2x

dt2
+ 27

dx

dt
+ 588x = 3 cos(20t); u(0) = 0; u′(0) = 0:

(AB 83) An object weighing 4 lbs stretches a spring 2 inches. It is ini-
tially at rest at equilibrium. At time t = 0, an external force begins to
act on the object; at time t seconds, the force is 3 cos(!t) pounds, di-
rected upwards. There is no damping. You may take the acceleration of
gravity to be 32 feet/second2.

Write the differential equation and initial conditions that describe
the position of the object. Then find the value of ! for which resonance
occurs. Be sure to include units for !.

(Answer 83) Let t denote time (in seconds) and let x denote the ob-
ject’s displacement above equilibrium (in feet). Then

4

32

d2x

dt2
+ 24x = 3 cos(!t); x(0) = 0; x ′(0) = 0:

Resonance occurs when ! = 8
√

3 s−1.



(AB 84) A 4-kg object is suspended from a spring. There is no damp-
ing. It is initially at rest at equilibrium. At time t = 0, an external force
begins to act on the object; at time t seconds, the force is 7 sin(!t)
newtons, directed upwards.

(a) Write the differential equation and initial conditions that de-
scribe the position of the object.
Let t denote time (in seconds) and let x denote the object’s dis-
placement above equilibrium (in feet). Let k denote the con-
stant of the spring (in N·s/m). Then

4
d2x

dt2
+ kx = 7 sin(!t); x(0) = 0; x ′(0) = 0:

(b) It is observed that resonance occurs when ! = 20 rad/sec. What
is the constant of the spring? Be sure to include units.
The spring constant is k = 1600 N·s/m.

(AB 85) A 1-kg object is suspended from a spring with constant 225
N/m. There is no damping. It is initially at rest at equilibrium. At time
t = 0, an external force begins to act on the object; at time t seconds,
the force is 15 cos(!t) newtons, directed upwards. Illustrated are the
object’s position as a function of time for three different values of !.
You are given that the three values are ! = 15 radians/second, ! = 16
radians/second, and ! = 17 radians/second. Determine the value of !
that will produce each image.

(Answer 85) ! = 15 radians/second in Picture B. ! = 16 radi-
ans/second in Picture A. ! = 17 radians/second in Picture C.



(AB 86) Using the definition L{f (t)} =
R∞
0
e−st f (t) dt (not the

table on the cover page of this exam), find the Laplace transforms of
the following functions.

(a) f (t) = e−11t

(b) f (t) = t

(c) f (t) =


3et ; 0 < t < 4,
0; 4 ≤ t:

(Answer 86)
(a) L{t} = 1

s2
.

(b) L{e−11t} = 1
s+11 .

(c) L{f (t)} = 3−3e4−4s

s−1 .



(AB 87) Find the Laplace transforms of the following functions. You
may use the table in your notes, on Blackboard, or in your book.

(a) f (t) = t4 + 5t2 + 4

L{t4 + 5t2 + 4} = 96
s5

+ 10
s3

+ 4
s

.

(b) f (t) = (t + 2)3

L{(t + 2)3} = L{t3 + 6t2 + 12t + 8} = 6
s4

+ 12
s3

+ 12
s2

+ 8
s

.

(c) f (t) = 9e4t+7

L{9e4t+7} = L{9e7e4t} = 9e7

s−4 .

(d) f (t) = −e3(t−2)

L{−e3(t−2)} = L{−e−6e3t} = − e−6

s−3 .

(e) f (t) = (et + 1)2

L{(et + 1)2} = L{e2t + 2et + 1} = 1
s−2 + 2

s−1 + 1
s

.

(f ) f (t) = 8 sin(3t)− 4 cos(3t)

L{8 sin(3t)− 4 cos(3t)} = 24
s2+9 −

4s
s2+9 .

(g) f (t) = t2e5t

L{t2e5t} = 2
(s−5)3 .

(h) f (t) = 7e3t cos 4t

L{7e3t cos 4t} = 7s−21
(s−3)2+16 .

(i) f (t) = 4e−t sin 5t

L{4e−t sin 5t} = 20
(s+1)2+25 .

(j) f (t) = t et sin t

L{t et sin t} = 2s−2
(s2−2s+2)2 .

(k) f (t) = t2 sin 5t

L{t2 sin 5t} = 30s2−250
(s2+25)3 .

(l) f (t) =
R t
0
e−4r sin(3r) dr

L
nR t

0
e−4r sin(3r) dr

o
= 3

s((s+4)2+9 .

(m) You are given that L{J0(t)} = 1√
s2+1

. Find L{t J0(t)}. (The

function J0 is called a Bessel function and is important in the
theory of partial differential equations in polar coordinates.)

L{t J0(t)} = s
(s2+1)3=2

.



(n) You are given that L{ 1√
t
e−1=t} =

√
ı√
s
e−2
√
s . Find L{

√
t e−1=t}.

L{
√
t e−1=t} =

√
ı(1+2

√
s)

2s
√
s

e−2
√
s

(o) f (t) =


0; t < 3,
et ; t ≥ 3;

If f (t) =


0; t < 3,
et ; t ≥ 3;

then L{f (t)} = e−3se3

s−1 .

(p) f (t) =


0; t < 1,
t2 − 2t + 2; t ≥ 1;

If f (t) =


0; t < 1,
t2 − 2t + 2; t ≥ 1;

then L{f (t)} = e−s
„

1
s

+ 2
s3

«
.

(q) f (t) =

(
0; t < 1,
t − 2; 1 ≤ t < 2,
0; t ≥ 2

If f (t) =

(
0; t < 1,
t − 2; 1 ≤ t < 2,
0; t ≥ 2

then L{f (t)} = e−s

s2
− e−s

s
− e−2s

s2
:

(r) f (t) =


5e2t ; t < 3,
0; t ≥ 3

If f (t) =


5e2t ; t < 3,
0; t ≥ 3;

then L{f (t)} = 5
s−2 −

5e6e−3s

s−2 .

(s) f (t) =


7t2e−t ; t < 3,
0; t ≥ 3

If f (t) =


7t2e−t ; t < 3,
0; t ≥ 3;

then L{f (t)} = 14
(s+1)3 −

14e−3s−3

(s+1)3 −
42e−3s−3

(s+1)2 −
63e−3s−3

s+1 .

(t) f (t) =


cos 3t; t < ı,
sin 3t; t ≥ ı

If f (t) =


cos 3t; t < ı,
sin 3t; t ≥ ı; then L{f (t)} = s

s2+9 + e−ıs s
s2+9 −

e−ıs 3
s2+9 .



(u) f (t) =

(
0; t < ı=2,
cos t; ı=2 ≤ t < ı,
0; t ≥ ı

If f (t) =

(
0; t < ı=2,
cos t; ı=2 ≤ t < ı,
0; t ≥ ı;

then L{f (t)} =

−e−ıs=2 1
s2+1 + e−ıs s

s2+1 .



(AB 88) For each of the following problems, find y .

(a) L{y} = 2s+8
s2+2s+5

If L{y} = 2s+8
s2+2s+5 , then y = 2e−t cos(2t) + 3e−t sin(2t).

(b) L{y} = 5s−7
s4

If L{y} = 5s−7
s4

, then y = 5
2 t

2 − 7
6 t

3.

(c) L{y} = s+2
(s+1)4

If L{y} = s+2
(s+1)4 , then y = 1

2 t
2e−t + 1

6 t
3e−t .

(d) L{y} = 2s−3
s2−4

If L{y} = 2s−3
s2−4 , then y = (1=4)e2t + (7=4)e−2t .

(e) L{y} = 1
s2(s−3)2

If L{y} = 1
s2(s−3)2 , then y = 2

27 + 1
9 t −

2
27e

3t + 1
9 t e

3t .

(f ) L{y} = s+2
s(s2+4)

If L{y} = s+2
s(s2+4) , then y = 1

2 −
1
2 cos(2t) + 1

2 sin(2t).

(g) L{y} = s
(s2+1)(s2+9)

If L{y} = s
(s2+1)(s2+9) , then y = 1

8 cos t − 1
8 cos 3t.

(h) L{y} = s
(s2+9)2 . Hint: Start by finding L{t sin 3t} and

L{t cos 3t}.
If L{y} = s

(s2+9)2 , then y = 1
6 t sin(3t).

(i) L{y} = 4
(s2+4s+8)2 . You may express your answer as a definite

integral.

If L{y} = 4
(s2+4s+8)2 , then y = e−2t

R t
0

sin(2r) sin(2t − 2r) dr =
1
4e
−2t sin(2t)− 1

2e
−2tt cos(2t).

(j) L{y} = s
s2−9 L{

√
t}. You may express your answer as a definite

integral.

If L{y} = s
s2−9 L{

√
t}, then y =

R t
0
e3r+e−3r

2

√
t − r dr .

(k) L{y} = s
s4(s2+36) . You may express your answer as a definite

integral.

y =
R t
0

cos(6r) 16 (t − r)3 dr or y =
R t
0

cos(6(t − r)) 16 r
3 dr .

(l) L{y} = (2s−1)e−2s

s2−2s+2



If L{y} = (2s−1)e−2s

s2−2s+2 , then y = 2 U(t−2) et−2 cos(t−2)+U(t−
2) et−2 sin(t − 2).

(m) L{y} = (s−2)e−s

s2−4s+3

If L{y} = (s−2)e−s

s2−4s+3 , then y = 1
2 U(t−1) e3(t−1) + 1

2 U(t−1) et−1.

(AB 89) If a and b are constants, find L{a sin(4t) + b t cos(4t)}. Then
find values of a and b such that L{a sin(4t) + b t cos(4t)} = 1

(s2+16)2 .

(Answer 89)

L{a sin(4t)+b t cos(4t)} =
4a

s2 + 16
+
bs2 − 16b

(s2 + 16)2
=

4as2 + bs2 + 64a− 16b

(s2 + 16)2
:

Thus

L


1

128
sin(4t)− 1

32
t cos(4t)

ff
=

1

(s2 + 16)2
:

(AB 90) Sketch the graph of y = t2 − t2 U(t − 1) + (2− t)U(t − 1).

(Answer 90)

0 1 2

0

1

2

t

y



(AB 91) Solve the following initial-value problems using the Laplace

transform. Do you expect the graphs of y , dy
dt

, or d2y
dt2

to show any cor-
ners or jump discontinuities? If so, at what values of t?

(a) dy
dt
− 9y = sin 3t, y(0) = 1

If dy
dt
−9y = sin 3t, y(0) = 1, then y(t) = − 1

30 sin 3t− 1
90 cos 3t+

31
30e

9t .

(b) dy
dt
− 2y = 3e2t , y(0) = 2

If dy
dt
− 2y = 3e2t , y(0) = 2, then y = 3te2t + 2e2t .

(c) dy
dt

+ 5y = t3, y(0) = 3

If dy
dt

+ 5y = t3, y(0) = 3, then y = 1
5 t

3 − 3
25 t

2 + 6
125 t −

6
625 +

1881
625 e

−5t .

(d) d2y
dt2
− 4 dy

dt
+ 4y = 0, y(0) = 1, y ′(0) = 1

If d2y
dt2
−4dy

dt
+4y = 0, y(0) = 1, y ′(0) = 1, then y(t) = e2t−te2t .

(e) d2y
dt2
− 2 dy

dt
+ 2y = e−t , y(0) = 0, y ′(0) = 1

If d2y
dt2
− 2 dy

dt
+ 2y = e−t , y(0) = 0, y ′(0) = 1, then y(t) =

1
5 (e−t − et cos t + 7et sin t).

(f ) d2y
dt2
− 7 dy

dt
+ 12y = e3t , y(0) = 2, y ′(0) = 3

If d2y
dt2
− 7dy

dt
+ 12y = e3t , y(0) = 2, y ′(0) = 3, then y(t) =

4e3t − 2e4t − te3t .
(g) d2y

dt2
− 6 dy

dt
+ 8y = t2e2t , y(0) = 3, y ′(0) = 2

If d2y
dt2
− 6 dy

dt
+ 8y = t2e2t , y(0) = 3, y ′(0) = 2, then y(t) =

− 15
8 e

4t + 39
8 e

2t − 1
4 te

2t − 1
2 t

2e2t − t3e2t .
(h) d2y

dt2
− 4y = et sin(3t), y(0) = 0, y ′(0) = 0

If d2y
dt2
− 4y = et sin(3t), y(0) = 0, y ′(0) = 0, then y(t) =

1
40e

2t − 1
72e
−2t − 1

90e
t cos(3t)− 1

45e
t sin(3t).

(i) d2y
dt2

+ 9y = cos(2t), y(0) = 1, y ′(0) = 5

If d2y
dt2

+ 9y = cos(2t), y(0) = 1, y ′(0) = 5, then y(t) =
1
5 cos 2t + cos 3t + 5

3 sin 3t.



(j) d2y
dt2

+ 9y = t sin(3t), y(0) = 0, y ′(0) = 0

If d2y
dt2

+ 9y = t sin(3t), y(0) = 0, y ′(0) = 0, then y(t) =
1
3

R t
0
r sin 3r sin(3t − 3r) dr .

(k) d2y
dt2

+ 9y = sin(3t), y(0) = 0, y ′(0) = 0

If d2y
dt2

+ 9y = sin(3t), y(0) = 0, y ′(0) = 0, then y(t) =
1
3

R t
0

sin 3r sin(3t − 3r) dr = 1
6 sin 3t − 1

2 t cos 3t.

(l) d2y
dt2

+ 5 dy
dt

+ 6y =
√
t + 1, y(0) = 2, y ′(0) = 1

If d2y
dt2

+ 5dy
dt

+ 6y =
√
t + 1, y(0) = 2, y ′(0) = 1, then y(t) =

7e−2t − 5e−3t +
R t
0

(e−2r − e−3r )
√
t − r + 1 dr .

(m) y(t) +
R t
0
r y(t − r) dr = t.

If y(t) +
R t
0
y(r)(t − r) dr = t, then y(t) = sin t.

(n) y(t) = tet +
R t
0

(t − r) y(r) dr .

If y(t) = tet +
R t
0

(t − r) y(r) dr , then y(t) = − 1
8e
−t + 1

8e
t +

3
4 te

t + 1
4 t

2et .

(o) dy
dt

= 1− sin t −
R t
0
y(r) dr , y(0) = 0.

If dy
dt

= 1 − sin t −
R t
0
y(r) dr , y(0) = 0, then y(t) = sin t −

1
2 t sin t.

(p) dy
dt

+ 2y + 10
R t
0
e4ry(t − r) dr = 0, y(0) = 7.

If dy
dt

+ 2y + 10
R t
0
e4ry(t − r) dr = 0, y(0) = 7, then y =

7et cos t − 21et sin t.

(q) dy
dt

+ 3y =


2; 0 ≤ t < 4,
0; 4 ≤ t ; y(0) = 2, y ′(0) = 0

If dy
dt

+ 3y =


2; 0 ≤ t < 4,
0; 4 ≤ t ; y(0) = 2, then

y(t) =
2

3
+

4

3
e−3t − 2

3
U(t − 4) +

2

3
U(t − 4)e12−3t :

The graph of y has a corner at t = 4. The graph of dy
dt

has a
jump at t = 4.

(r) d2y
dt2

+ 4y =


sin t; 0 ≤ t < 2ı,
0; 2ı ≤ t ; y(0) = 0, y ′(0) = 0



If d2y
dt2

+ 4y =


sin t; 0 ≤ t < 2ı,
0; 2ı ≤ t ; y(0) = 0, y ′(0) = 0, then

y(t) = (1=6)(1− U(t − 2ı))(2 sin t − sin 2t):

The graph of d2y
dt2

has a corner at t = 2ı.

(s) d2y
dt2

+ 3 dy
dt

+ 2y =


1; 0 ≤ t < 10,
0; 10 ≤ t ; y(0) = 0, y ′(0) = 0

If d2y
dt2

+ 3 dy
dt

+ 2y =


1; 0 ≤ t < 10,
0; 10 ≤ t ; y(0) = 0, y ′(0) = 0,

then

y(t) =
1

2
+

1

2
e−2t − e−t −U(t−10)

»
1

2
+

1

2
e−2(t−10)− e−(t−10)

–
:

The graph of dy
dt

has a corner at t = 10. The graph of d2y
dt2

has a
jump discontinuity at t = 10.

(t) d3y
dt3

+ 3d
2y
dt2

+ 3dy
dt

+ y =


0; 0 ≤ t < 2,
4; 2 ≤ t ; y(0) = 3, y ′(0) = 1,

y ′′(0) = 2.

If d3y
dt3

+3d
2y
dt2

+3dy
dt

+y =


0; 0 ≤ t < 2,
4; 2 ≤ t ; y(0) = 3, y ′(0) = 2,

y ′′(0) = 1, then

y(t) = 3e−t+5te−t+4t2e−t+U(t−2)(4−4e2−t−4te2−t−2(t−2)2e2−t):

The graph of d2y
dt2

has a corner at t = 2. The graph of d3y
dt3

has a
jump discontinuity at t = 2.

(u) d2y
dt2

+ 4 dy
dt

+ 4y =


0; 0 ≤ t < 2,
3; 2 ≤ t ; y(0) = 2, y ′(0) = 1

If d2y
dt2

+ 4 dy
dt

+ 4y =


0; 0 ≤ t < 2,
3; 2 ≤ t ; y(0) = 2, y ′(0) = 1, then

y(t) = 2e−2t+5te−2t+
3

4
u2(t)−3

4
e−2t+4u2(t)−3

2
(t−2)e−2t+4u2(t):



The graph of dy
dt

has a corner at t = 2. The graph of d2y
dt2

has a
jump at t = 2.

(v) 6 d
2y
dt2

+ 5 dy
dt

+ y = 4U(t − 2), y(0) = 0, y ′(0) = 1.

If 6 d
2y
dt2

+ 5 dy
dt

+ y = 4U(t − 2), y(0) = 0, y ′(0) = 1, then

y = 6e−t=3−6e−t=2+4U(t−2)−12U(t−2)e−(t−2)=3+8U(t−2)e−(t−2)=2:

The graph of y ′(t) has a corner at t = 2, and the graph of y ′′(t)
has a jump at t = 2.

(w) dy
dt

+ 9y = 7‹(t − 2), y(0) = 3.

If dy
dt

+ 9y = 7‹(t − 2), y(0) = 3, then y(t) = 3e−9t + 7U(t −
2)e−9t+18. The graph of y(t) has a jump at t = 2.

(x) d2y
dt2

+ 4y = −2‹(t − 4ı), y(0) = 1=2, y ′(0) = 0

If d2y
dt2

+ 4y = ‹(t − 4ı), y(0) = 1=2, y ′(0) = 0, then

y =
1

2
cos(2t)− U(t − 4ı) sin(2t):

The graph of y(t) has a corner at t = 4ı, and graph of y ′(t)
has a jump at t = 4ı.

(y) d2y
dt2

+ 4 dy
dt

+ 3y = 2‹(t − 1) + U(t − 2), y(0) = 1, y ′(0) = 0

If d2y
dt2

+ 4 dy
dt

+ 3y = 2‹(t − 1) + U(t − 2), y(0) = 1, y ′(0) = 0,
then

y =
3

2
e−t−1

2
e−3t+

1

2
U(t−1)e−t+1−1

2
U(t−1)e−3t+3+

1

3
U(t−2)−1

2
e−t+2 U(t−2)+

1

6
U(t−2)e−3t+6:

The graph of y(t) has a corner at t = 1. The graph of y ′(t) has
a corner at t = 2, and a jump at t = 1. y ′′(t) has an impulse at
t = 1, and a jump at t = 2.

(z) d3y
dt3
−2d

2y
dt2

+ dy
dt
−2y = 5‹(t−4), y(0) = 1, y ′(0) = 0, y ′′(0) = 2.



If d3y
dt3
− 2 d

2y
dt2
− dy

dt
+ 2y = 5‹(t − 4), y(0) = 3, y ′(0) = 0,

y ′′(0) = 0, then

y =
3

5
e2t +

4

5
cos t − 2

5
sin t + U(t − 4)(e2t − cos t − 2 sin t)

The graph of dy
dt

has a corner at t = 4, and the graph of d2y
dt2

has
a jump at t = 4.

(AB 92) Consider the initial value problem dx
dt

= x cos y , dy
dt

= x2 sin y ,
x(0) = 4, y(0) = ı=2. Use the phase plane method to find a nondiffer-
ential equation relating x and y .

(Answer 92) We compute that dy
dx

= x tan y , so ln | sin y | = 1
2x

2 − 8.

(AB 93) Consider the system of differential equations dx
dt

= 3x − 4y ,
dy
dt

= 4x − 3y . Use the phase plane method to find a nondifferential
equation relating x and y .

(Answer 93) The trajectories of solutions to dx
dt

= 3x − 4y , dy
dt

=
4x − 3y satisfy 4y2 − 6xy + 4x2 = C for constants C.

(AB 94) Consider the system of differential equations dx
dt

= 3y − 2xy ,
dy
dt

= 4xy − 3y . Use the phase plane method to find a nondifferential
equation relating x and y .

(Answer 94) If dx
dt

= 3y − 2xy , dy
dt

= 4xy − 3y , then y = −2x −
3
2 ln |x − 3=2|+ C.

(AB 95) Consider the system of differential equations dx
dt

= 3x − 4xy ,
dy
dt

= 5xy − 2y . Use the phase plane method to find a nondifferential
equation relating x and y .



(Answer 95) If dx
dt

= 3x − 4xy , dy
dt

= 5xy − 2y , then 3 ln |y |+ 2 ln |x | −
4y − 5x = C.

(AB 96) Imperial stormtroopers and Rebel Alliance fighters battle each
other on an open plain, where both groups can easily see and aim at all
members of the other group. Every minute, each stormtrooper has a
2% chance of killing a rebel, and each rebel has a 5% chance of killing
a stormtrooper. There are initially 4000 stormtroopers and 1000 rebels.

Find a nondifferential equation relating the number of surviving
rebels and the number of surviving stormtroopers.

(Answer 96) Let t denote time (in minutes), let S denote the number
of stormtroopers, and let R denote the number of rebels.

Then

dR

dt
= −0:02S;

dS

dt
= −0:05R; R(0) = 1000; S(0) = 4000:

The phase plane method tells us that

dR

dS
=

2S

5R
:

This is a separable equation and we compute

5R2 = 2S2 − 27;000;000:

(AB 97) Jedi knights and Sith lords battle in a dense forest. Every
minute, each Jedi has a 1% chance of finding each Sith lord. If a Jedi
finds a Sith lord, they fight; the Jedi has a 60% chance of dying and the
Sith lord has a 40% chance of dying. Initially there are 90 Jedi and 50
Sith lords.

Find a nondifferential equation relating the number of Jedi and
Sith lords still alive.



(Answer 97) Let t denote time (in minutes), let S denote the number
of Sith lords, and let J denote the number of Jedi.

Then

dJ

dt
= −0:006JS;

dS

dt
= −0:004JS; J(0) = 90; S(0) = 50:

Then dS
dJ

= 4
6 and so S = 2

3J − 10.



(AB 98) An isolated town has a population of 9000 people. Three of
them are simultaneously infected with a contagious disease to which
no member of the town has previously been exposed, but from which
one eventually recovers and which cannot be caught twice. Each in-
fected person encounters an average of 8 other townspeople per day.
Encounters are distributed among susceptible, infected, and recovered
people according to their proportion of the total population. If an in-
fected person encounters a susceptible person, the susceptible person
has a 5% chance of contracting the disease. Each infected person has a
17% chance of recovering from the disease on any given day.

(a) Set up the initial value problem that describes the number of
susceptible, infected, and recovered people.
Let t denote time (in days), let S denote the number of
susceptible people (who have never had the disease), let I
denote the number of infected people (who currently have the
disease), and let R denote the number of recovered people (who
now are resistant, that is, cannot get the disease again). Then
dS
dt

= − 1
22500SI, dI

dt
= 1

22500SI − 0:17I, dR
dt

= 0:17I, S(0) = 8997, I(0) = 3, R(0) = 0.

(b) Use the phase plane method to find a nondifferential equation
relating the number of susceptible and infected people.
dI
dS

= 3825
S
− 1, so I = 9000− S − 3825 ln 8997

S
.

(c) Use the phase plane method to find a nondifferential equation
relating the number of resistant and susceptible people.
dR
dS

= − 3825
S

, so R = 3825 ln 8997
S

.

(d) What is the maximum number of people that are infected at any
one time?
When I is maximized, 0 = dI

dt
= 1

22500SI − 0:17I,
and so S = 3825. Thus, the maximum value of I is

I = 9000− 3825− 3825 ln 62979
33750 .



(AB 99) Suppose that a disease is spreading through a town of 5000
people, and that its transmission in the absence of vaccination is given
by the Kermack-McKendrick SIR model dS

dt
= − 0:2

5000SI, dI
dt

= 0:2
5000SI −

0:1I, dR
dt

= 0:1I where t denotes time (in days), S denotes the number
of susceptible people, I denotes the number of infected people, and R
denotes the number of recovered, disease-resistant people.

Suppose we modify the model by assuming that 15 susceptible
people are vaccinated each day (and thus become resistant without be-
ing infected first).

Set up the system of differential equations that describes the num-
ber of susceptible, infected, and recovered people. You may use the
same variable names as before. (You may let R denote all disease-
resistant people, both vaccinated and recovered.)

(Answer 99) dS
dt

= − 0:2
5000SI− 15, dI

dt
= 0:2

5000SI− 0:1I, dR
dt

= 0:1I+ 15.



(AB 100) Suppose that a disease is spreading through a town of 5000
people, and that its transmission in the absence of vaccination is given
by the Kermack-McKendrick SIR model dS

dt
= − 0:2

5000SI, dI
dt

= 0:2
5000SI −

0:1I, dR
dt

= 0:1I where t denotes time (in days), S denotes the number
of susceptible people, I denotes the number of infected people, and R
denotes the number of recovered, disease-resistant people.

Suppose we modify the model by assuming that 15 people are vac-
cinated each day (and thus become resistant without being infected
first). No testing is available, and so vaccines are distributed among
susceptible, resistant, and infected people according to their proportion
of the total population. A vaccine administered to an infected or resis-
tant person has no effect.

(a) Set up the system of differential equations that describes the
number of susceptible, infected, and resistant people. You may
use the same variable names as before. (You may let R denote
all disease-resistant people, both vaccinated and recovered.)
dS
dt

= − 0:2
5000SI − 15 S

5000 , dI
dt

= 0:2
5000SI − 0:1I, dR

dt
= 0:1I + 15 S

5000 .

(b) Assume that there are initially no recovered or vaccinated people
and 7 infected people. Use the phase plane method to find a
nondifferential equation relating S and I.

We compute that dI
dS

= dI=dt
dS=dt

= 0:2SI−500I
−0:2SI−15S = 0:2S−500

S
I

−0:2I−15 .

This is a separable differential equation, which we solve to see
that −0:2I − 15 ln I = 0:2S − 500 lnS + C. Applying
the initial conditions I(0) = 7, S(0) = 4993, we see that

−0:2(I − 7)− 15 ln(I=7) = 0:2(S − 4993)− 500 ln(S=4993).

(c) Find a nondifferential equation involving the maximum number
of people that are infected with the virus at any one time.
The maximum I value occurs when 0 = dI

dt
= 0:2

5000SI − 0:1I, or
S = 2500. The maximum I value then satisfies
−0:2(I − 7)− 15 ln(I=7) = 0:2(2500− 4993)− 500 ln(2500=4993).



(AB 101) A small town has a population of 16,000 people. It is ex-
pected that soon, one of them will be infected with a contagious dis-
ease.

Epidemiologists observe the town and expect each infected person
to encounter 10 people per day, who are distributed among susceptible,
vaccinated, recovered and infected people according to their propor-
tion of the total population. Each time an infected person encounters
a susceptible person, there is a 6% chance that the susceptible person
becomes infected. Each infected person has a 25% chance per day of
recovering. A recovered person can never contract the disease again.

A (not very effective) vaccine can be distributed before the epi-
demic starts. Each time an infected person encounters a vaccinated
person, there is a 2% chance they become infected. (Once a vaccinated
person becomes infected, they are identical to an infected person who
was never vaccinated.)

The mayor of the town would like to be sure that no more than
2,000 people are ever infected.

(a) Set up the initial value problem that describes the number of
susceptible, infected, and recovered people.
Let t denote time (in days). Let V denote the number of never-
infected vaccinated people, S denote the number of never-
infected susceptible people, I denote the number of infected
people, and R denote the number of recovered, disease-resistant
people. We have a parameter, v , for the number of people vacci-
nated at the start of the epidemic. Then

dS

dt
= − 0:6

16000
IS;

dV

dt
= − 0:2

16000
IV;

dI

dt
=

0:6

16000
IS+

0:2

16000
IV−0:25I;

dR

dt
= 0:25I

and

S(0) = 15999− v; V (0) = v; I(0) = 1; R(0) = 0:

(b) Use the phase plane method to find a nondifferential equation
relating the number of susceptible and recovered people.



We compute that dS
dR

= dS=dt
dR=dt

=
− 0:6

16000
IS

0:25I = −6
40000S. This is a

separable differential equation, which we solve to see that S =
Ce−6R=40000. Applying the initial conditions S(0) = 15999 − v ,

R(0) = 0, we see that S = (15999− v)e−6R=40000.

(c) Use the phase plane method to find a nondifferential equation
relating the number of recovered people to the number of vacci-
nated (and never-infected) people.

We compute that dV
dR

= dV =dt
dR=dt

=
− 0:2

16000
IV

0:25I = −2
40000V . This

is a separable differential equation, which we solve to see that
V = Ce−2R=40000. Applying the initial conditions V (0) = v ,

R(0) = 0, we see that V = ve−2R=40000.
(d) Find a nondifferential equation relating the number of infected

people to the number of recovered people.
I + S + V + R = 16;000, so I = 16000 − R − S − V =
16000− R − ve−2R=40000 − (15999− v)e−6R=40000.

(e) How many people must be vaccinated in order for there to be at
most 2000 previously-infected (and thus resistant) people when
the epidemic ends?
If I = 0 and R = 2000, then 0 = 14000 − ve−1=10 − (15999 −

v)e−3=10. Solving, we see that v = 14000−(15999)e−3=10

e−1=10+e−3=10 . Thus,

at least this many people must be vaccinated.



(AB 102) An isolated town has a population of 9000 people. Three of
them are simultaneously infected with a contagious disease to which no
member of the town has previously been exposed, but from which one
eventually recovers.

Each infected person encounters an average of 20 other townspeo-
ple per day. Encounters are distributed among susceptible, infected,
and recovered people according to their proportion of the total popula-
tion. If an infected person encounters a susceptible person, the suscep-
tible person has a 5% chance of contracting the disease. If an infected
person encounters a recovered person, the recovered person has a 1%
chance of contracting the disease again. Each infected person has a
12% chance of recovering from the disease on any given day.

(a) Set up the initial value problem that describes the number of
susceptible, infected, and recovered people.

Let t denote time (in days), let S denote the number of sus-
ceptible people (who have never had the disease), let I denote
the number of infected people (who currently have the disease),
and let R denote the number of recovered people (who now
are resistant, that is, are less likely to get the disease again).
Then dS

dt
= − 1

9000SI, dI
dt

= 1
9000SI + 1

45000RI − 0:12I,
dR
dt

= 0:12I − 1
45000RI, S(0) = 8997, I(0) = 3, R(0) = 0.

(b) Use the phase plane method to find a nondifferential equation
relating the number of susceptible and recovered people. Solve
for the number of recovered people.
dR
dS

= dR=dt
dS=dt

= R−5400
5S , so ln |R − 5400| = 1

5 lnS + C. Us-

ing our initial conditions, we see that ln 5400−R
5400 = 1

5 ln S
8997 , or

R = 5400− 5400
`

S
8997

´1=5
.

(c) Write a nondifferential equation relating the number of infected
people to the number of susceptible people.

I+R+S = 9000, so I = 9000−R−S = 3600 + 5400
`

S
8997

´1=5
.



(d) Does the number of infected people ever approach zero? If so,
how many susceptible people are left at that time?
No. Observe that if S ≥ 0 then I ≥ 3600.

(e) Does the number of susceptible people ever approach zero? If
so, how many infected people and how many resistant people are
there at that time?
As S → 0, we see that I → 3600 and R→ 5400.

(AB 103) Suppose that d2x
dt2

= 18x3, x(0) = 1, x ′(0) = 3. Let v = dx
dt

.
Find a formula for v in terms of x . Then find a formula for x in terms
of t.

(Answer 103) We have that dv
dt

= dv
dx

dx
dt

= v dv
dx

and also dv
dt

= d2x
dt2

.

Thus v dv
dx

= 18x3, v(1) = 3. Solving, we see that v = 3x2.

But then dx
dt

= 3x2, x(0) = 1, and so x = 1
1−3t .



(AB 104) Suppose that a rocket of mass m = 1000 kg is launched
straight up from the surface of the planet Gallifrey with initial velocity
10 km/sec. The radius of Gallifrey is 3,000 km. When the rocket is r
meters from the center of Gallifrey, it experiences a force due to gravity
of magnitude GMm=r2, where GM = 6× 1014 meters3/second2.

(a) Formulate the initial value problem for the rocket’s position.
The initial value problem is

1000
d2r

dt2
= −6× 1017

r2
; r(0) = 3;000;000; r ′(0) = 10000

where r denotes the distance to the center of Gallifrey in meters
and t denotes time in seconds.

(b) Find the velocity of the rocket as a function of position.
Let v be the rocket’s velocity in meters/second. We have that

1000v
dv

dr
= −6× 1017

r2
; v(3;000;000) = 10000

and so

500v2 =
6× 1017

r
− 1:5× 1011:

(c) How far away from the earth is the rocket when it stops moving
and starts to fall back?
v = 0 when r = 4× 106 meters.



(AB 105) A 5-kg toolbox is dropped (from rest) out of a spaceship at
an altitude of 9,000 km above the surface of Gallifrey. The radius of
Gallifrey is 3,000 km. When the toolbox is r meters from the center of
the earth, it experiences a force due to gravity of magnitude 5GM=r2,
where GM = 6× 1014 meters3/second2.

(a) Formulate the initial value problem for the toolbox’s position.
The initial value problem is

5
d2r

dt2
= −3× 1015

r2
; r(0) = 12;000;000; r ′(0) = 0

where r denotes the distance to the center of Gallifrey in meters
and t denotes time in seconds.

(b) Find the velocity of the toolbox as a function of position.
Let v be the toolbox’s velocity in meters/second. We have that

5v
dv

dr
= −3× 1015

r2
; v(12;000;000) = 0

and so
5

2
v2 =

3× 1015

r
− 2:5× 108:

(c) How fast is the toolbox moving when it strikes the surface of
Gallifrey?
When r = 3;000;000, v = −10000

√
3 meters/second.



(AB 106) A particle of mass m = 3 kg a distance r from an infinitely
long string experiences a force due to gravity of magnitude Gm=r ,
where G = 2000 meters2/second2, directed directly toward the string.
Suppose that the particle is initially 1000 meters from the string and
takes off with initial velocity 200 meters/second directly away from the
string.

(a) Formulate the initial value problem for the particle’s position.
The initial value problem is

3
d2r

dt2
= −6000

r
; r(0) = 1000; r ′(0) = 200

where r denotes the distance to the string in meters and t de-
notes time in seconds.

(b) Find the velocity of the particle as a function of position.
Let v be the particle’s velocity in meters/second. We have that

3v
dv

dr
= −6000

r
; v(1000) = 200

and so
v2 = −4000 ln r + 4000 ln 1000 + 40000:

(c) How far away from the string is the particle when it stops mov-
ing and starts to fall back?
v = 0 when r = 1000e10 meters.



(AB 107) A charged particle of mass m = 20 g a distance r meters
from an electric dipole experiences a force of 3=r3 newtons, directed
directly toward the dipole. Suppose that the particle is initially 3 me-
ters from the dipole and is set in motion with initial velocity 5 me-
ters/second away from the dipole.

(a) Formulate the initial value problem for the particle’s position.
The initial value problem is

0:02
d2r

dt2
= − 3

r3
; r(0) = 3; r ′(0) = 5

where r denotes the distance to the dipole in meters and t de-
notes time in seconds.

(b) Find the velocity of the particle as a function of position.
Let v be the particle’s velocity in meters/second. We have that

0:02v
dv

dr
= − 3

r3
; v(3) = 5

and so

v2 =
150

r2
+

25

3
:

(c) What is the limiting velocity of the particle?
As r →∞, we see that v approaches 5√

3
meters/second.

(AB 108) Suppose that a bob of mass 300g hangs from a pendulum of
length 15cm. The pendulum is set in motion from its equilibrium point
with an initial velocity of 3 meters/second.

If „ denotes the angle between the pendulum and the vertical, then

the pendulum satisfies the equation of motion m d2„
dt2

= −mg
‘

sin „,
where m is the mass of the pendulum bob, ‘ is the length of the pen-
dulum and g is the acceleration of gravity (which you may take to be
9:8 meters/second2).

Find a formula for ! = d„
dt

in terms of „.



(Answer 108) Let „ be the angle between the pendulum and a vertical
line (in radians), and let t denote time in seconds. Then

0:3
d2„

dt2
= −9:8

0:5
sin „; „(0) = 0; „′(0) = 20:

Let ! = d„
dt

be the pendulum’s angular velocity. We have that
d!
dt

= d!
d„

d„
dt

= ! d!
d„

and also d!
dt

= d2„
dt2

. Thus ! d!
d„

= − 196
3 sin „ and

!(0) = 20. Solving, we see that 1
2!

2 = 196
3 cos „ + 404

3 .

(AB 109) Here are some phase planes. To which of the following sys-
tems do these phase planes correspond? How do you know?

(a)

„
x ′

y ′

«
=

„
2:2 −0:6
0:4 0:8

«„
x
y

«
, solution„

x(t)
y(t)

«
= C1e

t

„
1
2

«
+ C2e

2t

„
3
1

«
This system has two real eigenvectors, so we expect two pairs
of straight line solutions. The eigenvalues are both positive and
real, so we expect an unstable node. Thus the phase portrait
must be

x

y



(b)

„
x ′

y ′

«
=

„
−2:6 1:8
−1:2 1:6

«„
x
y

«
, solution„

x(t)
y(t)

«
= C1e

t

„
1
2

«
+ C2e

−2t
„

3
1

«
This system has two real eigenvectors, so we expect two pairs of
straight line solutions. This system has one positive eigenvalue
and one negative eigenvalue, so we expect a saddle point. Thus
the phase portrait must be

x

y



(c)

„
x ′

y ′

«
=

„
4=3 −1=6
2=3 2=3

«„
x
y

«
, solution„

x(t)
y(t)

«
= C1e

t

„
1
2

«
+ C2e

t

„
t + 3

2t

«
This system has one real eigenvectors, so we expect one pair of
straight line solutions. This system has a repeated eigenvalue,
and so we expect a degenerate node. Thus the phase portrait
must be

x

y



(d)

„
x ′

y ′

«
=

„
1 4:5
−2 1

«„
x
y

«
, solution„

x(t)
y(t)

«
= C1e

t

„
3 sin 3t
2 cos 3t

«
+ C2e

t

„
−3 cos 3t

2 sin 3t

«
This system has no real eigenvectors, so we don’t expect any
straight line solutions. The eigenvectors have nonzero real part
(we see an et , not only sines and cosines), so we expect a spiral
point. Thus the phase portrait must be

x

y



(e)

„
x ′

y ′

«
=

„
2 5
−4 −2

«„
x
y

«
, solution„

x(t)
y(t)

«
= C1

„
5 sin 4t

4 cos 4t − 2 sin 4t

«
+C2

„
5 cos 4t

−4 sin 4t − 2 cos 4t

«
This system has no real eigenvectors, so we don’t expect any
straight line solutions. The eigenvectors have zero real part (we
don’t see any exponentials, just sines and cosines), so we expect
a center. Thus the phase portrait must be

x

y



(f )

„
x ′

y ′

«
=

„
3 0
0 3

«„
x
y

«
, solution„

x(t)
y(t)

«
= C1e

3t

„
1
0

«
+ C2e

3t

„
0
1

«
This system has two real eigenvectors with the same eigenvalue,
so we expect infinitely many pairs of straight line solutions.
Thus the phase portrait must be

x

y



(AB 110) Here is a direction field and phase plane corresponding to

the system

„
dx=dt
dy=dt

«
=

„
a b
c d

«„
x
y

«
. What can you say about the

matrix

„
a b
c d

«
, eigenvalues of the matrix

„
a b
c d

«
, or the solutions

to the system?

x

y

x

y

(Answer 110) This is a star. The system is unstable. Every vector
is an eigenvector. There is only one eigenvalue and it is positive. We

must have that

„
a b
c d

«
=

„
r 0
0 r

«
for some positive number r .



(AB 111) Here is a direction field and phase plane corresponding to

the system

„
dx=dt
dy=dt

«
=

„
a b
c d

«„
x
y

«
. What can you say about the

matrix

„
a b
c d

«
, eigenvalues of the matrix

„
a b
c d

«
, or the solutions

to the system?

x

y

x

y

(Answer 111) This is a center. The system is stable but not asymp-
totically stable. The eigenvalues are purely imaginary. The solutions
consist of sines and cosines (no exponentials or powers of t).



(AB 112) Here is a direction field and phase plane corresponding to

the system

„
dx=dt
dy=dt

«
=

„
a b
c d

«„
x
y

«
. What can you say about the

matrix

„
a b
c d

«
, eigenvalues of the matrix

„
a b
c d

«
, or the solutions

to the system?

x

y

x

y

(Answer 112) This is a node. The system is unstable. The matrix„
a b
c d

«
has two distinct real positive eigenvalues. The solutions take

the form

„
x
y

«
= C1e

rt

„
1
2

«
+ C2e

st

„
3
1

«
, where r and s are the

eigenvalues and 0 < r < s.



(AB 113) Here is a direction field and phase plane corresponding to

the system

„
dx=dt
dy=dt

«
=

„
a b
c d

«„
x
y

«
. What can you say about the

matrix

„
a b
c d

«
, eigenvalues of the matrix

„
a b
c d

«
, or the solutions

to the system?

x

y

x

y

(Answer 113) This is a node. The system is asymptotically stable.

The matrix

„
a b
c d

«
has two distinct real negative eigenvalues. The

solutions take the form

„
x
y

«
= C1e

rt

„
2
1

«
+ C2e

st

„
1
−1

«
, where r

and s are the eigenvalues and s < r < 0.



(AB 114) Here is a direction field and phase plane corresponding to

the system

„
dx=dt
dy=dt

«
=

„
a b
c d

«„
x
y

«
. What can you say about the

matrix

„
a b
c d

«
, eigenvalues of the matrix

„
a b
c d

«
, or the solutions

to the system?

x

y

x

y

(Answer 114) This is a saddle point. The system is unstable. The ma-

trix

„
a b
c d

«
has two real eigenvalues, one positive and one negative.

The solutions take the form

„
x
y

«
= C1e

rt

„
1
2

«
+ C2e

st

„
3
1

«
, where r

and s are the eigenvalues and s < 0 < r .



(AB 115) Here is a direction field and phase plane corresponding to

the system

„
dx=dt
dy=dt

«
=

„
a b
c d

«„
x
y

«
. What can you say about the

matrix

„
a b
c d

«
, eigenvalues of the matrix

„
a b
c d

«
, or the solutions

to the system?

x

y

x

y

(Answer 115) This is a degenerate node. The system is unstable. The

matrix

„
a b
c d

«
has only one eigenvalue and it is positive. If C is a

constant then

„
x
y

«
= C1e

rt

„
1
2

«
, where r > 0 is the eigenvalue. The

general solution is

„
x
y

«
= C1e

rt

„
1
2

«
+C2e

rt

„
t + A

2t + B

«
, where A and

B are constants.



(AB 116) Here is a direction field and phase plane corresponding to

the system

„
dx=dt
dy=dt

«
=

„
a b
c d

«„
x
y

«
. What can you say about the

matrix

„
a b
c d

«
, eigenvalues of the matrix

„
a b
c d

«
, or the solutions

to the system?

x

y

x

y

(Answer 116) This is a spiral point. The system is unstable. The
eigenvalues are complex and take the form — ± –i , where — > 0 is
real and – is real. The solutions are exponentials multiplied by sines
and cosines.



(AB 117) Here are some phase planes. To which of the following sys-
tems do these phase planes correspond? How do you know?

(a)

„
x ′

y ′

«
=

„
2:2 −0:6
0:4 0:8

«„
x
y

«
, solution

„
x(t)
y(t)

«
= C1e

t

„
1
2

«
+

C2e
2t

„
3
1

«

The straight line solutions should pass through the points
±(1; 2) and ±(3; 1), and so the phase portrait must be

x

y

(b)

„
x ′

y ′

«
=

„
5 −2
−1 4

«„
x
y

«
, solution

„
x(t)
y(t)

«
= C1e

3t

„
1
1

«
+

C2e
6t

„
2
−1

«

The straight line solutions should pass through the points
±(1; 1) and ±(2;−1), and so the phase portrait must be





(AB 118) Here are some phase planes. To which of the following sys-
tems do these phase planes correspond? How do you know?

(a)

„
x ′

y ′

«
=

„
2 −2
−1 3

«„
x
y

«
, solution

„
x(t)
y(t)

«
=

C1e
4t

„
1
−1

«
+ C2e

t

„
2
1

«
The eigenvector

„
2
1

«
has a smaller eigenvalue than the eigen-

vector

„
1
−1

«
, and so the

„
2
1

«
will dominate solutions for neg-

ative times and the eigenvector

„
1
−1

«
will dominate solutions

for positive times. The phase portrait must be

(b)

„
x ′

y ′

«
=

„
3 2
1 2

«„
x
y

«
, solution

„
x(t)
y(t)

«
= C1e

t

„
1
−1

«
+

C2e
4t

„
2
1

«
The eigenvector

„
2
1

«
has a larger eigenvalue than the eigenvec-

tor

„
1
−1

«
, and so the

„
2
1

«
will dominate solutions for large

positive times and the eigenvector

„
1
−1

«
will dominate solu-



tions for negative times. The phase portrait must be



(AB 119) Here are some phase planes. To which of the following sys-
tems do these phase planes correspond? How do you know?

(a)

„
x ′

y ′

«
=

„
4 6
9 −11

«„
x
y

«
, solution

„
x(t)
y(t)

«
= C1e

7t

„
2
1

«
+

C2e
−14t

„
1
−3

«

The eigenvector

„
2
1

«
corresponds to the positive eigenvalue 7,

and so solutions should diverge away from the origin along the
line x = 2y . Thus, the phase portrait must be

(b)

„
x ′

y ′

«
=

„
−4 −6
−9 11

«„
x
y

«
, solution

„
x(t)
y(t)

«
= C1e

−7t
„

2
1

«
+

C2e
14t

„
1
−3

«

The eigenvector

„
2
1

«
corresponds to the negative eigenvalue

−7, and so solutions should approach the origin along the line
x = 2y . Thus, the phase portrait must be





(AB 120) Here are some phase planes. To which of the following sys-
tems do these phase planes correspond? How do you know?

(a)

„
x ′

y ′

«
=

„
−3 4
−8 5

«„
x
y

«
, eigenvalues r = 1± 4i

This system has eigenvalues with positive real part, so it must be
unstable, and therefore must have phase portrait

(b)

„
x ′

y ′

«
=

„
3 −4
8 −5

«„
x
y

«
, eigenvalues r = −1± 4i

This system has eigenvalues with negative real part, so it must
be asymptotically stable, and therefore must be
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