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1.1. ELEMENTARY PROPERTIES OF THE COMPLEX NUMBERS
[Definition: The complex numbers] The set of complex numbers is R?, denoted C. (In this class, you may use
everything you know about R and R?—in particular, that R? is an abelian group and a normed vector space.)
[Definition: Real and imaginary parts] If (x, y) is a complex number, then Re(x, y) = x and Im(x,y) = y.
[Definition: Addition and multiplication] If (x, y) and (&, 1) are two complex numbers, we define

xy)+En)=Kx+&y+n),
(x, ) (&m) = (x§ — yn, xn + y§).

(Problem 10) Show that multiplication in the complex numbers is commutative.

(Fact 20) This notion of addition and multiplication makes the complex numbers a ring—thus, multiplication is
also associative and distributes over addition.

(Problem 30) What is the multiplicative identity?

(Problem 40) Let r be a real number. Recall that C = R? is a vector space over R, so we can multiply vectors
(complex numbers) by scalars (real numbers). Is there a complex number (£, n) such that r(x,y) = (§,1) - (x,y)
for all (x,y) € C?

[Definition: Notation for the complex numbers]

e If r € R, we identify r with the number (r,0) € C.
e We let i denote (0, 1).

(Problem 50) If x, y are real numbers, what complex number is x + iy?

(Problem 60) If z = x + iy for x, y real, what are Re z and Im z?

(Problem 70) If z € C and r is real, what are Re(zr) and Im(zr)?

(Problem 80) If z, w € C, what are Re(zw), Im(zw) in terms of Rez, Rew, Imz, and Im w?

[Definition: Conjugate] The conjugate to the complex number x + iy, where x, y are real, is x + iy = x — iyE]
(Problem 90) If z and w are complex numbers, show that Z+w =z + w.

(Problem 100) Show that z- w = zZw.

(Problem 110) Write Rez and Im z in terms of z and Z.

(Problem 120) Show that zZ is always real and nonnegative. If zz = 0, what can you say about z?

(Problem 130) If z is a complex number with z # 0, show that there exists another complex number w such
that zw = 1. Give a formula for w in terms of z. We will write w = %

Z"

zZ is a positive real number, and we know from real analysis that positive real numbers have reciprocals.
Thus L € R. We can multiply complex numbers by real numbers, so -z is a complex number and it is

7z 2z
the w of the problem statement.

[Definition: Modulus] If z is a complex number, we define its modulus |z| as |z| = v/zZ.

(Fact 140) |Rez| < |z| and |Imz| < |z| (where the first | - | denotes the absolute value in the real numbers
and the second | - | denotes the modulus in the complex numbers.)

(Problem 150) If z and w are complex numbers, show that |zw| = |z| |w]|.

(Problem 160) Give an example of a non-constant polynomial that has no roots (solutions) that are real numbers.
Find a root (solution) to your polynomial that is a complex number.

1Some authors, especially in physics, write z* instead of Z for the complex conjugate of z.



1.2. REAL ANALYSIS
(Fact 170) If z = x + iy = (x,y), then the complex modulus |z| is equal to the vector space norm ||(x, y)]|
in R2.
(Fact 180) C is complete as a metric space if we use the expected metric d(z, w) = |z — w|.

(Problem 190) Recall that (R, d) is a metric space, where d(u, v) = ||u— v||. In particular, this metric satisfies
the triangle inequality. Write the triangle inequality as a statement about moduli of complex numbers. Simplify
your statement as much as possible.

The conclusion is that |z + w| < |z| + |w] for all z, w € C. This is Proposition 1.2.3 in your textbook.

(Memory 200) If {a,}°, is a sequence of points in RP, a € RP and we write a, = (al,a2,...,a%), a =
a',...aP), then a, — a (in the metric space sense) if and only if ak — a* for each 1 < k < p.
n

(Problem 210) What does this tell you about the complex numbers?

[Definition: Maclaurin series] If f : R — R is an infinitely differentiable function, the Maclaurin series for f is
the power series
>

n=0

(n)

with the convention that 0° = 1.

(Memory 220) The Maclaurin series for the exp function is Y -, );(—

2k+1
)k X

(Memory 230) The Maclaurin series for the sin function is 3 ;2 ,(— sy

(Memory 240) The Maclaurin series for the cos function is Zk:o(_l)k%-

(Memory 250) If x is real, then the Maclaurin series for exp x, sin x, or cos x converges to exp x, sin x, or cos x,
respectively.

(Memory 260) If x and t are real numbers then
sin(x + t) = sin x cos t + sin t cos x,

cos(x + t) = cos x cos t — sin xsin .

(Memory 270) The Cauchy-Schwarz inequality for real numbers states that if n € N is a positive integer, and if
for each j with 1 < j < n the numbers x;, §; are real, then

n 2 n n
2 2
(Tse) = (X9)(X8)
j=1 Jj=1 j=1
1.2. FURTHER PROPERTIES OF THE COMPLEX NUMBERS

(Problem 280) State the Cauchy-Schwarz inequality for complex numbers and prove that it is valid.

This is Proposition 1.2.4 in your book. If n € N, and if z;, z,...,2z, and wy, ws, ..., w, are complex
numbers, then
2
2 2
‘ZZJ'WJ" <Y 7P wl
J J J
(Problem 290) Let z € C. Consider the series 3 ° o5 , , that is, the sequence of complex numbers {ZJ 0 J. :io‘

Show that this sequence is a Cauchy sequence.

(Problem 300) Since C is complete, the series converges. If z = x is a real number, to what number does the
series converge?

(Problem 310) If z = jy is purely imaginary (that is, if y € R), show that Z




(Bonus Problem 320) If z = x + iy, show that 3_7°, j’—l converges to the product (3%, j‘J—,) (X2 (i}’!)j).

[Definition: The complex exponential] If x is real, we define

(e 9] J [ee] . i
exp(x) = Z X—I and  exp(ix) = Z (IXI)J
=04 P

If z=x+ iy is a complex number, we define
exp(z) = exp(x) - exp(iy).
(Problem 330) If y, n are real, show that exp(iy + in) = exp(iy) - exp(in).

Using the sum angle identities for sine and cosine, we compute
exp(iy + in) = exp(i(y +n)) = cos(y + n) + isin(y +n) = cosy cosn — sin y sinn + isiny cosn + i cos y sinn
and
exp(iy) exp(in) = (cosy + isiny)(cosn + isinn) = cosy cosn —sinysinn + isiny cosn + i cos y sinn

and observe that they are equal.

(Problem 340) If z, w are any complex numbers, show that exp(z + w) = exp(z) - exp(w).

There are real numbers x, y, & n such that z=x+ iy and w =& + in.
By definition
exp(z) = exp(x) exp(iy), exp(w) = exp(&) exp(in).
Because multiplication in the complex numbers is associative and commutative,
exp(z) exp(w) = [exp(x) exp(iy)][exp(§) exp(in)] = [exp(x) exp(£)][exp(iy) exp(in)].
By properties of exponentials in the real numbers and by the previous problem, we see that
exp(z) exp(w) = [exp(x) exp(iy)][exp(§) exp(in)] = exp(x + &) exp(iy + in).
By definition of the complex exponential,
exp(z) exp(w) = [exp(x) exp(iy)][exp(§) exp(in)] = exp((x + &) + i(y + n)) = exp(z + w)

as desired.

(Problem 350) Suppose that z is a complex number and that |z| = 1. Show that there is a number § € R with
exp(if) = z. How many such numbers 6 exist?

We know from real analysis that, if (x, y) lies on the unit circle, then (x, y) = (cos 8, sin 8) for some real
number 6. By definition of complex modulus, if |z| =1 and z = x + iy then (x, y) lies on the unit circle.
Thus z = cos @ + isin 8 = exp(if) for some 6 € R.

Infinitely many such numbers 0 exist.

[Chapter 1, Problem 25] If §, w € R, then e® = e/® if and only if (§ — w)/(27) is an integer.

(Problem 360) Suppose that z is a complex number. Show that there exist numbers r € [0, 00) and 6 € R such
that z = rexp(if). How many possible values of r exist? How many possible values of 8 exist?

Observe that |re®| = r|e’®| because r > 0 and because the modulus distributes over products. But

|e®| = | cosf + isin@] = \/cos26 +sin?6 = 1, and so the only choice for r is r = |z|.
If z =0 then we must have that r = 0 and can take any real number for 6.

If z#0, let r = |z|. Then w = 1z is a complex number with |z| = 1, and so there exist infinitely many
values 6 with e® = w and thus z = re®.

(Problem 370) Find all solutions to the equation z° = /.

Suppose that z = re® for some r >0, § € R.



Then 28 = r%¢5 If 26 = i then 1 = |i| = |25 = r® and so r = 1 because r > 0. We must then have
that i = €%¢. Observe that i = e/™/2. By Homework 1.25, we must have that 66 = 7/2 + 2mn for some
n €7, and so ()% = i if and only if § = m/12 + nm/3. Thus the solutions are

em/12 G5T/12 om/12 13w/12 17m/12 21m/12

Any other solution is of the form e, where @ differs from one of the listed numbers by 27.

1.3. REAL ANALYSIS

(Problem 380) Give an example of a function that can be written in two different ways.

[Definition: Ring of polynomials] Let R[z] be the ring of polynomials in one variable with real coefficients, that
is,
R[z] = {p: p(z) = Z ax 2 for some n € No, a € R}.
k=0
Let R[x, y] be the ring of polynomials in two variables with real coefficients, that is,

Rlx,y] ={p:p(x.y) = ZZaj,k x/ y¥ for some n € No, ajx € R}.
j=0 k=0

[Definition: Degree] If p € R[z] and p(z) = 3_|_, ax 2, then the degree of p is the largest nonnegative integer
m such that a,, # 0. (The degree of the zero polynomial p(z) = 0 is either undefined, —1, or —c0.)

(Problem 390) Let p(x) = 3 |_, ax x* and let q(x) = 3_|_, bk x* be two polynomials in R[x], with ax, bx € R.
Show that if p(x) = q(x) for all x € R then a, = by for all k € Np.

p and g are infinitely differentiable functions from R to R, and because p(x) = g(x) for all x € R, we
must have that p' = ¢', p" =¢q",..., pt) = g% for all k € N.
We compute p*)(0) = kla, and g(¥)(0) = k!by. Setting them equal we see that a, = by.

(Problem 400) Let p € R[x] be a polynomial. Suppose that x € R and that p(xp) = 0. Show that there exists
a polynomial ¢ € R[x] such that p(x) = (x — xp)q(x) for all x € R. Further show that, if p is a polynomial of
degree m > 0, then g is a polynomial of degree m — 1. Hint: Use induction.

If p is the zero polynomial we may take g to also be the zero polynomial. If p is a nonzero constant
polynomial then no such xg can exist. We therefore need only consider the case where p is a polynomial of
degree m > 1.

If m =1, then p(x) = a1x + ap for some ay, ap; if p(xo) = 0 then ag = —a1xp and so p(x) = a1(x — xp).
Then g(x) = a1 is a polynomial of degree 0 = m — 1.

Suppose that the statement is true for all polynomials of degree at most m — 1, m > 2. Let p be a
polynomial of degree m. Then p(x) = amx™ + r(x) where r is a polynomial of degree at most m — 1. We
add and subtract a,xox™ ! to see that

p(x) = amx™ 1 (x — x0) + amxox™ " + r(x).

Then s(x) = amxox™ ! + r(x) is a polynomial of degree at most m— 1. If s is a constant then 0 = p(xg) =
amxg" H(x — x0) + s and so s = 0; taking g(x) = amx™ ! we are done.

Otherwise, s(x) is a polynomial of degree at least one and at most m — 1. Also, s(xg) = p(x0) —
amx{"(x0 — x0) = 0, so by the induction hypothesis s(x) = (x — xo)t(x) for a polynomial t of degree at
most m — 2. Taking q(x) = amx™~1 + t(x) we are done.

(Problem 410) Let p(x) = Y _,axx* and let q(x) = Y |_, bk X be two polynomials of degree at most n
in R[x], with ax, by € R and n € Ny. Suppose that there are n+ 1 distinct numbers xp, x, . . ., Xn, € R such
that p(x;) = q(x;) for all 0 < j < n. Show that ax = by for all k € Ny. Hint: Consider the polynomial

r(x) = p(x) — q(x).



Let r(x) = p(x) — q(x). Then r(x;) = p(x;) — q(xj) =0 for all 0 < j < nand r is a polynomial of degree
at most n. Furthermore, r(x;) =0 for all 0 < j < n.

Suppose for the sake of contradiction that r is not identically equal to zero. Then r is a polynomial of
degree m, 0 < m < n. By Problem

r(x) = (x = x1)(x = x2) . .. (x = Xm ) rm(x)
where r,, is a polynomial of degree m — m, that is, a constant. But
0=p(x0) — q(x0) = r(x0) = (x0 — x1) (X0 — x2) - - . (X0 — Xm)rm(X0)-
Since xj # xo for all j > 1 we must have that r,(xp) = 0; thus ry, is the constant function zero and so r

is the constant function zero, as was to be proven. (This is technically a contradiction to the assumption
m > 0 because if m > 0 then r is not the zero polynomial.)

(Problem 420) Let p(x,y) =¥ [ o3 ) _gajxx y* and let q(x,y) = 374> \_, bk X/ y* be two polynomials

in R[x, y], with a;k, bjx € R. Show that if p(x, y) = g(x, y) for all (x, y) € R? then aj, = bj for all j, k € Ny.

Fix a y € R. Then py(x) = Z}’:0<ZZ:0 aj,kyk)xf and g,(x) = ZJ'-’:()(ZZ:O bj,kyk>xj are both
polynomials in one variable that are equal for all x. So by Problem [390] their coefficients must be equal,
50 (ZZ:O aj,kyk> = (ZZ:O bj,kyk). This is true for all y € R; another application of Problem shows
that ajk = bj,k for all j and k.

(Memory 421) If Q C R? is both open and connected, then Q is path connected: for every z, w € 2 there is a
continuous function 7« : [0, 1] — Q such that v(0) = z and (1) = w.

(Memory 422) If Q C R? is open and connected, we may require the paths in the definition of path connectedness
to be C!.

(Memory 423) If Q C R? is open and connected, we may require the paths in the definition of path connectedness
to consist of finitely many horizontal or vertical line segments.

Definition 1.3.1 (part 1). Let Q C R? be open. Suppose that f : Q — R. We say that f is continuously

differentiable, or f € C1(RQ), if the two partial derivatives % and % exist everywhere in Q and f, g, and % are
X y X Y

all continuous on Q.

(Problem 424) Let B = B(z,r) be a ball in R?. Let f € C}(B) and suppose that g—; = % = 0 everywhere
in B. Show that f is a constant.

Let z = (x,y). Let (&, m) € B((x,y), r).
We consider the case £ > x and 1 > y; the cases £ < x or n < y are similar. Then {(t,y) : x <t <
&} C B((x,y),r), and if we let F,(x) = F(x,y), then F, is a continuously differentiable function on [x, §]
with F(t) = 0 for all x < t < ¢; by the Mean Value Theorem, Fy(x) = F,(¢) and so f(x,y) = f(£, y).
Similarly, {(¢,t) : y <t <n} C B((x,y),r), and so f(x,y) = f(&,y) = (& n).
Thus f is a constant in B((x,y), r).
(Problem 430) Suppose that 2 C R? is open and connected. Let f € C*(£2) and suppose that g—; = % =0
everywhere in . Show that f is a constant.

Pick some (xo, o) € Q and let s = f(xo, Y0)-

If (x,y) € f~1(s) then f(x,y) = s, and because Q is open there is a r > 0 such that B((x, y), r) C Q.
By the previous problem f is constant on B((x,y),r) and so B((x,y),r) C f~1({s}). Thus f=1({s}) is
open.

But {s} is a closed set, and f is continuous, and so f~*({s}) must be relatively closed in Q.

Because Q is connected, and f~1({s}) is both relatively open and relatively closed, f~1({s}) must be
either empty or all of Q; because (xo,y0) € f1({s}), f~1({s}) must be Q and so f(x,y) = s for all
(x,y) e



1.3. CoMPLEX POLYNOMIALS

[Definition: Ring of polynomials] Let C[z] be the ring of polynomials in one variable with complex coefficients,
that is,

Clz2l={p:p(z) = Z ai z* for some n € No, a € C}.
k=0
Let C[x, y] be the ring of polynomials in two variables with complex coefficients, that is,

n n

Clx,y]={p: p(x,y) ZZa K x) y¥ for some n € No, ajx € C}.
j=0 k=0

(Problem 440) Let p(z) = 3 ;_,axz* and let q(z) = Y_,_, bk z* be two polynomials in C[z]. Show that if
p(x) = q(x) for all x € R then ax = by for all k, and so p(z) = q(z) for all z € C.

Define p,(x) = Y |_,(Reax) x¥ and q.(x) = 3 |_,(Rebk) x*. Then p,, q, € R[x]. If x € R then

pr(x) = Z(Re ar) xk = Re(i ak xk> = Rep(x)

k=0 k=0

= Reg(x —Re(Zbkx ) —; (Re b)) x¥ = g,(x)

and so by Problem We must have that Re ay = Re by for all k. Similarly, Im ax = Im by for all k and so
ax = Reayx + iIma, = Re by + iIm b, = by for all k, as desired.

(Problem 450) Show that Problems and are valid for polynomials in C[z] with complex roots.

(Problem 460) Let p(z, w) = 37 3 \_oajkx 2 w* and let q(z, w) = 374 3__q bjx 2 wk be two polynomials
in C[z, w], with aj, bjx € C. Show that if p(x, y) = q(x, y) for all (x,y) € R? then a;x = b; for all j, k € Ny.

(Problem 470) Let p(z, w) =7 (> |_gajx 2 whandlet gz, w) = 37 3}, bjx 2 w* be two polynomials
in C[z, w], with aj«, bjx € C. Show that if p(z,Z) = q(z,Z) for all z € C then ajx = bj« for all j, k € N.

(Problem 480) Let p € C[z, w] satisfy p(z,Z) = z2—Z>. Is there a polynomial g € C[z] such that g(z) = p(z, Z)
for all z € C?

No. Suppose for the sake of contradiction that such a g exists. Then g(x) = p(x, x) = x>

— x3 for all
x € R. So we must have that q(z) = z2 — 23 for all z € C. In particular, g(i) = i? — i* = —1 + i, and

p(i,—i) =i+ i®= —1—1i, and so we cannot have q(z) = p(z,Z) for all z € C.

Definition 1.3.1 (part 2). Let Q C C be an open set. Recall C = R?. Let f : 2 — C be a function. Then
feCHQ)ifRef, Imf € CHQ).

[Definition: Derivative of a complex function] Let f € C}(Q). Let u(z) = Ref(z) and let v(z) = Im f(z).

Then
of Ou ,av of Ou  .Ov

ox ox 'ox’ oy oy oy
(Problem 490) Establish the Leibniz rules
0 of Og 0 of Gg
—(f f—=, —(f
8 =585 38 =581 15
for f, g € CH(Q).
Let f = u+iv, g = w+ iw, where u, v, w, and w are real-valued functions in C1().

Then fg = (uw — vw) + i(vw + uw), where (uw — vw) and (vw + uw) are both real-valued C*
functions.



Then

2 (16) = 2 f(uw - vm) + itvw + um)]

Ox

0 .0
= &(uw —vw) + /a(vw + uw).
Applying the Leibniz (product) rule for real-valued functions, we see that
2(fg) = @W-i- ua—w - @w - va—w
Ox Ox Ox  Ox Ox
.Ov . Ow . Ou . Ow
+ /aw + /va + /aw + /ua.
Furthermore,

6x+6x

Rearranging, we see that the two terms are the same.

1.3. THE COMPLEX DERIVATIVES = AND gz

[Definition: Complex derivative] Let f € C}(Q). Then
of 10f 10f Of 1of 10f

6z 20x " 2idy’ 0z 20x 2idy
(Problem 500) Let f(z) = z. Show that &£ =1 and 2£

Recall that z = x + iy. Thus,

0 10 . i
AT R T e A T
and ) 10 ) 1
1
527 = oo XTI = g,k t i) =5 =5 =0
0,
(Problem 510) Let g(z) = Z. Show that g =0and 5 =
Recall that z = x — iy. Thus,
o ,_ 10 1 1 i
8,7 = 2o M g, =5 7 g =
and ) 10 10 1
— . . ]
20 = e m 55, ) =5+ 5 =1

(Problem 520) Show that a% and % are linear operators.

This follows immediately from linearity of the differential operators % and By

o commute in the sense that, if Q C C is open and f € C?(Q), then

(Problem 530) Show that 7 and a*
5 (&) = % (1)



(Problem 540) Establish the Leibniz rules

%(fg):gg—&-fg—i, (f ) = gig—i—fg—i.
We have that
a%(fg) — S5 )+ 5 5 (Fe)
Using the Leibniz rules for & and 7, we see that
Q(f) lfag lgnglfag 1 o0f

2 ox T2ax8 2"y T2i0y8

_ (1%  10g\ (lof 10f
~"\2ax T2i5y 20x " 2iay )%

ag of
0z azg'

0z

=f—=

The argument for ai is similar.
r4

(Problem 550) Show that 2 (2*2™) = £z4~12™ and 2(z2™) = mz*2™" for all nonnegative integers m and {.
(Problem 560) Let j, k, £, and m be nonnegative integers. Find a 752 k(z ™).

A straightforward (but long and tedious) induction argument shows that
¥ ook, . £'m! e
3757 C ) T T m =k Z

m—k

(Problem 570) Let p € C[z, w]. Show that there is a ¢ € C[z] such that p(z,z) = q(z) for all z € C if and
only if %(p(z,?)) = 0 everywhere in C.

(Problem 580) Let p € C[x, y]. Show that there is a g € C[z] such that p(x,y) = q(x + iy) for all x, y € R if
and only if %(p(x,y)) = 0 everywhere in C.

As in the previous problem, if p(x, y) = q(x + iy) for some q € C[z], then £q(z) =0 for all z € C and
o) —Ep(x y)—OforaIIX y € R.

Conversely, suppose a p=0. There is a r € C[z, w] such that p(x,y) = r(x + iy,x — iy) for all x,
y € R. Furthermore, g (2.2) = 5 9 p(x,y) = 0forall z € C, and so by the previous problem r(z,z) = q(z)
for some g € C[z]. But then p(x,y) = r(x + iy, x —iy) = q(x + iy) for all x, y € R, as desired.

(Problem 590) Suppose that Q C C is open and connected, that f € C}(R), and that &£ = 2L = 0 in Q. Show
that f is constant in Q.

We observe that
of of n of of .of . Of
— ==+ = — =l — =
Ox 0z 07’ dy 0z 0z
Thus af = a =0 in Q and the result follows from Problem @
y

(Problem 600) Suppose that Q C C is open and that f € C1(Q). Show that
of  [of
0z \oz)

We write f = u+ iv, where u and v are real-valued functions. By definition, u and v are in Cl(Q).




Then

0 — 10 10 .
5= (3% ~2139) )
104 v 10w 10v
©20x 20x 20y 20y
and

= (22 L2 )i
0z 20x  2i0y
_10u  idv 10u 10v
T 20x "20x 2idy 20y

which we see is the complex conjugate of the previously found value.

(Problem 610) Show that 21 =—L if 2 £0

(Problem 620) Show that 21 =0 if z # 0.

1 _ z . _ : 1 _ x—iy
Observe that Z % andsoif z=x+1iy, x, y € R, then = = . We compute

z x2+y?
01y —x*+2ixy 01  —ix*+iy*—2xy
oOxz  (x2+y2)2 oy z (x2 + y?)2
Thus
81 181 981 y*—x*+2ixy
0zz 20xz 20yz (x2 4 y?)?
B —(x —iy)? 1
C (x+iy)Px—iy)p 22
and

01 101 101
0zz 20xz 20yz

(Problem 630) Find %;1“ and %Zi,, for any positive integer n.

Using the previous problem as our base case and the Leibniz rule for the inductive step, a straightforward
induction argument shows that

gl n 01

8z zn  zntl’ 0z z"

[Chapter 1, Problem 49] Let Q, W C C be open and let g : Q@ — W, f : W — C be two C* functions. The
following chain rules are valid:

P of 0g  Of 0%
Y _ Y9 979
2:\"°8) = 5,3, T oz,
0 po 005 O 0
5z7°8) = 5,5 T oz oz

where of __ of of __ of

9g — 0zlz-g(z)' 98 ~ 9Zlz—g(2)’
In particular, if f and g are both holomorphic then so is f o g.



1.4. HOLOMORPHIC FUNCTIONS, THE CAUCHY-RIEMANN EQUATIONS, AND HARMONIC FUNCTIONS
Definition 1.4.1. Let Q C C be open and let f € C}(Q). We say that f is holomorphic in Q if

=0

R

everywhere in .

Lemma 1.4.2. Let f € C}(Q), let u=Ref, and let v =Imf. Then f is holomorphic in Q if and only if
Ou Ov Ou ov
— =— and — = ——
Ox Oy Oy Ox
everywhere in Q. (These equations are called the Cauchy-Riemann equations.)
(Problem 640) Prove the “only if” direction of Lemma 1.4.2: Suppose that f is holomorphic in Q, Q C C open,
then the Cauchy-Riemann equations hold for u = Ref and v =Imf.

(Problem 650) Prove the “if" direction of Lemma 1.4.2: suppose that u = Ref and v =Imf are C! in Q and
satisfy the Cauchy-Riemann equations. Show that f is holomorphic in €.

Recall that
af of .of

by definition of %. Applying the fact that f = u + iv, we see that

p0f _0u jov (0u ;0
z Oy Oy

— @_@ +,@+@
~\ox 9y ox 0oy/)’

Because u and v are real-valued, so are their derivatives. Thus, the real and imaginary parts of the right

. . Ou _ Ov au ov
hand side, respectively, are - oy and v 1 ox

Thus, gf = 0 if and only if the Cauchy—Rlemann equations hold.

Proposition 1.4.3. [Slight generalization.] Let f € C1(Q). Then f is holomorphic at p € Q if and only if

9 (p) = %g—;(p) and that in this case

of of 10f
9z\F P) = ax() iy P

(Problem 660) Begin the proof of Proposition 1.4.3 by showing that if f is holomorphic then % = % = %g—;.

By definition of 2 5, and g. if f € C}(Q) then % = % + % and gf = Igi i%. Thus, if %(p) =0
then —X(p) g;( ) and af( )= i%(p) = i%(p), as desired.

(Problem 670) Complete the proof of Proposition 1.4.3 by showing that if f € C}(Q) and % }af then f is

oy’
holomorphic.
of _1(of 1of
8z 2\ox ioy)

Thus, if % = %g; then a—i =0, as desired.

Recall

Definition 1.4.4. We let A = ax2 +Z,. If Q C Cis open and u € C2(Q), then u is harmonic if

8%u  B%u
Au—ﬁ"‘rai}ﬂ—o

everywhere in €.



(Problem 671) Show that if f € C'(Q) then Af =42 % =429

dor 1(o 10)\(or 10
0z08z 4\0x id0y)\dx idy

1 &+62f+ 1 8°f 1 0°f
ox2 ' 8y? | idydx /6X6y '

We compute that

2 . .
If f € C! then 6?/8)( azay and the proof is complete. The argument for @? is similar.

(Problem 680) Suppose that f is holomorphic and C? in an open set Q and that u = Ref and v = Imf.
Compute Au and Av.

Because f is holomorphic,

0 Gf 0

But
Af = (Au) +i(Av)

and Au and Av are both real-valued, so because Af = 0 we must have Au = 0= Av as well.

(Problem 690) Let f € C|[z] be a holomorphic polynomial. Show that there is a polynomial F € C[z] such that

OF _ ;
%5, = . How many such polynomials are there?

Lemma 1.4.5. Let u be harmonic and real valued in C. Suppose in addition that v € R[x, y], that is, that v is
a polynomial. Then there is a holomorphic polynomial f € C[z] such that u(x,y) = Re f(x + iy).

)
(Problem 700) Prove Lemma 1.4.5. Hint: Start by computing 55 and 55

1.5. REAL ANALYSIS

(Memory 710) Let a < c < b and let f : (a, b) — R be continuous. Show that lim;_o 1 fc+t = f(c).
(Memory 720) State Green's theorem.
(Memory 721) State the Mean Value Theorem.

(Memory 722) If a < b, if each f, is bounded and Riemann integrable on [a, b], and if f, — f uniformly on
[a, b], then f is also Riemann integrable on [a, b], lim,_ fab f, exists, and fab f=limpsoo fab f,.

(Problem 723) Let f : [a, b] X [c, d] — R. Suppose that f is continuous on [a, b] X [c, d]. Define F : [a, b] = R
by F(x f f(x,y)dy. Show that F is continuous on [c, d].

(Problem 730) Let f : (a, b) x [c,d] — R. Suppose that f is continuous on (a, b) X [c, d] and the function
O f = —X is continuous on (a, b) X [c, d]. Show that

d [¢ 49
a/c f(va)dy=/c af(x,y)dy

for all a < x < b. In particular, note that the derivative exists and the function F(x f f(x, y) dy is continuous
on (a, b).

(Fact 731) This is still true if f is continuous on [x, b) or (a, x] and we extend 0;f to (a, x] x [¢, d] or [x, b) X [¢c, d]
by taking one-sided derivatives.

(Memory 740) Let f be a C? function in an open set in R?. Show that 2 g; a%%'



1.5. REAL AND HOLOMORPHIC ANTIDERIVATIVES

(Problem 750) Prove the converse. That is, suppose that there are two C! functions g and h defined in an open

rectangle or disc R such that a%g = %h everywhere in R. Show that there is a function f € C?(R) such that
of

5 —& and % = h.

Let P = (X0, yo) and let f(x,y) = f;; h(s, yo0) ds + f;; g(x, t)dt. Observe that if (x,y) € R then so is
(s, y0) and (x, t) for all s between xp and x and all t between yy and y. Thus g and h are defined at all
required values. Because g and h are continuous, the integrals exist.

Furthermore, I claim f is continuous. Let (x,y) € R and let &; > 0 be such that B((x,y),d1) C R.
By continuity of g and h and compactness of B((x, y),81/2), g and h are bounded on B((x, y),0:1/2). If
(&,m) € B((x,y),61/2), then

n

3 y
IF(&,m) — F(x.y)| = / h(s, yo) ds + / g€ 1) — g(x. t) dt + / g(€, 1) dt

y

/ " g ) — g6 1) dt

Yo

<l€=x| sup |A[+n—y[ sup [g[+
B((x.y).61/2) B((x.y).61/2)
Furthermore, g must be uniformly continuous on B((x, y), 81/2). Choose € > 0 and let §, be such that if
|(x,t) — (& t)] < &, then |g(x, t) — g(&, t)| < €. We then have that
foqy) = fEmI<[E—x]  sup [h[+[n—y] sup [g]+]yo—yle
B((x.y).01/2) B((x,y).61/2)
There is then a d3 > 0 such that if [(§, ) — (x,y)| < d3 then |f(x,y) —f(& m)| < (1+|y0o — y|)e, and so f
is continuous at (x, y), as desired.
By the fundamental theorem of calculus, we have that g—; = g everywhere in R, including at (x,y) =

(x0. y0) = P.
Furthermore, by [730] and the fundamental theorem of calculus, we have that

of Y g
a(X:Y) = h(x, y0) + a—x(x, t) dt.
Yo
We have that g—f(x, t) = %(x, t) and so by the fundamental theorem of calculus % = h.

(Bonus Problem 760) State the definition of a simply connected set and then generalize Problem mto any
simply connected open set.

(Problem 770) Let R = R?\ {(0,0)}. Let g(x,y) = %57 and h(x,y) = 5725 Show that Zg = Zh.

This is routine calculation. By the quotient rule of undergraduate calculus,
o 1(x% + y?) — x(2x) B y? —x°

ax° (x2+y2)2 (x2+y2)2

and

0, —UX+y)—(y)2) _ y*=x
dy (x2 + y?)? (P +y2)2

which are equal.

roblem ow that there is no function f € such that z- = g and - = h.
Problem 780) Show that there is no function f € C*(R) such that 3 do =h
(Problem 790) Why doesn't this contradict Problem [760?

The domain R is not simply connected.

(Problem 800) Suppose that u is real-valued and harmonic (and not necessarily a polynomial) in an open
rectangle or disc R. Show that there is a function f that is holomorphic in R such that v = Ref.



Let g = 9% and let h= —%. Then

og 0%u 8%u  Oh

ax  9x2 9y? oy
by definition of g and h and because u is harmonic. Thus by Problem [760| there is a v : R — R such that

ov _ 5 Ou o _ p_ _0Ou
@7gfaxandaxfhf .

y
Then u and v satisfy the Cauchy-Riemann equations, and so by Problem f = u+iv is holomorphic
in R.

(Problem 810) Suppose that f is holomorphic in an open rectangle or disc R. Show that there is a function F

that is holomorphic in R such that f = %Z.

2.1. REAL ANALYSIS

(Memory 820) State the Intermediate Value Theorem.

(Memory 830) State the change of variables theorem for integrals over real intervals.

(Memory 840) Let a < b and let ¢ : [a, b] — R be continuous. Then

| < £ 10l < (b= a)suppa ol

[Definition: Continuous] Let (X, d) and (Z, p) be two metric spaces and let f : X — Z. We say that f is
continuous at x € X if, for all € > 0, there is a § > 0 such that if d(x,y) < & and y € X then p(f(x), f(y)) < e.

(Memory 850) Let X be a compact metric space and let f : X — Z be a continuous function. Then f(X) is
compact.

(Memory 860) Let X be a compact metric space and let f : X — Z be a continuous bijection. Then f~! is also
continuous.

(Problem 870) Is the previous problem true if X is not compact?

No. Let X = (—m/2,0) U (0, 7/2] C R with the usual metric on R. Then the function cot : X — R is
continuous on X and is a bijection, but cot™!(0) = % and lim,_,o- cot™*(x) = —7%, and so cot™! (with the
given range) is discontinuous at 0.
y = cotx T

~
|

: yCOtlx\
! !

! !

| |

| |

| |

|

: \
!

| |
|

+

(Memory 880) If v : X — R? and (t) = (y1(t),72(t)) for all t € X, then « is continuous if and only if «; and
v, are continuous.

Definition 2.1.1. (C! on a closed set.) Let [a, b] C R be a closed bounded interval and let f : [a, b] — R. We
say that f € C([a, b]), or f is continuously differentiable on [a, b], if

(a) f is continuous on [a, b],

(b) f is differentiable on (a, b),

(c) The derivative f’ is continuous on (a, b),

(d) lime o+ f'(t) and lim,_,p- f'(t) both exist and are finite.



(Memory 890) If the conditions@ [(b)] and [(c)] hold, then the condition [(d)] holds if and only if the two limits
(b) f(f)

I!mt_)a+ M and lim,_, exist, and in this case lim;_, 5+ %:(a) = limy_ o+ f'(t) and lim;_, - % =
||mtﬂb7 f ( )

[Definition: One-sided derivative] If f : [a,b] — R, we define f'(a) = limeq (0= and £/(b) =
lime_p— %, if these limits exist.

(Memory 900) Suppose that a < p < b and let H : (a, b) — R be continuous. Suppose that H is differentiable
on both (a, p) and (p, b), and that lim,_,, H'(x) = h for some h € R. Then H'(p) exists and that H'(p) =
limy—p H'(x).
[Definition: Curve] A curve in R? is a continuous function v : [a, b] — C, where [a, b] C R is a closed and
bounded interval. The trace (or image) of 7y is ¥ = «y([a, b]) = {~(¢t) : t € [a, b]}.
[Definition: Closed; simple] A curve «y : [a, b] — R? is closed if y(a) = «(b). A closed curve is simple if
v(b) = y(a) and « is injective on [a, b) (equivalently on (a, b]).
[Definition: C! curve in R?] A curve vy : [a, b] — R? is C? (or continuously differentiable) if y(t) = (y1(t), y2(t))
for all t € [a, b] and both 7y, > are C*. We write
dy dy1 dy
/
t) = — =
7 =5 < dt ' dt )

[Definition: Arc length] If v : [a, b] — R? is a C! curve, then its length (or arc length) is f I (t)]| dt.

Proposition 2.1.4. Let v € C([a, b]), v : [a, b] — Q for some open set Q C R2 and let f : Q — R with
f € CY{Q). Then

b
f(v(b)) — f(v(a)) :/ % (x.y)

a

6'yl of

072
0t Byl

—= dt.
(xy)=1(t) Ot

(Problem 910) Prove Proposition 2.1.4. Hint: Start by computing (fo'Y).

By the multivariable chain rule,
d(foy) of Oy1 Of 1047
dt  Oxlexy)=n(t) 0t By l(xy)=(t) Ot
The result then follows from the fundamental theorem of calculus.

[Definition: Real line integral] Let v € C([a, b]), 7 : [a, b] — Q for some open set @ C R? and F : Q — R be

continuous on €. We define .
[ Fas= [ Foen ol d
10 a

Let F : Q — R2 be continuous on Q. We define
b
/:E-Tdsz/ F(y(t))-4'(t) dt
0% a
where we use a dot product in the second integral.
2.1. REAL AND COMPLEX LINE INTEGRALS

Definition 2.1.3. (Integral of a complex function.) If f : [a, b] — C, and both Ref and Im f are integrable on
[a, b], we define [*f = [PRef +i[PImf.

Proposition 2.1.7. Suppose that a < b and that f : [a,b] — C is continuous. Then |fab fl < fab|f\ <
(b — a)supp, p If].
(Problem 920) Prove Proposition 2.1.7. Hint: Start by showing that the integral is finite.



(Problem 930) [Redacted]

Definition 2.1.4. (C! curve in C.) A curve v : [a,b] — C is a C! curve (in C) if (Rey,Imv) is a C! curve
(in R?). We write

dy d(Rey) .d(Imy)
/ = — =
V() = dt e ' Tar

(Problem 940) If t € (a, b) and 7y : [a, b] — C is C!, show that «/(t) = lims_,, ”(Siiz(t).

We compute that

lim
s—t s—t s—t

v(s) =) _ (ReW(S) —Rex(t) | Im7(s) —Im'v(t)> _
s—t s—t

By linearity of limits

jim Y= (8) _ (Iim Req(s) - R”(t)> v (Iim Im y(s) _Im"’(t)> — (Rew)(£) + i(Im~)'(¢)

s—t s—t s—t s—t s—t s—t

as desired.

Definition 2.1.5. (Complex line integral.) Let v € CY([a, b]), 7 : [a, b] — § for some open set Q C C and
F : Q — C be continuous on Q. We define

b
f F(z)dz = / FOv(£)7/(2) dit

where we use complex multiplication in the second integral.

(Problem 941) Let v :[0,1] — Q C R? be a C! curve and let F : Q — RR? be a vector-valued function. Recall
that we identify R? with C, so that we identify v = (71, 92) with 1 + iv2 and F= (F1, F2) with F = Fy + iF.

Show that
/l-:-Tds:RejI{f(z)dz, /f-:-uds:lmjé’f(z)dz,
v 8! v v

0 1 . .
where v = 1 o) the unit rightward normal vector to 7.

(Problem 950) [Redacted]

Proposition 2.1.6. Let v : [a, b] — Q C C be C?!, where Q is open, and let f be holomorphic in Q. Show that

OF 4z — F(7(b)) — F(1(a)).

5 0z



(Problem 960) Prove Proposition 2.1.6. Hint: Start by computing (f o«y)’(t) and the integrand in the definition
of § &L dz.
K

By definition

f f
8—d _/ 0 v'(t) dt.
5 0z , 0z|,_ ¥(t)
Let f = u+ iv where u and v are real-valued C! functions on €, and let g = Rewy, h = Im+y. We let

o _ 0 o _ 0
35 = oxl(x=2(t) and Fz = F-[(xy)=n(t)-

Then
g zw(t)’y/(t) ng +3 ZD( () +iH (1)
- 2(22 " '% - % g,:)(g’(t) + ik (1))
S CHCREHEREICR )
i ;(Z;g’( ) ZZ )+ % () + Zh’(r))
By the Cauchy-Riemann equations, g—g“ =% and & = gv 5o we may simplify to
g (t)v’(t) = (g;g’(t) + g‘;h’(t)> + f(g;g'(t) n azh’(t))

d audg Oudh
Eu(g(t),h(t)) o dtJF%E

and
d Ov dg Ov dh
- v(&(t). h(t)) = og dt t 3t
and so
d d ou ou , / ov ,
7o) = 2or(e(0), i) = ( Sea0) + Siw () ) +i( Goe' 0+ 5 (0)
of ,
— v'(¢).
0z|, v(t)
Thus

f%d —/abjt(fow( ) dt.

Dividing into real and imaginary parts and applying the fundamental theorem of calculus completes the

proof.
Proposition 2.1.8. If 7 : [a,b] - Q C Cis a C! curve and f : Q — C is continuous, then %f(z) dz| <
¥

[sup|fo'y| Z(’y)—sup|f| £(v), where £(v f Iv'].

(Problem 970) Prove Proposition 2.1.8.

j{ f()dz = | " F )Y (1) e

By definition



By Problem [020]

z)dz

/\f DI I'( )dt<[sup|fow|/ ()] dt.

Recalling that the complex modulus |y/(t)] is equal to the real vector length ||((Re«y)'(t), (Im+)'(t))|| and
the definition of arc length completes the proof.

Proposition 2.1.9. Let Q C C be open, let F : Q — C be continuous, let y; : [a, b] — Q be a C! curve, and let
¢ : [c,d] — [a, b] be C! and satisfy p(c) = a, p(d) = b. Define 7, = y; 0 . Then f% F(z)dz = 5%2 F(z)dz

(Problem 980) In this problem we begin the proof of Proposition 2.1.9. If ¢ : [c,d] — [a b] is C! and
v : [a, b] = Cis C1, show that ¥5(t) = 1 (¢(t)) ¢'(t) where y2 = 1 0 .
We have that Re«,(t) = (Revy1) o ¢ and Im-y, = (Im+y;) o . By the chain rule of real analysis and the
definition of 4/,
Y2(t) = (Re2)'(£) +i(Im72)' () = (Rem ) (0(£))¢' () + i(Im M) (0(£))¢' (1) = m((1))¢' ()

as desired.

(Problem 990) Let «y; : [a,b] — C be a C! curve. Let ¢ : [c, d] — [a, b] be continuous and satisfy p(c) = a,
©o(d) = b. Define 4, = 1 0 . Compute ¥5(t) in terms of 1, 91, @, and ¢’. Then show that 43 = 74,. (Recall ¥
denotes the image of +.)

(Problem 1000) Prove Proposition 2.1.9.

(Problem 1010) Let «y; : [-a,a] — C. Let 7, : [—a,a] — C be given by v¥2(t) = y1(—t). Show that if F is
continuous in a neighborhood of 71, then § F(z)dz=—§ F(z)dz

Let p(t) = —t, so that v, =71 o . We compute

@z = [ R de= [ Fon@m@ew oo

by definition of §, «y,, and by Problem By the change of variables theorem,

a w(a)
§ F@dz= [ Fou@pide= | 7 Fouopi()ds

Because ¢(a) = —a and p(—a) = a, we have that

7{2 F(z)dz = /aa F(yi(s))i(s) ds = — /2 F(v1(s))v1(s) ds = — %;1 F(z)dz

as desired.

(Problem 1020) Let y; : [a,b] — C and 7, : [c,d] — C be two curves. Suppose further that 4; = 75,
Y1(a) = 72(c), 71(b) = v2(d), and that -y; and <y, are injective. Show that there is a continuous strictly
increasing function ¢ : [c, d] — [a, b] such that y, = 7y 0 .

(Problem 1030) If «y; : [a, b] = C and v, : [c, d] — C are simple closed curves rather than injective functions,
with 41 = 4, and 1(a) = y1(b) = ¥2(¢) = ¥2(d), is it necessarily the case that v, = 71 o ¢ for a continuous
strictly increasing function ¢ : [¢, d] — [a, b]?

No. Let v;1(t) = e’ and let 7, = e~'*, both with domain [, 7]. If y2(t) = v1((t)), then @(t) = —t
for all t € (—m, ), and so in particular ¢ cannot be strictly increasing.

(Bonus Problem 1040) Let «y; : [a, b] — C and 72 : [c, d] = C be two curves. Suppose further that 41 = 7>,
Y1(a) = y2(c), 71(b) = ¥2(d), and that y; and -, are injective. Show that if F is continuous in a neighborhood
of 41, then ﬁn F(z)dz = f,yz F(z) dz. (This does not follow immediately from Problems [1000|and [1020| because

® may not be continuously differentiable.)



(Problem 1050) Let «; : [a,b] — C and 75 : [c,d] — C be two C! curves. Suppose that 1(b) = 72(c).
Show that there is a C! curve 43 : [-1,1] — C such that 73’[71 B is a reparameterization of ; and ’)’3‘[0 1
is a reparameterization of 7. (We will write 3 = 1 * y2. This means that 43 = 4; U7, and 5573 F(z)dz =

f,h F(z)dz+ 5672 F(z) dz for all F continuous in a neighborhood of 73.)

2.2. REAL ANALYSIS

[Definition: Limit in metric spaces] If (X, d) and (Z, p) are metric spaces, p € Z, and f : Z\ {p} — X,
we say that lim,_,, f(z) = £ if, for all € > 0, there is a 6 > 0 such that if z € Z and 0 < p(z, p) < 4, then

d(f(z).f(p)) <e.

[Definition: Continuous function on metric spaces] If (X, d) and (Z, p) are metric spaces and f : Z — X,
we say that f is continuous at p € Z if f(p) = lim,_,, f(z).

(Fact 1060) Let Q C R? be open and let f : Q — R be C!. Let § € Q and let ij € R?. Define g(t) by
g(t) = f(p+ t7). Suppose that (5+ t7f) € Q. Then g'(t) = 7- VF(p + t7]).

(Problem 1070) Suppose that B(p, ||7]|) € Q. Show that f(p+ 7j) — f(p) = 7 - V(W) for some w € B(p, r).

As in Fact 1060} let g(t) = f(p + t7). g is then continuous on [0, 1] because f is continuous on
B(p, ||7]])- By Fact|[L060} we have that g’(t) = 77 - Vf(p + t7]) exists for all t € (0,1). Thus by the Mean
Value Theorem, there is a t € (0, 1) such that

o)~ (5) = 81— 0) = S0 8O _ ey — 5. vr(5 1 1)

Choosing w = p + t7j and observing that ||w — p]| < ||7|| completes the proof.

(Fact 1080) Let Q C R be open and let f:Q — R" be Cl (that is, the n components fi, f, ..., f, of f are
all Cl). Let p € Q2. Define L : RY — R" by

d
of
L(31 ..... 267

k=1

Then limg_, 5 11— f(p) LB — 0. We often write L = DF(p).

[Ix—pll

(Bonus Problem 1090) State and prove the chain rule for this form of derivative.
2.2. ComPLEX DIFFERENTIABILITY AND CONFORMALITY

(Problem 1100) Let «y : [0,1] — C be a parameterization of a nondegenerate scalene triangle of your choice.
Sketch the trace of «y and of f oy for the following choices of f:

(a) f(z)=z—-3+i

(b) f(2) = (5 + i)z

(c) f(z) =2z

(d) f(2) =1 +i)z

(e) F(2)=(1+i)z—3+1i
(f) f(z) =2

(g) f(z)=z+22



0
(b) f(z) = (3 + L)z
ol
0 2
(c) f(z) =2z
. Fon
: 5
0 2
(d) f(z)=1+1)z
Fon
,7
0 2
(e) f(z)=Q+i)z—3+i
Fonq
0
() f(2) =z
: 5
0 2
Fon
(8) fla) =z +2z
: 5
0 2
Fon




(Problem 1110) [Redacted]

[Definition: Complex derivative] Let p € Q C C, where Q is open. Let f : Q@ — C. Suppose that

f(zz):;(p) exists. Then we say that f has a complex derivative at p and write f'(p) = lim,_,,, %z(p).

(Fact 1120) If Q C Cis open, p€ Q, and f, g : Q\ {p} — C are such that lim,_,, f(z) and lim,_,, g(z) exist
(as complex numbers), then we have the usual formulas

lim (£(2) + (2)) = (lim £(2)) + (Jim £(2)).
lim (f(z) — g(2)) = (Zli_r;np f(z)) — (lim g(2)),

z—p z—p

lim (f(2)g(z)) = (zli_n>1p f(z)) (Zli_r>np g(2))

z—p

lim,_p

and (if lim,—,, g(z) # 0)

. f(2) lim,_p f(2)

lim = — )

z=pg(z)  limzpg(2)
(Fact 1130) If @ C C and W C C are open, p € Q, f : Q\ {p} — W is such that L = lim,_,, f(z) exists,
LeW, and g: W — C is continuous at L, then

lim g(f(z)) = g(L).

z—p

Observe that we do require g(L) to exist, not only lim,_,; g(w).

[Chapter 2, Problem 8] If (p) exists, show that 37 riyp = %% tiyep = gt oy =1'(P):

[Chapter 2, Problem 10] If f has a complex derivative at p, then f is continuous at p.

(Problem 1140) (Note: If you are presenting this problem, do either part (a) or part (b), at your option. If you
are citing this problem, you may use either part.)
Let 2 C C be open and let f : Q — C be continuous.

(a) Let a, b€ R with a< b, and let vy : [a, b] = Q be a continuous curve. Then f o« :[a b] — Cis also a
continuous curve. Let a < ty < b. Suppose that «'(ty) and f'((to)) exist (in both cases in the sense of
limits). Show that (f o «y)(to) exists and that (f oy)'(t) = f'(v(t)) ¥ (to).

(b) Let W C C be open. Let g : W — Q be continuous. Then fog: W — C is continuous. Suppose that
zp € W and that g'(z) and f'(g(zp)) exist (in the sense of limits as above). Show that (f o g)'(z) exists
and that (f o g)'(z0) = f'(g(20)) g'(20).

Theorem 2.2.2. Suppose that f has a complex derivative at p. Then % —p = f'(p).

(Problem 1150) Suppose that f has a complex derivative at p. Prove Theorem 2.2.2 and also show that
% —p = 0 Hint: Start by writing the £-6 definition of a limit of a function from Q \ {p} to C, where

peQCC.

First, observe that

of i [P H5) — £(p)
Ox Ix+iy=p S;E)Hg S .
Because f'(p) = lim,_,, %}i(p), by definition of limit, for every € > 0 there is a § > 0 such that if z€ C
and 0 < |z| < § then ’M - f’(p)’ < &. This in particular is true if s is real and 0 < |s| < §, as real
numbers are complex numbers. Thus we must have that f'(p) = % wtiy=p"
Similarly,
f f(p+is)—f fp+is)—f
% C im (PEI) = HP) y Fle i) = FR)
e B s
We thus compute
of 1/0f 10f
oz :2<ax T3y )Z”P)
z=p x+iy=p Y Ix+iy=p



and
of

0z 2—p

10f

i Oy

1/0f
2<6x x+iy:p> =0

[Definition: Disc] The open disc (or ball) in C of radius r and center pis D(p,r) = B(p.r) ={z € C: |z—p| <
r}. The closed disc (or ball) in C of radius r and center p is D(p,r) = B(p,r)={z€ C:|z—p| < r}.

x+iy=p

Theorem 2.2.1. (Generalization.) Suppose that Q C C is open and that f is C! on Q. Let p € Q and suppose

% —p = 0. Then f has a complex derivative at p and f'(p) = % 2=p

(Problem 1160) Prove this generalization of Theorem 2.2.1.

Let p € Q and let D(p, r) C Q; by definition of open set this is true for some r > 0.
By Fact[1080] and Fact [I70] we have that

i [f(w) = f(p) — Re(w — p)0.f(p) — Im(w — p),f(p)|

=0.
wTp w—pl
A standard -6 argument yields that
im (W) = f(p) — Re(w — p)0.f(p) — Im(w — p)3,f(p) _

w—p w—p

Because f is holomorphic at p, by Proposition 1.4.3 (Problem [660) 0. (p) = 5-f(p) = —i6,f(p) and so
f(w) — f(p) — Re(w — p) 2 f(p) — i Im(w — p) 2 f(p)

0= lim
w—p w—p
_ i f0) = f(p) = (w = P) 5 (P)
w—p w—p

;(p) exists and equals

Because 6%f(p) = % —p is independent of w, we must have that lim,_,, Flw)—
5 f(p).

(Problem 1170) Let F : R?> — R2. Suppose that VF; and VF, are constants. Show that F(x,y) = F(0,0) +
(61F1,81F2)x + (62F1, 82F2)y for all (X,_y) S R2.
We compute that (for j =1 or j = 2)
Fi(x.y) = Fj(x.y) = Fi(x,0) + F;(x,0) = F;(0,0) + £;(0,0)
0 Y0
— F(0,0) +/O 2 Fi(s.0)ds +/0 2 Fix 1)t

Because the integrands are constants, they may easily be evaluated to yield the desired result.

(Problem 1180) Suppose that f : C — C. Suppose that f’ exists everywhere and is a constant. Show that
f(z) = £(0) + f'(0)z for all z € C. Conclude that if z, w, w € C with w # z # w, then |f(T') fl(z)‘ = [fW=fz)]

w—z lw—z|

Define v : [0,1] = Q by ¥(t) = p+ t(z — p). Then by Proposition 2.1.6 (Problem [060)), we have that

%—dz

By Theorem 2.2.2 (Problem [1150), g = f'(z) = f'(0) because f' is constant. The result follows by
definition of line integral.

(Problem 1190) Let F : R? — R?. Suppose that VF; and VF, are constants. If C is a circle, what is F(C)? If
S is a square, what is F(S)? Now suppose that f : C — C and that ' exists everywhere and is a constant. If C
is a circle, what is £(C)? If S is a square, what is f(S)?



Theorem 2.2.3.1. Let zy € Q C C for some open set Q. Let f: Q — C. Let wy, wo € C with wy, wp # 0.

Suppose that f'(zy) exists. Then lim;_g [f(zottw)—F(z0)l _ lims_0 %W

[tw |

(Problem 1200) Prove Theorem 2.2.3.1. How does this relate to the result of Problem [L180]"

Using an g-§ argument and the limit definition of f'(z), we may show that

f twy) — f f twy) — f
jim 20t tw1) = f(20) _ f'(z0) = lim (20 + twa) — fz0)
t—0 twy t—0 tws

Because the modulus is a continuous function from C to C, this implies that

lim ‘f(ZO + th) — f(20)| _ |fl(Zo)| = lim |f(20 + tWZ) — f(20)|
t—0 |tW1| t—0 |l’W2‘

as desired.
This implies that for small displacements from zy, the function f stretches approximately equally in all
directions, with the approximation becoming better and better as the displacements get smaller.

|f(zo+twr)—F(20)] _

[Chapter 2, Problem 12] Let z5 € Q C C for some open set Q. Let f : Q — C. Suppose that lim;_,g Twi]
lim: 0 W for all wi, wo € C\ {0}. Then either f'(z) exists or (f)(z) exists.

[Definition: Angle preserving] Let zp € Q C C for some open set Q. Let f : Q — C. We say that f preserves
angles at z if, for all wy, w, € C\ {0}, we have that

f(z0 + twa) — f(20) | F(20 + twa) — F(20) | _ wa/|m
t—0t f(Zo + tWQ) — f(Zo) f(Zo + th) — f(Zo) W2/|W2| '

and in particular that the denominators f(zg 4+ twy) — f(20) and f(zo + twn) — f(20) are not zero when ¢t is
sufficiently close to 0. [This is not the definition in the book.]

Theorem 2.2.3.2. If f'(z) exists and is not zero, then f preserves angles at zj.

(Problem 1210) Prove Theorem 2.2.3.2.

Because f'(z) # 0, we have that
lim ——
w—z f(w) — f(2)
and in particular the denominator is not zero for all w sufficiently close to but not equal to z.
Now, observe that

f(zo + twa) — f(20) | f(20 + twa) — f(2)
im
t—0+ f(z0 + twa) — f(20) | (20 + tw1) — f(20)
. owy f(z0+ twy) — f(20) twy
= lim —
t—0T Wo twy f(z0 + twz) — f(20)
’VVQ twy f(Zo + l’Wz) - f(Zo)
wy f(ZO + th) — f(Z()) two .

The result follows from the limit definition of derivative and from the fact that the limit of a quotient is the
quotient of the limits.

[Chapter 2, Problem 9a] If f is C! and preserves angles at zy, then f(z) exists.



(Problem 1220) Consider the following figures. On the left is shown the traces of v; for several values of j.
On the right is shown the traces of f o«y;, g o«j, or ho~; for the same ;. You are given that exactly two
of the quantities '(0), g’(0), and A’(0) exist and that exactly one of those quantities is zero. Based on the
images, which function do you think has nonzero derivative, which has zero derivative, and which does not have

a derivative?

2.3. REAL ANALYSIS

(Memory 1221) Let f(x) = x%sin(1/x) if x # 0 and let £(0) = 0. Then f is continuous on (—oo0, ),
continuously differentiable on (—o0, 0) and (0, ), and ’(0) exists, but the limit lims_,o f'(x) does not exist.

Lemma 2.3.1. Suppose that a < p < band let H : (a, b) — R be continuous. Suppose that H is differentiable on
both (a, p) and (p, b), and that lim,_,, H'(x) = h for some h € R. Then H'(p) exists and H'(p) = lim,_,, H'(x).

2.3. ANTIDERIVATIVES REVISITED

(Memory 1230) Recall Problem Suppose that there are two C! functions g and h defined in an open
rectangle or disc R such that a%g = ,h- Then there is a function f € C?(R) such that g—; =g and % = h.

Theorem 2.3.2. Let R C R? be an open rectangle or disc and let P € R. Suppose that there are two functions
g and h that are continuous on R, continuously differentiable on R\ {P}, and such that Zg = %h on R\ {P}

for some P € R. Then there is a function f € C}(R) such that g—; =g and % = h everywhere in R (including
at P).



(Problem 1240) Prove Theorem 2.3.2.

Let P = (xo, y0) and let f(x,y) = f); h(s, yo0) ds + fy}; g(x, t) dt. Observe that if (x,y) € R then so is
(s,¥) and (x, t) for all s between xo and x and all t between yy and y. Thus g and h are defined at all
required values. Because g and h are continuous, the integrals exist.

Furthermore, I claim f is continuous. Let (x,y) € R and let §; > 0 be such that B((x,y),d1) C R.
By continuity of g and h and compactness of B((x, y),81/2), g and h are bounded on B((x, y),d:/2). If
(&,1m) € B((x, ). 61/2), then

13 y n
I%m—ww:/MmMH/dw%dMWf/wﬁﬂ

Yo y

_/yg0aw—fg@,wdr

Yo

<[—x] sup [A[+[n—y] sup [g[+
B((x.y).61/2) B((x.y).61/2)
Furthermore, g must be uniformly continuous on B((x, y), 81/2). Choose € > 0 and let &, be such that if
[(x,t) — (& t)] < & then |g(x, t) — g(&, t)| < €. We then have that
fxy)—fEm|<|€—x| sup |hl+[n—y[ sup [g]+ |y —yle
B((x.y).61/2) B((x.y).61/2)
There is then a §3 > 0 such that if |(§, n) — (x, y)| < &3 then |f(x,y) —f(&,n)| < (1+ |yo — y|)e, and so f
is continuous at (x, y), as desired.
By the fundamental theorem of calculus, we have that g—; = g everywhere in R, including at (x,y) =

(Xo,yo) = P
Furthermore, by [730] and the fundamental theorem of calculus, we have that if x # xg then

of Y 0g
—(x,y) = h(x, —(x, t) dt.
) = Hoe)+ [ e
Again because x # xp, we have that g—f(x, t) = %(x, t) and so by the fundamental theorem of calculus

% = h provided x # xg.

We need only show that £ = h even if x = xo. Fix a y and let F,(x) = f(x,y). Then I = {x €
R : (x,y) € R} is an open interval. We need only consider the case where I # 0. Then F, is continuous
on I, F)(x) = h(x,y) for all x # xo, and lim,_,, F,(x) = h(xo,y) because h is continuous. Thus by
Lemma 2.3.1, F/(x) = h(xo, y) and so % = h even if x = xo.

Theorem 2.3.3. Let P € R, where R is an open rectangle or disc. Suppose that f is continuous on R and
holomorphic on R \ {P}. Then there is a function F that is holomorphic on all of R (including P) such that
oF

=f.

oz
(Problem 1250) Prove Theorem 2.3.3.

Let f = u+ iv where u and v are real valued; then by definition u, v are continuous on R and C! on

Then by the Cauchy-Riemann equations, we have that % = g—;. Therefore, by Theorem 2.3.2, there is a

V € CY(R) such that % =uand £ = v in all of R. Similarly, g—; = a(a—xv)’ and so there is a U € C}(R)

such that g—‘xj = u and % = —v.
Let F=U+iV. Then
OF 1/0F 10F 1 . 1 .
— ) ==(u+tiv+=(—v+iv)| ="
i

8z 2

ox "oy
and
oF

7—1 aiflai —1 +',1(,+') =0
oz 2\ax Tay) 2\UTVT v )=

in R, as desired.



(Problem 1260) Is the previous problem true if we relax the assumption that f is continuous at P (and that
9F — f at P)?
0z :

No. Let R = D(0,2) and let P = 0. Then f(z) = 1/z is holomorphic on R \ {P} (see Problem [630)
but f(z) has no holomorphic antiderivative on D(0,2) \ D(0, 1), and so it certainly (see Problem 1.52 in
the book).

2.4. REAL ANALYSIS

(Memory 1270) In C, D(P, r) is the closure of D(P, r).
(Memory 1280) In C, 0D(P,r) =0D(P,r) ={z€ C:|z— P|=r}.

2.4. THE CAUCHY INTEGRAL FORMULA AND THE CAUCHY INTEGRAL THEOREM

Theorem 2.4.3. [The Cauchy integral theorem.] Let f be holomorphic in D(P, R). Let -y : [a, b] = D(P, R) be
a closed curve. Then f,y f(z)dz=0.

[Chapter 2, Problem 1] Prove the Cauchy integral theorem.

Theorem 2.4.2. [The Cauchy integral formula.] Let Q C C be open and let D(z, r) C Q. Let f be holomorphic
in Q and let z € D(zy, r). Then

= 2mi 4C—2z

Lemma 2.4.1. The Cauchy integral formula is true in the special case where ({) =1 for all { € C.

(Problem 1281) Let «y : [a, b] — K be a C! curve for some set K C C (not necessarily open). Let V C C be
compact and let f : K x V — C be continuous. Let F :V — C be defined by

Show that F is continuous on V.

(Problem 1290) In this problem we will begin the proof of Lemma 2.4.1 (and thus ultimately of Theorem 2.4.2).
Let v : [a,b] — K be a C! curve for some set K C C (not necessarily open). Let W C C be open and let

f: K xW — C be continuous. Suppose that the functions % nd 6f glven by (C x4+ iy) = Xf(C,X +iy)
and g—;(g,x +iy) = %f((,x—l— iy) are continuous on K x W. Show that
0
47( f(¢,x+iy)d¢ = ?{—f ¢, x+iy)de,
Ox
0

f F(Cx +iy) d = f—fcwfy)dc

G%CZC/C %—f{z
63% ¢ z)d¢ = f—f(z

(Problem 1300) Prove Lemma 2.4.1. Hint: Start by proving Lemma 2.4.1 in the special case z = z;. Computing
Reﬁy T d( and Imf dC dlrectly from the definition of line |ntegral is very difficult if z # zy. Instead

d¢ and ﬁy #=3 d¢ and use the known value of f = ZO d¢.

oy

forall z=x+iy e W.

compute o

’YCZ

fw CE d¢ =1 (this is a routine computation).

20



If { # x4+ iy, then
0 1 0 ¢—x+iy
Ox¢—(x+iy) 0x(Re¢—x)?+(Im¢—y)?
—[¢ = (x+iy)P + (C—x+iy)(2(Re¢ — X))
I —(x+iy)l*
= (x+iy)P 4+ (€= x+iy)({ = x+iy) + (= x—iy))
(C—x—iyP(C—x+iy)?

1
(€= (x+iy))*
Now, by the previous problem, if x + iy € D(P, r), then

0 1
GX?{YC (x+iy) d¢ = %ax x—l—/y)dc

1
=¢ —F—5d¢
Lo wmr®
Let F(¢) = m By Problem and the chain rule we have that a—CF(C) = W Thus
0 -1
b o %= o %
5X£C—(X+l)/) v 00— (x+1iy)

which by Problem [060] is zero because « is a closed curve.
Similarly

1
bt g =
ayiéc—xw) ¢=0

for all x + iy € D(zp, r). Thus f,y = X+’y) d¢ (regarded as a function of x + iy) must be a constant; since
it equals 1 at x + iy = zy, it must be 1 everywhere.

2.5. THE CAucHY INTEGRAL FORMULA: SOME EXAMPLES

(Problem 1310) Let y(t) = z + re't, 0 < t < 2m. Let n be an integer. Let z € D(z,r). Show that
gﬁy(( —z)"d¢=0if n# —1.
(Problem 1320) Show that if n > 0 and « is as in the previous problem, then
1 ¢n
2mi Jy{—z
(As we have not yet proven the Cauchy integral formula, do not cite the Cauchy integral formula to perform this
computation.)

d¢ =2".

If n = 0 then the result follows from Lemma 2.4.1. Otherwise, by the binomial theorem

= [e—a) =Y (1) o

k=0

¢ _ . (”) k n—k—1
d¢ = z —z d¢.
S%=3 ﬁ(c Ykt dg

If k < n then the integral is zero, while if k = n then the integral is 27/ by Lemma 2.4.1, as desired.

Thus

(Problem 1330) Let p € C[z] be a polynomial. Find 5 f,y p) ~ d¢. (As we have not yet proven the Cauchy
integral formula, do not cite the Cauchy integral formula to perform this computation.)



2.4. THE CAuUCHY INTEGRAL FORMULA AND THE CAUCHY INTEGRAL THEOREM

Theorem 2.4.2. [The Cauchy integral formula.] Let Q C C be open and let D(z, r) C Q. Let f be holomorphic
in Q and let z € D(zg, r). Then

= 2mi vz

(Problem 1340) Prove Theorem 2.4.2. Hint: Let h(¢) = {=C2if ¢ o 7. How should you define h(z)? What
can you say about the behavior of h at z and in Q\ {z}?

(Bonus Problem 1350) Prove the previous result without using Problem [1250

[Definition: Integral over a circle] We define faD(P,r) f(z)dz = fw f(z) dz, where 7y is a counterclockwise
simple parameterization of OD(P, r).

[Chapter 2, Problem 20] Let f be continuous on D(P,r) and holomorphic in D(P,r). Show that f(z) =

f
5§6D(P,r) g d¢ for all z € D(P, r).

(Problem 1360) Let f and g be holomorphic in D(P, r) and continuous on D(P, r). Suppose that f(¢) = g(¢)
for all ¢ € OD(P, r). Show that f(z) = g(z) for all z € D(P, r).

CobA: CHANGE OF VARIABLES

(Problem 1370) Let Q C C be open, let v : [0,1] — Q be a C! curve, and let v : Q — C be holomorphic. Show
that u o« is also a C! curve and that (v o)/ (t) = u'(y(t)) v/ (¢).

(Problem 1380) Let Q, W C C be open and let u: Q — W be holomorphic. Let «y: [0,1] — Q be a C! closed
curve. Let f : W — C be continuous. Show that

fimfyf(W)dW:?'{yf(U( ))%dz

t+1)

(Problem 1390) I want to compute 1 [

dt. A naive student uses the u-substitution u = (t + i)* and

(tl

—41 1
du t+i)*+1

converts the integral to [_," 337

= 0. But when I compute f 17 dt using a numerical solver, I get

—im/2. What went wrong?

2.6. AN INTRODUCTION TO THE CAUCHY INTEGRAL THEOREM AND THE CAUCHY INTEGRAL FORMULA FOR
MoRE GENERAL CURVES

Proposition 2.6.6. Let Q = D(P,7)\ D(P, o) for some P € C and some 0 < o < 7. Let 0 < r < R < T and

let «y,, yr be the counterclockwise parameterizations of OD(P, r), 8D(P, R). Suppose that f is holomorphic in €.
Then § f=4¢ f

(Problem 1400) Prove Proposition 2.6.6. Hint: Define 75 in the natural way and find a function h such that
46 f=¢ h
ds Jys ¥s

[Definition: Homotopic curves] Let a < b, ¢ < d. Let Q C C be open. Let 7., 74 : [a, b] = Q be two C!
curves with the same endpoints (so yc(a) = v4(a), Y¥c(b) = va(b)).
We say that y. and <4 are C'-homotopic in € if there is a function I such that:
I:[a b] x[c,d] = Q,
M(t,c) =9(t), T(t, d) =q4(t) for all t € [a, b],
M(a,s) =vc(a) =v4(a), T(b,s) =yc(b) =4(b) for all s € [c, d],
I is continuous on [a, b] x [c, d],
I is C! in the first variable in the sense that if ys(t) = I'(t, s), then s € C1[a, b] for all c < s < d.

[Definition: Homotopic closed curves] Let a < b, ¢ < d. Let Q C C be open. Let ., 4 : [a, b] = Q be two
closed C! curves.
We say that . and 4 are C'-homotopic in Q if there is a function I such that:

o [:[a b] x[c,d]l— Q,



M(t,¢c) =7(t), T(t, d) =vq(t) for all t € [a, b],
M(a,s) =T(b,s) for all s € [c, d],

I is continuous on [a, b] x [c, d],

I is C! in the first variable on [a, b] x [c, d].

(Bonus Problem 1401) Show that the assumption that I be C in the first variable is unnecessary: if . and 74
are C! and there is a function T satisfying all of the above conditions except that I is not C! in the first variable,
then I may be perturbed slightly to yield a C* function.

(Problem 1410) Let Q = D(P,7) \ D(P, o) for some P € C and some 0 < 0 < 7. Let 0 < r < R < T and let
v, Yr be the counterclockwise parameterizations of dD(P, r), OD(P, R). Show that 7, and g are homotopic
in Q.

(Problem 1420) Let Q be an open set, and let v, vq4 : [a, b] = Q be two curves with the same endpoints that
are homotopic in Q. Let [ be the homotopy.
Suppose that VI exists and is continuous on [a, b] x [c, d] (with the derivatives on the boundary defined as
one-sided limits, as in Problem [890). Suppose further that VT is continuously differentiable on [a, b] x [c, d].
Let vs(t) = '(t,s). Let f be holomorphic on Q. Show that f% f= fw f. Hint: Start by computing £ f'ys f

and then rewrite the result as as fab %h(s, t) dt for some function h.

By definition of line integral,

b o]
f= f(I(t, —TI(t,s)dt.
f = ) grees)
By Problem if c <s < d then f% f is continuous (as a function of s) at s and

. 7sf_/:ai(f(r(t,s))aatr(t,s)> dt.

By the product rule and problem [1140]

d f:/ f’(r(t,s))%F(t,s)%r(t,s)—i—f(r(t,s)) afatr(t,s)dt.

ds J, a

By Clairaut’s theorem and the product rule,

;’572 f /abaat<f(r(t,s)) aasr(t,s)> dt.

By the fundamental theorem of calculus,

LA <f(r(b,s)) :Sr(b,s)) - (f(r(a. s)) air(a,S))-

ds J,,

By definition of homotopy between curves with the same endpoints, ['(b,s) = 7.(b) for all s, and so
21(b,s) = 0. Similarly 2(a,s) = 0 and so

d

ds J,,

for all ¢ < s < d. Thus by the mean value theorem, ﬁyc f= fwd f.

(Bonus Problem 1430) Let Q C C be an open set, let . and 4 be two curves homotopic in Q with the same
endpoints, and let f :  — C be holomorphic. Show that f,y f= ﬁvd f even if the homotopy is merely continuous

and C! in the first variable.

(Problem 1440) Let Q C C be any open set, let . and 74 be any two closed curves that are homotopic in £,
and let f : Q — C be holomorphic. Assume the homotopy is C?. Show that 55% f = ﬁyd f. Hint: Start by

computing & § f and then rewrite the result as as fab 2 h(s, t) dt for some function h.



As in Problem [1420 55% f is a continuous function of s and

d f= <f(|‘(b, s)) gsr(b,s)) — <f(|’(a, s)) ;r(a,s))

ds e s

By definition of homotopy between closed curves, [(b, s) = I'(a, s) for all s, and so in particular 2 (b, s) =
%F(a, s). Thus

d 0 0
s f= <f(r(a,s))asr(a, s)> - (f(r(a,s))asr(a, s)) =0.

Vs
By the mean value theorem, § f = ¢ f.

roblem et e open and let f : §2 — e holomorphic.
Problem 1450) Let Q b dlet f:Q — C be hol hi
(a) Lety:[0,1] — Q be homotopic in Q2 to a point (constant function). Show that ﬁy f=0.
(b) Suppose that D(z, r) C Q and that - is homotopic in Q\ {z} to dD(z, r) (traversed once with counter-

clockwise orientation). Show that 51; § g d¢ = f(2).

3.1. DIFFERENTIABILITY PROPERTIES OF HOLOMORPHIC FUNCTIONS

Theorem 3.1.3. [Generalization.] Let D(P,r) C C. Let ¢ : D(P, r) — C be continuous. Let k be a nonnegative
integer. Define f : D(P,r) — C by
k! ¢(¢)
"D =2t fooo €21 %
Then f is C* and holomorphic in D(P, r), and
of  (k+1)! ©(¢)
»7éD(P,r) (

- €27

0z omi d¢.

(Problem 1460) Let f be as in Theorem 3.1.3. Begin the proof of Theorem 3.1.3 by showing that % and %

exist and satisfy
g_(k+1>!% o0 4 O
0z  2mi op(pr) (C—z)k+2 7~ oz

(Problem 1470) Complete the proof of Theorem 3.1.3 by showing that f € C1(Q2) and so is holomorphic.
[Chapter 2, Problem 21] If z € OD(P, r), is it necessarily true that lim,_,, f(w) = ¢(z)?
Theorem 3.1.1. Let Q C C be open and let f : Q — C be holomorphic. Then f € C*®(Q). Moreover, if
D(P, r) C £, then
k |

AT G

oz 2mi Jappry (¢ — 2)k 1
Corollary 3.1.2. Let 2 C C be open and let f : Q — C be holomorphic. Then % is holomorphic in € for all
k e N.

(Problem 1480) Prove Theorem 3.1.1 and Corollary 3.1.2.

Let D(P, r) C Q. By the Cauchy integral formula, if z € D(P, r) then

1 f(<)
f(z) = — —=d
(<) 2mi Joppry ¢ — 2

Because f is holomorphic, it must be continuous, and so we may apply Theorem 3.1.3.

k—1 .
of fk=1) = & exist and are C! and

We perform an induction argument. Suppose that f, f' =

= B8z
holomorphic in D(P, r), and that Fk) = % exists and satisfies
k! f

27 Japepyy (C— 2)FH



in D(P, r). We have shown that this is true for k = 0. By Theorem 3.1.3, we have that f(¥) is also C! and
holomorphic in D(P, r), and that

(k+1) _ (kK+1)! (<)
= 2mi ?gD(P,r) (¢ —z)k+2 o
ak+1f‘

Because f(¥) is holomorphic, f(kt1) = 5z1- Thus by induction this must be true for all nonnegative
integers k.
This proves Corollary 3.1.2 and part of Theorem 3.1.1. To prove that f € C*°(2), observe that

o (2 aV(a 2\,
oxioyt \9z 0z 0z 0z

We can write all partial derivatives of f (in terms of x and y) as linear combinations of 57 and FxmBy o5

am+n+l f

for various values of j, £, m, and n, and so

(Problem 1481) (Problem [1281)) Let «y : [a, b] — K be a C! curve for some set K C C (not necessarily open).
Let V C C be compact and let f : K x V — C be continuous. Let F : V — C be defined by

F(z) = ?{ (¢, z)d¢.

Show that F is continuous on V.

(Problem 1490) Suppose that P € Q C C for some open set Q. Suppose that f is continuous on  and
holomorphic on 2\ {P}. Show that f is holomorphic on Q.

We must show that V£ (P) exists, that Vf is continuous at P, and that %(P) = 0. That is, we only
need to work at P. Let R be an open disc centered at P and contained in ; by definition of open set R
must exist. Then by Theorem 2.3.3 (Problem there is a function F : R — C that is holomorphic in R
such that f = g—g in R (including at P). By Theorem 3.1.1 and Corollary 3.1.2 (Problem , f=2is

0z
C! and holomorphic in R, and in particular at P.

NOTES ON HOMEWORK 5

[Chapter AB, Problem 5] The function log : C\ (—o0, 0] given by
log z = log |z| + i

if z=|z|e® and —m < < 7 is holomorphic on C \ (—oo, 0] and satisfies

1
—logz=—.
z

0z

Theorem 2.2.1. (Generalization.) Suppose that Q C C is open and that f is C! on Q. Let p € Q and suppose
% . 0. Then f has a complex derivative at p and f'(p) = % r—p

(Problem 1491) Let Q = R?\ (—o0,0]. Define a function F : Q — R such that if x + iy = re’® for some real
numbers x, y, r, @ with r > 0 and —m < 6 < 7, then we have that F(x,y) = 6.

(Problem 1492) Let W C R?\ {(0,0)} be open. Let Q = {re® : (r,6) € W} and suppose that Q is open. Let
F : Q — C be holomorphic. Define f : W — C by f(r,8) = F(re').

(a) Suppose that (r,8) € W. Show that
O, f(r,0)\ [ cos@ sin@ OF
Opf(r,0))  \—rcos@ rsinf) \O,F
(b) Suppose that x + iy € Q. Then there is an (r,8) € W such that re’® = x + iy. Show that

Grerm) = (s &) (Gis).

x+iy=rei®



3.1. REAL ANALYSIS

(Memory 1500) Let Q C C be open and connected. Show that Q is path connected and that the paths may be
taken to be C?; that is, if z, w € Q then there is a «y : [0, 1] — Q with v a C? function such that y(0) = z and

v(1) = w.
3.1. MORERA’'S THEOREM

Theorem 3.1.4. (Morera's theorem.) Let Q C C be open and connected. Let f € C(Q) be such that ﬁy f=0
for all closed curves . Then f is holomorphic in €.

(Problem 1510) Prove Morera’s theorem. Furthermore, show that there is a function F holomorphic in Q such
that F' = f.

Fix some zg € €. Suppose that z € . By Problem there is a C! curve ¥ = 9, : [0, 1] — Q such
that 9(0) = zp and ¥(1) = z.

Suppose that 7 is another such curve, that is, a C! function 7 : [0,1] — Q such that 7(0) = z and
7(1) = z. Let 7_1(t) = 7(1 — t). Then by Problem , we have that le f =—¢_f. Furthermore, by

Problem [1050} there is a C! curve v : [0, 1] — C such that v(0) = ¥(0) = zp, ¥(1) = 7_1(1) = 7(0) = 2

and such that
foefoif i=feifu
¥ P T_1 P T

But -y is closed and so ﬁv f =0, and so 32,} f=4¢_f.
Thus, if we define F(z) = ﬁpz f, then F is well defined, as F(z) is independent of our choice of path 3,

from z to z.
Now, let z € Q and let r > 0 be such that D(z,r) C Q; such an r must exist by definition of Q. If

w € D(z,r)\ {z}, then
F(w)—F(z):f’Wf—?{Zf.

Let o(t) = z+ t(w —z), s0 ¢ : [0,1] — D(z,r) is a C! path from z to w. We may assume without loss
of generality that 1,, is generated from v, and ¢ by Problem [1050} thus,

F(w) — F(z) _ 1 %f_/l f(z+ t(w — 2)) dt.
w—zJ, 0

W —
A straightforward -6 argument yields that
i F(w) -~ F(2)

w—z w—Zz

= f(2)

so F possesses a complex derivative at z. Furthermore, F’ = f is continuous on Q. Thus F € C}(Q) and
is holomorphic on Q by Problem [1160, and so by Theorem 3.1.1 and Corollary 3.1.2 f = F' is C* (in
particular C!) and holomorphic in Q.

(Problem 1520) Can you rewrite Morera's theorem to involve a statement true for all holomorphic functions
(can you write it with the phrase “if and only if")?

3.2. REAL ANALYSIS

(Memory 1530) State the Root Test and Ratio Test from undergraduate real analysis.

[Definition: Taylor series] Let f € C*°(a, b) and let a < ¢ < b. The Taylor series for f at cis > -, f(",il(c) (x—c)"
(with the convention 0° = 1).

(Memory 1540) Let P, (x) =3 1, () (x — €)™ be the mth partial sum of the Taylor series at ¢. Suppose

n!

that x € (a, b), x # ¢, m € N. Show that there is a y,, € (a, b) with |ym — ¢| < |x — c| such that

f(x) = Pn_1.c(x) + %f(’")(ym) (x —c)™.



(Memory 1550) The Taylor series for sin, cos, and exp converge to the parent function on all of R.
(Problem 1560) Give an example of a function f € C*(R) such that the Taylor series for f converges for all
x € R but such that f(x) # 3 72, f(n),(c) (x —c)" for all x # c.

n!

The function

XP\— X2 X
f(x):{g o1/, x40

satisfies £("(0) = 0 for all nonnegative integers n, and thus the Taylor series is zero everywhere; however,
f(x) # 0 if x # 0 and so the Taylor series never converges to the function.

(Problem 1570) Give an example of a function f € C*®°(—2, 00) such that the Taylor series for f at 2 diverges
for all |x — 2| > 2. Can we do this for a function f € C*°(R)?

(Bonus Problem 1580) Give an example of a function f € C*°(R) such that the Taylor series for f at 0 diverges
for all x # 0.

[Definition: Absolute convergence] Let 3 °°  a, be a series of real numbers. If 3 7° |a,| converges, then we
say Y 2, an converges absolutely.

[Definition: Uniform convergence] Let E be a set, let (X, d) be a metric space, and let fi, f : E — X. We
say that fy — f uniformly on E if for every € > 0 there is a N € N such that if kK > N, then d(fk(2),f(2)) < ¢
forall z€ E.

[Definition: Uniformly Cauchy] Let E be a set, let (X, d) be a metric space, and let f;, : E — X. We say
that {f,}%2; is uniformly Cauchy on E if for every ¢ > 0 there is a N € N such that if n > m > N, then
d(fa(z), f —m(z)) < eforallzec E.

[Definition: Uniform convergence and Cauchy for series] If E is a set, V is a vector space, and f, : E — V
for each k € N, then the series Y ;7 f converges uniformly to f : E — V or is uniformly Cauchy, respectively, if
the sequences of partial sums {3 ;_; i}~ converge uniformly or are uniformly Cauchy.

(Memory 1590) Suppose that (X, d) is a complete metric space. Then any uniformly Cauchy sequence is
uniformly convergent.

(Memory 1600) Suppose that (E, p) and (X, d) are two metric spaces. Let fx, f : E — X. Suppose fx — f
uniformly on E and that each fi is continuous. Then f is also continuous.

(Problem 1601) Give an example of a compact metric space (X, d) and a sequence of continuous functions from
X to R that converge pointwise, but not uniformly, to a continuous function.

(Memory 1610) Let f, f : [a, b] — R. Suppose that each f, is Riemann integrable and that fy — f uniformly
on [a, b]. Then f is Riemann integrable, limx 0 fab fi. exists, and lim_ oo fab fo = fab f.
(Memory 1611) (The WeierstrauB M-test.) Suppose that A is a set and that for each n, f, : A — Cis a

bounded function. Suppose that there is a sequence {M,}2, C [0, 00) such that |f,(x)| < M, for all x € A and
> 02 o M, < 0. Then the series Y 2 f,(x) converges absolutely and uniformly on A.

3.2. CoMmPLEX POWER SERIES

(Problem 1620) Let Y °  a, be a series of complex numbers. Show that if Y |a,| converges then 3 °°  a,
converges (that is, that in the complex numbers, we still have that absolute convergence implies convergence).

Let a, = x, + iy, where x,, v, € R. Then |x,| < |a,| and |y,| < |a,|. We recall from real analysis that
a nondecreasing sequence converges if and only if it is bounded. Therefore {3 " |an|}men is bounded.
Because [x,| < |an|, we have that Y " |xa| < 37 ]an] < suppen Ymolan] and so {37 [xa|}men.
Thus 3 72 ) x, converges absolutely, and therefore Y °° | x, converges. Similarly, Y % v, converges. By
Problem [210] > 7° ; a, converges.

Definition 3.2.2. (Complex power series.) A complex power series is a formal sum Y32 ; ax(z — P)* for some
{ak}$2,; C C. The series converges at z if lim, 00 Y 4_ ak(z — P)* exists.



Lemma 3.2.3. Suppose that the series 3 ax(z — P)* converges at z = w for some w € C. Then the series
converges absolutely at z for all z with |z — P| < |w — P|.

k

Proposition 3.2.9. Suppose that the series 3 7o ax(z — P)* converges at z = w for some w € C. If

0 < r < |w — P|, then the series converges uniformly on D(P, r).
(Problem 1630) Prove Lemma 3.2.3.
(Problem 1640) Prove Proposition 3.2.9.

Because 3, _, ak(w — P)* converges, we have that limy_,c ax(w — P)* = 0. In particular, {ax(w —
P)k}2° , is bounded. Let A = sup,~q |ak(w — P)X|.

Because 0 < r/|w — P| < 1, the geometric series S 2o Alr/|w — P|)* converges. Thus for every £ > 0
there is an N > 0 such that 372 \ A(r/|w — P|)¥ < e.

If z € D(P,r), then |z — P| < r and so |ax(z — P)| < |ax(w — P)X|(r/|w — P|)k < A(r/|w — P|)k.

We then have that 337\ lak(z — P)¥| < 322y A(r/lw — P|)¥ < ¢ for all z € D(P, r). Furthermore, by
Lemma 3.2.3 and Problem [1620] Y}, ax(z — P)¥ exists, and if m > N then

’iak(z Pk iak(z - P)"‘ - \ i a(z — P)k( < i lak(z — P)¥| < e.
k=0 k=0 k=m+1 k=m+1

Thus the series converges uniformly on D(P, r).

(Problem 1650) Suppose that the series diverges at w for some w € C. Show that the series diverges at z for
all z with |z — P| > |w — P]|.

Suppose for the sake of contradiction that the series converges at z. By Lemma 3.2.3 with z and w
interchanged, we know that the series converges at w. But we assumed that the series diverged at w, a
contradiction. Therefore the series must diverge at z.

Definition 3.2.4. (Radius of convergence.) The radius of convergence of 3 7o ak(z — P)¥ is sup{|lw — P| :
Y oo ak(w — P)k converges}.

(Problem 1660) Show that the radius of convergence is also inf{|w — P| : 32 ax(w — P)k diverges}.

Let Ry = sup{|w — P|: 372, ak(w — P)* converges}, R, = inf{|¢ — P|: 3 3, ak(¢ — P)X diverges}.

If r e {lw—P|: Y ;2,a(w — P)* converges}, then r = |w — P| for some w such that the series
converges. If the series diverges at ¢, then | — P| > |w — P| by Lemma 3.2.3, and so r is a lower bound on
{I¢=P|: 372 a({—P)* diverges}. Thus r < R;. So Ry is an upper bound on {|w—P| : 377 ax(w—P)*
converges}, and so Ry > Ry.

If R, > Ry, let z € C be such that Ry < |z — P| < R,. Then the series either converges or diverges
at z. If it converges, then |z — P| € {lw — P| : Y2, ax(w — P)* converges}, and so |z — P| < Ry, a
contradiction. We similarly derive a contradiction if the series diverges at z, and so we must have that
R> = Ry, as desired.

(Problem 1670) (Lemma 3.2.6.) State the root test from undergraduate real analysis. What does the root test
say about complex power series?

The root test for real numbers states that if {b,}52, C R, then

o If limsup,_,, ¢/|bn| < 1, then 3 72 b, converges absolutely.
e If limsup, o, {/|bn| > 1, then the sequence {b,}2 is unbounded (and in particular the series 322 ; b,
diverges).



Let 3 72, ak(z — P)X be a complex power series. Fix a z € C and observe that

limsup \/|ak(z — P)k| = |z — P|limsup {/|ax]|.
k— o0

k—o00
Thus the series 3 72 ax(z — P)* converges if |z — P|limsup,_,o, «/|ax] < 1 and diverges if |z —
Pllimsup,_ o +/|ak| > 1. Thus the radius of convergence must be
1

im supy,o0 4/Ta]

with the convention that § = oo and = = 0; that is, if limsup;_,., {/]ax| = 0 then the series converges
everywhere and if limsup,_, ., +/|ak| = oo then the series diverges unless z = P.

(Problem 1680) State the ratio test from undergraduate real analysis. What does the ratio test say about power
series?

The ratio test for real numbers states that if {b,}52, C R, then

o If lim, “"7*‘1‘ exists and is less than 1, then 32 b, converges absolutely.

o If limy oo “l’g*lll exists and is greater than 1, then the sequence {b,}5°, is unbounded (and in particular

the series Y 0 b, diverges).
Let 3 2, ak(z — P)* be a complex power series. Fix a z € C\ {P} and observe that if either

. _pykil .
My oo % or limy_eo ||:*|1| exists, then the other must exist and

)k+1|

lak41(z — |ak+1]

lim —————— z—P ||m
k—o00 |ak(z — P)k| | ‘ |ak|
Thus, the series converges absolutely if |z — P| < limy_00 ‘l “ and diverges if |z — P| > limy_00 || K so

apy1l’
lakl

the radius of convergence must be limyg_, o Tocr]"

Lemma 3.2.10. Let Y 2 ax(z— P)* be a power series with radius of convergence R > 0. Define f : D(P, R) —
Cby f(z) =3 72, ak(z — P)~.
Then f is C* and holomorphic in D(P, R), and if n € N then the series

o0
Z ak(z - P)k n
=n
has radius of convergence at least R and converges to f("(z) = g;:.

(Problem 1690) Begin the proof of Lemma 3.2.10 by showing that f is continuous on D(P, R).

If m € N, define f,(z) = Y} ,ak(z — P)%. Then each f,, is continuous. By Proposition 3.2.9, if
0 < r < R then f,, — f uniformly on D(P, r).
By Memory ([I600), we have that f must be continuous on D(P, r). But if z € D(P, R), then |z—P| < R

and so there is a € > 0 and an r < r such that D(z,&) C D(P,r), and so f is continuous at z for all
z € D(P,R). Thus f is continuous on D(P, R).

(Problem 1700) Continue the proof of Lemma 3.2.10 by showing that f is holomorphic in D(P, R).
(Problem 1710) Complete the proof of Lemma 3.2.10 by showing that

2kl P
Z mak(z — P)

k=n
indeed converges to f(")(z). Hint: Use Theorem 3.1.1 (Problem [1480)) and Memory [1610
[Definition: Taylor series] Let P € Q C C where Q is open, and let f be holomorphic in Q. By Theorem 3.1.1

(Problem ) (") exists everywhere in . The Taylor series for f at P is the power series S k(|P) (z— P)k.




(Problem 1720) Let f be as in Lemma 3.2.10. Show that the Taylor series for f at P is simply 3 72 ax(z — P)*.

Proposition 3.2.11. Suppose that the two power series Y - ax(z — P)¥ and Y 32, bk(z — P)* both have
positive radius of convergence and that there is some r > 0 such that Y ;2 ax(z— P)* =Y 2 b(z— P)* (and
both sums converge) whenever |z — P| < r. Then ax = by for all k.

(Problem 1730) Prove Proposition 3.2.11.

Let f(z) = Y wopax(z — P)" = Y 320 bi(z — P)¥ in D(P,r). Then by Lemma 3.2.10, we must have
that f is holomorphic in D(P, r), and if n > 0 is an integer then
f(N(P)

n= = Dbp

n!

implying a, = b, for all n.

[Definition: Analytic function] Let Q C C be open and let f : Q@ — C be a function. If for every P € Q there
isar>0with D(P,r) C Q and a sequence {a,}52; C C such that f(z) =3 52 a,(z— P)" for all z € D(P, r),
we say that f is analytic.

(Problem 1740) Show that analytic functions are holomorphic.

(Problem 1750) Recall that if x € R, then expx = 3 % X7 sinx = 3 °° (g;ig")[xm, cosx =3, %in_
Show that the functionsexpz = 3 %0/ 21, sinz = 3 % (g;}r)l)[zz”“, andcosz =% %, ((;,13[ 22" are holomorphic
on C and take the correct values at all real numbers.

3.3. THE PowER SERIES EXPANSION FOR A HOLOMORPHIC FUNCTION

Theorem 3.3.1. Let Q C C be an open set and let f be holomorphic in Q. Let D(P, r) C Q for some r > 0.
Then the Taylor series for f at P has radius of convergence at least r and converges to f(z) for all z € D(P, r).

(Problem 1760) Let f be holomorphic in D(P, R) and let 0 < r < R. Begin the proof of Theorem 3.3.1 by

showing that there is a power series with radius of convergence at least r that converges to f in D(P, r).

Without loss of generality we may assume P = 0. By the Cauchy integral formula (Problem [134Q)), if
z€ D(0,r)=D(P,r) and |z| < p < r, then

f(2) :74 Q) ge
aD(0,0) ¢ — 2
Because |z|] < [¢] all ¢ € 8D(0, p), we have that

1 1 &
C—zil—z/CizC"H'

k=0

Thus
z () «
f(z) = —=z"d¢.
(2) D(00) ; G z"d¢

Because f is continuous on the compact set 0D(0, p), it is bounded there. Let m = supyp(q ) |f|- Then

\gﬁfgzﬂ < mlz|k/pk*tL. But Y32, m|z|¥/p1 is a convergent geometric series, so by the WeierstrauB

M-test we have that the series converges uniformly on 8D(0, r). Thus by Memory [L610|we may interchange
the sum with the integral and see that

- f($)
f(z) = zk d
() kz:o «iD(O,p) gkt ¢

and the sum converges.

Let ax = faD(o,p) % d¢ for any p € (0, R); we have shown that 3 ;2 ; axz* converges in D(0, p) to f(z).
But by Proposition 2.6.6 (Problem [1400|) we have that aj is independent of p, and so we must have that
Y 22, akzk converges in D(0, r) to f(z), as desired.



(Problem 1770) Complete the proof of Theorem 3.3.1 by show that the power series for f in D(P, r) must be
the Taylor series for f at P and that the radius of convergence of the Taylor series for f at P must be at least R.

By the previous problem, we know that if P € Q then there are complex numbers a, such that
Y 220 ak(z — P)¥ has radius of convergence at least r and f(z) =3 (2, ax(z — P)* for all z € D(P, r).

But by Problem , we have that the Taylor series for f is simply Zio:o ak(z— P)¥, and by assumption
> 2o ak(z — P)k converges to f in D(P, r), and so the Taylor series converges to f in D(P,r).

(Problem 1780) Let f be holomorphic in D(P, r). Let R be the radius of convergence of the Taylor series for

f at P. Observe that R > r. Suppose R > r. Show that there is a unique function F that is holomorphic in
D(P, R) with F = f in D(P,r).

Define F : D(P,R) — C by F(z) =Y ;2 0 ( — P)¥. By assumption the power series does converge
in D(P, R), and by Lemma 3.2.10 (Problem F is holomorphic in D(P, R).

Suppose for the sake of contradiction that G is holomorphic in D(P, R) and that G = f = F in D(P, r).
A straightforward induction argument shows that if n € N then G(" = (0 = F(") i D(P, r), and so in
particular G("(P) = F("(P). But by Theorem 3.3.1 (Problem we have that

* F(n) ® G(n)
F(z):ZF (P)(sz)", G(z):ZG (P)(sz)"
n=0

n!
n=0 =
for all z € D(P, R), and so we must have that G = F in D(P, R).

(Problem 1790) Let f be an analytic function in a neighborhood of P. Show that the Taylor series for f’ at P
has the same radius of convergence as the Taylor series for f at P.

(Problem 1800) Let Q = {re”® : 0 < r < 00, -7 < 6 < 7} = C\ (—00,0]. Define F : Q — C by
F(re®®) =Inr -+ if whenever —m < 6 < 7. Recall that F is holomorphic and that F'(z) = 1 for all z € Q.

(a) Show that the Taylor series for F at —3 4 4/ has radius of convergence 5.
(b) Can we extend F to a function that is holomorphic on Q U D(—3 + 4,5)?

A straightforward induction argument yields that F("(z) = % for all n > 1. We may thus
compute that the Taylor series for F at —3 + 4/ is

3+4,+Z 3+4, (z 43— 4i)".

By the ratio test, the radius of convergence is

(—1)" 1 (n+1)(—3+4i)"
n(—=3+4i)" (=1)"
However, observe that —3 € D(—3 + 4/,5) and so Q U D(—3 + 4i,5) contains the circle 8D(0, 3).

Furthermore, suppose G(z) is holomorphic in an open set W containing D(—3+41,5) and coincides with

F on WNQ. Then G'(z) is holomorphic in W and coincides with F'(z) in D(—3 +4i,3) CWNQ. Thus,
G'(z) =1/z in D(—3 +4i,3), and so by Problem [1780| we must have that G'(z) = 1/z in D(—3 + 4i,5).
The function 1/z has no antiderivative on any open set containing D(0, 3), and so W cannot be all of
QU D(=3 + 4i,5).

lim
n—oo

—|—3+4i|=5.

(Fact 1801) Recall from Proposition 1 4 3 (Problem @D that if £ is holomorphic in Q then £ —Z = 7 in Q. By

Corollary 3.1.2 (Problem |1480)), 5- 67 is holomorphic in Q. A straightforward induction argument yields that
o =2f inQforall neN.

(Problem 1810) Show that the functions exp, sin, and cos in Problem [1750| are the only functions that are
holomorphic on all of C and take the correct values for all real numbers.

Let g : R — R be infinitely differentiable and suppose that there exists a function f that is holomorphic
on all of C and satisfies f(x) = g(x) for all x € R.



Note that g’(x) denotes the real derivative limy—x %, while '(z) denotes the complex derivative

y€eR
limw—z M
weC w—z R R R
We then have that ;X,, f(x) = ddx,,g(x) = g("(x) for all x € R. By the previous fact, gz,, f(z)|Z:X =
da:n cos x for all x € R. By Theorems 2.2.1 and 2.2.2 (Problems [1160| and |1150]), we have that
n dn
F(N)(x) = 662" (z)l = o cosx

for all x € R. By Theorem 3.3.1, we must have that

2 ) , < g(0) ,
f(z)zzon!( )z :Zog ()z

for all z € C. In particular, for a given g there is at most one function f that satisfies the given conditions,
and so the functions given in Problem [1750] are the unique functions that satisfy these conditions with
g(x) = expx, g(x) =cosx or g(x) = sinx.

(Problem 1820) Suppose that Y 7 a,z" and Y o b,z" are two power series with radius of convergence at
least r. Show that

n

[ee]

Z(Z dk b,-,,k>zn
n=0 k=0

has radius of convergence at least r and that

S5 o (£ (5

for all |z| < r.

Let f(z) =3 2y anz" and let g(z) = 3 7, baz"; by Problem [1700| f and g are both holomorphic in
D(0, r). Thus h = fg is holomorphic in D(0, r). By Problems[1760| and [1770, we must have that

X pn)
Z h (O)Zn
n!

n=0
has radius of convergence at least r and must converge to h(z) = f(z)g(z). A straightforward induction
argument and the Leibniz rule (Problem [490) shows that

- !
Ay =S " () (=K
©)=3 @0
and so by Lemma 3.2.10 (Problem [1710) we have that

A" (0 u

( ): E adk b,,_k.

n!
k=0

3.4. THE CAUCHY ESTIMATES AND LIOUVILLE'S THEOREM

Theorem 3.4.1. (The Cauchy estimates) Let f : Q — C be holomorphic and let D(P, r) C Q. Let k € Ng. Then
okf

k!
a7k < — sup |f(z)|

rk z€dD(P,r)

z=P
(Problem 1830) Prove Theorem 3.4.1.

Let v : [0,27] — C be given by «(t) = et, so 7y is a parameterization of dD(P, r). By Theorem 3.1.1

(Problem [1480]),
Wpy _ K f({)
FEP) = 27 7€ (¢ — P)k+1 dc.



By Problem . ,
f e pmed <t

ey
where £() = foh |9'(t)| dt = 27r. But 4 = OD(P, r), and so if { € 4 then |¢ — P| = r. Thus this reduces

to
k! LICOI
|f(k)(P)‘ < —2mrsup = —sup|f(¢)]
2m ey It M ey

as desired.
(Problem 1840) Let k, n € N. Show that there is a function f € C®(R) with sup, g |f(x)] < 1 but with
FR0)] = .
We let f(x) = sin(nx) + cos(nx). Then |f(x)| < |sin(nx)| + | cos(nx)| < 2 and so f is bounded. But
f(9(0) = +n*. Because k > 1, this implies |f(¥)(0)| = nk > n, as desired.
Lemma 3.4.2. If f is holomorphic on a connected open set €2 and % =0in Q, then f is constant. (This was
proven in Problem [590] )

(Problem 1850) Let P C, r >0, k € N, and let f : D(P, r) — C be holomorphic. Suppose that % =0in
D(P, r). Show that f is a polynomial of degree at most k.

By Theorem 3.3.1 (Problems and [1770)), we have that
© (o) (p
flz) =) Pz py.

n!
n=0

But f(k*1) =0 in D(P, r), and therefore all derivatives of order higher than k are zero. We then have that

which is a polynomial of degree at most k.

(Bonus Problem 1860) Show that this is still true in an arbitrary connected open set.
[Definition: Entire] A function f : C — C is entire if f is holomorphic on all of C.
Theorem 3.4.3. [Liouville’s theorem.] A bounded entire function is constant.
(Problem 1870) Prove Liouville's theorem.

[Exercise: Theorem 3.4.4]. If f is entire and there is a constant C € R and a k € Ny such that |f(z)| < C+C|z|*
for all z € C, then f is a polynomial of degree at most k.

Theorem 3.4.5. (The fundamental theorem of algebra.) Let p be a nonconstant (holomorphic) polynomial.
Prove that p has a root; that is, prove that there is an o € C with p(a) = 0.

[Chapter 3, Problem 36] Let p(z) = ap + a1z + - - - + a,z" be a polynomial. Show that there is an R € (0, o0)
such that if |z] > R, then |p(2)| > |an| |2|"/2.

(Problem 1880) Prove the fundamental theorem of algebra.

(Problem 1890) (Corollary 3.4.6.) Let p be a polynomial of degree k > 0. Can p necessarily be factored
completely?

Yes. Clearly every linear polynomial (k = 1) can be factored completely.

Suppose that all polynomials of degree at most k can be factored completely. Let p be a polynomial of
degree k + 1.

By the Fundamental Theorem of Algebra, there is a root r; € C such that p(r;) = 0. By the standard
division algorithm, this means that there is a polynomial g of degree k such that p(z) = (z — r1)q(z). By
our induction hypothesis ¢ may be factored completely, and so p may be factored completely.



3.5. UNIFORM LIMITS OF HOLOMORPHIC FUNCTIONS

[Definition: Domain] A domain is a connected open subset of C.

Theorem 3.5.1. Let Q C C be a domain. Let f;, f : © — C. Suppose that each f; is holomorphic in Q and that
if K C 2 is compact, then f; — f uniformly on K. Then f is holomorphic in Q.

(Problem 1900) Use Theorem 3.1.3 (Problem [1460]) to prove Theorem 3.5.1.

Suppose that P € C, r > 0, and D(P, r) C Q. Then by the Cauchy integral formula,
1 f:(¢
fi(2) - ©

21 Jop(pn ¢ — 2

d¢

for all z € D(P, r) and all j.
But 0D(P,r) C Q is compact, and so by assumption f; — f uniformly on dD(P,r). For any fixed
z € D(P,r), 7 is bounded on OD(P, r), and so 5@, 1O uniformly on 8D(P, r). By assumption, if

—z ¢—z

z € D(P, r) then fj(z) — f(z), while by Problem ((1610))

. 5O ()
JL°° f(’;D(P,r) (—z v ﬁD(P,r) (—z o

1 f(¢)
flz) = — d
(e 2mi Jap(pr) € — 2 ¢

Because each f; is continuous on € and f; — f uniformly on OD(P, r), we have that f is continuous
on OD(P, r). By Theorem 3.1.3, this implies that f is holomorphic in D(P, r), as desired.

In particular,

[Chapter 3, Problem 4] Prove Theorem 3.5.1 using Morera’s theorem.

(Problem 1910) Give an example of a sequence of functions in C*°(RR) that converge uniformly to a function
that is not differentiable.

Let f;(x) = m f; is infinitely differentiable on R, but {f;}%°; converges uniformly to |x|.

Corollary 3.5.2. Let Q2 C C be a domain. Let f;, f : Q — C. Suppose that each f; is holomorphic in Q2 and that

if K C € is compact, then f; — f uniformly on K. Then %ﬁ- — %f on £ and the convergence is uniform on all
compact subsets X of Q.

(Problem 1920) Prove Corollary 3.5.2.

Let X C Q be compact. Because (2 is open, a standard real analysis argument yields that there is a
r > 0 and finitely many points z;, z, ... zy such that X ¢ UN_, D(z,, r/3).

Let K = UN_,D(z,,2r/3). Then K is the union of finitely many compact sets, and so is compact.
Furthermore, if z € X then z € D(z, r/3) for some £ and so D(z, r/3) C D(z,2r/3) C K.

By assumption f; — f uniformly on K. That is, for every € > 0 there is a M € N such that if j > M
then |fj — f| < e on K.

By Theorem 3.5.1, f and thus f; — f is holomorphic, and so by Theorem 3.4.1 (Problem [1830f) we have
that if j > M and z € X then

F(2)— () <> sup |F—f <.
I aD(z,r/3) r

Thus 15-’ — £’ uniformly on X, as desired.

(Problem 1930) Give an example of a sequence of functions {f,}52; in C*°(R) that converge uniformly to a
differentiable function f but where f, does not converge to f'.



3.6. REAL ANALYSIS

(Problem 1940) Show that the real Taylor series for f(x) = Inx at any point ¢ € (0, c0) has a positive radius
of convergence and converges to In x.

[Definition: Relatively open and closed] Let (X, d) be a metric space and let Y C X. Then (Y, d) is also a
metric space. If F C Y is closed in (Y, d), then we say that F is relatively closed. If G C Y is open in (Y, d),
then we say that G is relatively open.

(Memory 1950) Suppose that F C X is closed. Then F NY is relatively closed in Y. In particular, if F C Y
and F is closed in (X, d), then F is relatively closed in (Y, d).

(Memory 1960) Suppose that G C X is open. Then G NY is relatively open in Y.

(Problem 1970) Give an example of a metric space (X, d), a subset Y C X, and a set F C Y such that F is
relatively closed in (Y, d) but not closed in (X, d).

(Problem 1980) Give an example of a metric space (X, d), a subset Y C X, and a set G C Y such that G is
relatively open in (Y, d) but not open in (X, d).
3.6. THE ZEROS OF A HOLOMORPHIC FUNCTION

Corollary 3.6.2. Let Q2 C C be open and connected and let f : Q — C be holomorphic. Suppose that there is a
P € Qand an r > 0 such that D(P,r) CQ and f =0 in D(P,r). Then f = 0 everywhere in Q.

Corollary 3.6.5. Let Q2 C C be open and connected and let £ : 2 — C be holomorphic. Suppose that there is
a P € Q such that f(K)(P) = 0 for all k € Ny (that is, all integers k such that k > 0). Then f = 0 everywhere
in Q.

(Problem 1990) [Redacted]

(Problem 2000) [Redacted]

(Problem 2010) In this problem we begin the proof of Corollaries 3.6.2 and 3.6.3. Let Q C C be open and let
f : Q — C be holomorphic. Let

E={z€Q: thereisar >0 such that D(z,r) CQ and f =0in D(z,r)},
F={zeQ:f(z) =0 forall k € No}.
Show that E = F.
If { € E, let r > 0 be such that D({,r) C Q and f = 0in D({, r). Then all first partial derivatives of
f are zero in D(¢, r); by induction, all derivatives of f (of any order) are zero in D((, r), and in particular
at (. Thus{ € Fandso E C F.
okf

Conversely, suppose that ¢ € F, so ¢ € Q and 5z (¢) = 0 for all k € Ny. Because Q is open there is an
r > 0 such that D(¢{, r) C Q. By Theorem 3.3.1 (Problem [1760)), if z € D(¢, r) then

> f(k)
) =Y Tt —or

k=0
But because f(X)¢ = 0 for all k, we have that f(z) = 0 for all z € D(¢, r), as desired.

(Problem 2020) E is clearly open. Complete the proof of Corollaries 3.6.2 and 3.6.5 by showing that F is
relatively closed in Q and then drawing appropriate conclusions if Q is connected.

Let {z,}°, C F C Q and suppose that z, — z for some z € Q.

If k € Ny, then f(k)(z,,) = 0 for all n because z, € E. But each f(¥) is continuous on Q by Theorem 3.1.1
(Problem , and so we must have that f(¥)(z) = 0 because z, — z and f(¥)(z,) — 0. Thus z € F.

We have showed that E is open in C (and therefore relatively open in Q) and equals F, which relatively
closed in Q. By definition of connected set, we must have that either E = F = Q or E = F = (). Recalling
the definitions of E and F completes the proof of both corollaries.



Theorem 3.6.1. Let Q C C be open and connected and let f : Q — C be holomorphic.
Suppose that there is a sequence {z,}%°, such that
e z,€Qforall neN,
e f(z,)=0forall neN,
e The sequence {z,}%2, is convergent,
e zg=Ilim,00 zp isin Q,
® zy # z, for all n > 1.
Then f(z) =0 for all z € Q.

(Problem 2030) Prove Theorem 3.6.1. You may use Corollary 3.6.2.

Let r > 0 be such that D(zp, r) C Q; r must exist because Q is open. By Theorem 3.3.1, there are
constants a such that if z € D(z, r), then 372, ax(z — z9)* converges absolutely to f(z).

We claim that ax = 0 for all k; this immediately implies that f = 0 in D(z, r), and so by Corollary 3.6.2
we have that f =0 in Q.

We have that, if m > 0 is an integer, then 37 ax(z — z0)* also converges absolutely. Define f,, :
D(zy,r) — C by

fm(z) = Z ax(z — zo)k.
k=m

We observe that for any fixed z € D(zp, r), limm_oo fm(z) = 0.

If z = z then the series 3 3 ax(z — 20)*~™ converges trivially. If z € D(zo, r) \{zo}, then (z —zp)™™
is independent of k, and so if 372 ax(z — z0)* converges absolutely then so does 377 [ak(z — 20)¥](z —
2)"™ =Y 2 a(z — z)k"™. We define hy, : D(z0,r) — C by hm(z) = Y 5, ak(z — z0)~™. By
Lemma 3.2.10 (Problem , each hy, is holomorphic and therefore continuous in D(zy, r). Furthermore,
if z € D(zo, r) then limp_,00 hm(z) = 0.

We have that f(z) = fy(z) = (z — 20)%ho(z) for all z € D(z, r) (with the convention 0° = 1 usual in
power series).

Suppose that we have established that f(z) = fn(z) = (z — z0)™hm(z) for some fixed integer m
and all z € D(z,r). Then ap = hp(z0) = limp—e0 hm(zn) because hp, is continuous. But hpn(z,) =
f(z2)/(za — 20)™ = 0 and s0 apm, = 0. Thus f(2) = fr(2) = fmi1(2) = (z — 20)™"  hmi1(2) and ap = 0.
By induction we have that f(z) = fn(2) = finy1(z) = (z — 20)™ Y hmy1(2) and a,, = 0 for all m € Z, and
so as noted above the conclusion follows from Corollary 3.6.2.

(Problem 2040) Give an example of a function f holomorphic in C \ {0} and a sequence of points z, € C\ {0}
with z, — 0 and with f(z,) = 0 but where f(z) # 0 for some z € C\ {0}.

Let f(z) = sin(1/z) and let z, = -1.. Then z, — 0 and f(z,) =0 for all n € N, but f(z) # 0 for many
values of z.

[Definition: Accumulation point] Let S C C. Suppose that P € C and that, for every r > 0, there is a
z € D(P,r)N S with z # P. Then we say that P is an accumulation point for S.

(Problem 2041) Rewrite Theorem 3.6.1 in terms of accumulation points rather than sequences and prove your
version.

Theorem. (Let Q C C be open and connected and let f : Q — C be holomorphic) Let Z = {z € Q :
f(z) = 0}. If Z has an accumulation point that lies in €, then f(z) = 0 for all z € Q.

(Problem 2050) Let Q be a connected open set and let £ : Q — C be holomorphic and not constant. Let P € Q.
Show that there is a r > 0 with D(P, r) C Q and such that f # 0 on D(P,r) \ {P}.

Corollary 3.6.3. Suppose that f and g are holomorphic in a connected open set Q. If {z € Q : f(z) = g(2)}
has an accumulation point in €, then f(z) = g(z) for all z € Q.

(Problem 2060) Prove Corollary 3.6.3.



Let h(z) = f(z) — g(z). Then h is holomorphic in Q and {z € Q : f(z) = g(z)} = {z € Q: h(z) = 0}.
Thus {z € Q: h(z) = 0} has an accumulation point. By Problem[2041) h=0in Q, and so f = g in Q.

(Problem 2070) Let Q C C\ {0} be open and connected and contain a positive real. Show that there is at most
one function f : Q — C such that f(x) = Inx for all x € (0,00) N Q.

Corollary 3.6.4. Suppose that f and g are holomorphic in a connected open set Q. If fg = 0 everywhere in ,
then either f =0 or g =0 in Q.

(Problem 2080) Prove Corollary 3.6.4.

Suppose f # 0. Then there is a ¢ € Q such that f(¢) # 0. By continuity, there is a r > 0 such that
f#0in D(¢, r), and so we must have that g =0 in D(¢, r). The result follows from Corollary 3.6.2.

[Chapter 3, Problem 42] Let f be holomorphic in the connected open set Q and let K C Q be compact. Show
that if f has infinitely many zeroes in K then f =0 in €.

4.1. THE BEHAVIOR OF A HOLOMORPHIC FUNCTION NEAR AN ISOLATED SINGULARITY

[Definition: Isolated singularity] If Q C C is open and P € C, and if f is a function defined and holomorphic
in Q\ {P}, then we say that f has an isolated singularity at P.

[Definition: Removable singularity] If f has an isolated singularity at P and if f is defined and bounded on
D(P, r)\ {P} for some r > 0, then we say that f has a removable singularity at P.

Theorem 4.1.1. [The Riemann removable singularities theorem.] Suppose that f has a removable singularity
at P. Then lim,_,p f(z) exists (and is a finite complex number), and the function

= f Q\{P
[ zeQ\{P},
lim,,pf(z), z=P
is holomorphic on .
(Observe that if the limit exists, then f is continuous on € and holomorphic on Q \ {P}, so the fact that f is

holomorphic is simply Problem [1490] )

[Chapter 4, Problem 8a] Suppose that P € Q C C for some open set . Suppose that f : Q\ {P} — C is
holomorphic and that lim,_,p(z — P)f(z) = 0. Then lim,_,p f(z) exists.

(Problem 2090)

(a) Give an example of a C* function f : R\ {0} — R that is bounded but such that lims_,o+ f(x) and
lim,_,o- f(x) do not exist.

(b) Give an example of a C* function f : R\ {0} — R such that f and f’ are both bounded but such that
limyx_0 f(x) does not exist.

(a) Let f(x) = sin(1/x). Then f is C* on (0,00) and (—o0,0) but has no limits (even one-sided limits)
at 0.

(b) Let f(x) =sgn(x) (thatis, f(x) =1if x > 1and f(x) =0 if x <0). Then f is bounded and f' =0 is
bounded but limy_, f(x) does not exist.

[Definition: Pole] If f has an isolated singularity at P, and if lim,_,p |f(2)| = oo, then we say that f has a pole
at P.

(Problem 2100) Suppose that Q is an open set, P € Q, g : Q — C is holomorphic, g(P) =0, and g # 0 on
Q\ {P}. Show that f(z) =1/g(z) is holomorphic on Q\ {P} and that lim,_,p |f(z)| = .

(Problem 2110) Suppose that P € Q C C for some open set Q. Suppose that f : Q\ {P} — C is holomorphic
and that lim,_,p |f(2)] = 00. Let W =Q\ {z € Q: f(z) = 0}. Observe that P € W. Show that W is open.

[Chapter 4, Problem 15a] Let f be as in the previous problem and let g : W \ {P} — C be given by
g(z) =1/f(z). Then g has a removable singularity at P and lim,_,p g(z) = 0.



[Definition: Essential singularity] If f has an isolated singularity at P, and if f has neither a pole nor a
removable singularity at P, then we say that f has an essential singularity at P.

(Problem 2111) State the precise N-§ negation of the statement “lim,_,p |f(z)| = 0.

If it is false that lim,_,p |f(2)| = oo (either the limit does not exists, or it exists but is finite), then there
exists a N € R such that for every § > 0 there is a z with 0 < |z — P| < § and such that |f(z)| < N.

(Problem 2120) Let f : C\ {0} — C be given by f(z) = exp(1/z). Let w € C with w # 0 and let r > 0. Show
that w = f(z) for some z € D(0, r) \ {0}.

Recall that there exist real numbers p and theta such that w = pe®. Furthermore p > 0 and we may
require 0 < 6 < 27.

Define zx by 1/zx = Inp+ i6 + 2kmi. Then f(zx) = w for all k € Z. But limy_,e |1/2k| = 00, and so
we may find a k such that |zx| < r.

(Problem 2130) Show that if r > 0 then supg. |, |exp(1/z)| = oo and info<|<,|exp(1/z)| = 0. Conclude
that lim,_,o | exp(1/z)| does not exist (even in the sense of infinite limits).

Theorem 4.1.4. Suppose that f has an essential singularity at P. Let r > 0 be such that D(P,r) C Q. Then
f(D(P,r)\ {P}) is dense in C.

(Problem 2140) Prove Theorem 4.1.4.

(Problem 2141) Show that if f has an isolated singularity at P and limsup,_,p |f(2)| # liminf,_,p |f(2)| then
f has an essential singularity at P.

(Problem 2142) Show that if f has an essential singularity at P then limsup,_,p |f(z)| = co and liminf,_p |f(2)| =
0.

(Problem 2150) Give an example of a C* function f : R\ {0} — R such that limsup,_,,|f(x)| = o and
liminfy_o |f(x)| = 0 but such that f(x) > 0 for all x € R.

An example of such a function is f(x) = (1 + sin(1/x)).

4.2. CONVERGENCE OF LAURENT SERIES

[Definition: Laurent series] A Laurent series is a formal expression of the form Y ;2 ax(z — P)k, where
P € C and each a, € C, with the convention that 0° = 1 and 0- 0¥ = 0 even if k < 0.

[Definition: Convergence of Laurent series] We say that the Laurent series 3 ;o ax(z — P)*

z if the two series 3y ak(z — P)* and 372, a_(z — P)~k both converge, and write

Z a(z — P)k = Z a(z — P)< + Z a_k(z—P)7k
k=0 k=1

k=—o00

converges at

Lemma 4.2.1. Suppose that the doubly infinite series 37> ax(z — P)* converges at z = wq and at z = w,
where 0 < |wy; — P| < |wa — P|. Then the series converges absolutely at z for all z such that |wy — P| < |[z—P| <
|W2 - P|

(Problem 2160) Prove Lemma 4.2.1.

(Problem 2170) Suppose that the doubly infinite series 3 ;> _ ax(z — P)* converges at z = w and diverges
at z =¢.

e If 0 < |w — P| < |¢ — P|, show that the series diverges at z for all z such that |{ — P| < |z — P|.

e If 0 < |¢ — P| < |w — P|, show that the series diverges at z for all z such that |z — P| < |{ — P|.



Lemma 4.2.2. Let 37> _ ax(z — P)* be a doubly infinite series that converges at z = w for at least one
w € C\ {P}. Then there are extended real numbers r and R with 0 < r < |w — P| < R < oo such that the
series converges absolutely if r < |z — P| < R and diverges if |z— P| < ror|z—P| > R.

Furthermore, if r < 7 < 0 < R then the series converges uniformly on D(P, o)\ D(P, 7).

(Problem 2180) Prove the existence of r and R in Lemma 4.2.2.

Let -
r= inf{|z —P|: Z ax(z — P)k converges}
k=—o0
and let -
R = sup{|z - P|: Z ax(z — P)* converges}.
k=—oc0

By the definition and properties of the infimum and supremum, we have that 0 < r < |w — P| < R < o0
because |w — P| € {|z—P| : 377 ax(z— P)* converges}. Furthermore, we have that the series diverges
atzif|z—P|<ror|z—P|>R.

It remains only to show that if r < |z — P| < R then the series converges absolutely at z. Choose some
such z. By definition of infimum and supremum, there exist wy; and ws such that the series converges at
both wy and w, and such that |wy — P| < |z — P| < |wa — P|. Absolute convergence at z then follows from
Lemma 4.2.1.

(Problem 2190) Establish the uniform convergence on D(P, o)\ D(P, ) in Lemma 4.2.2.

Let w; and w; satisfy r < |[wg — P| <o and 7 < |wo — P| < R. Then 3 32 _ ax(wi — P)* converges,
and so in particular 372 ax(ws — P)* converges. By |Proposition 3.2.9| we have that 3 72 ax(z — P)*
converges uniformly on D(P, o).

Similarly, Y72 akx(wo — P)* converges, and so in particular Z;::l oo k(w2 — P)

k converges. Thus

the power series Y °° a_n(ﬁ)" converges, and so Y - a_,{" converges uniformly to some g(¢) for
¢ € 5(0,%). That is, for every € > 0 there is a M > 0 such that if m > M and [{| < 1/7, then
g(¢) = > a-nl"| <& Thus, if m> M and [z — P| > 7, then ¢ = -1 satisfies [¢| < 1/7 and so
18(¢) — XL ak(z — P)K| < &. Thus the series ¥ ,*___ ax(z — P)* converges uniformly on {z € C :
|z—P|>71}=C\ D(P,T1).

Thus both series converge uniformly on D(P, o)\ D(P, ), and so their sum converges uniformly in this
region, as desired.

(Problem 2200) Let f(z) =Y ° _ aj(z— P). Show that f is holomorphic on D(P, R) \ D(P, r), where r and
R are as inlLemma 4.2.2

If r = R or if the series converges nowhere then there is nothing to prove. Otherwise, let fy(z) =
ZJ.N:_N aj(z— P). Then each fy is holomorphic and fy — f uniformly on all compact subsets of D(P, R)\

D(P,r). By|[Theorem 3.5.1 f must also be holomorphic.

(Problem 2210) Give examples of Laurent series for which:

e r=1and R=2.

e r=0, R=1, and a; # 0 for infinitely many values of j < 0.

e r=1and R = oo and a; # 0 for infinitely many values of j > 0.

e r =0and R = oo and a; # 0 for infinitely many values of j > 0 and also for infinitely many values of
J<O0.

e One such seriesis 3 , = zK+ 3 2 Sz,
. . —1
e One such seriesis 3 , = ﬁzk +Y 0,z

e One such seriesis » ,~ zk+ Yo %Zk-



e One such seriesis 3 ;2 z*.

Proposition 4.2.4. Let Zj'i_oo aj(z — Py and Zﬁ_w bj(z — P) be doubly infinite series that both converge
to the same value if r < |z — P| < R, for some 0 < r < R < co. Then aj = b; for all j.

iProbIem 2220) Suppose f is holomorphic in D(P, R) and that 0 < 7 < R. By Problem [1760| and [Proposition
3.2.11

there is a unique sequence of complex numbers {a,}2°; such that f(z) = Y 7, ak(z — P)¥ for all
z € D(P, R). Combine [Theorem 3.3.1| with [Theorem 3.1.1| to find a formula for ax in terms of an integral over
OD(P, ).

By [Theorem 3.3.1} we have that if z € D(P, R) then

= f(P
flz)=)_ k(! )z~ P~
k=0
By we have that
3 ()

(k) _ _ )
)= 27i Jappry (¢ — P)k“dc

_ (P _ 1 f($)
R B g T PR

Thus we must have that

(Problem 2230) Let 372 ax(z — P)* be a doubly infinite series that converges to f(z) if r < |z— P| < R,
forsome 0 <r < R < o0. Let r <7 < R. Compute

1 f(<)

— > ge
2mi Jappry (¢ — P)"H
for any n € Z. Then prove Proposition 4.2.4.
Observe that
1 f(¢) 1 ?[ 1 = p 1 - k—n-1
L de= ale-P)de= 5 ¢ a(¢—P) " d
2mi Joppry (¢ — P)H 27i Jopipry (¢ — P)H k:z—oo K ) 27i Jap(pr) k:Z_OO K )

by definition of . By |Lemma 4.2.2] the series converges uniformly on the compact set 0D(P, 7). Because
W is bounded on dD(P, T), we have that Y > ax({ — P)*~"~! also converges uniformly, and so

by Memory |[1610| we have that

1 f(C) — 1 k—n—1
———d{= A —— ¢-P) d¢.
kz Ko

27 Jop(pry (C = P)™1 aD(P7)

Using the parameterization y(t) = P 4 Tet, 0 < t < 27, of OD(P, T), we compute

1 k—n—1 Thon 2 it(k—n)
— (—P —-n= d¢ = / e\ T dt
2mi BD(P,T)( ) 21 Jo

which equals one if kK = n and equals zero otherwise, so
1 f($)
— —=——d{ = a,.
27i Jappry (¢ — P)™1 !

Similarly, we have that

ks O 4oy

27i Joppry ({ — P)"H
and so b, = a, for all n.



4.3, EXISTENCE OF LAURENT EXPANSIONS

Theorem 4.3.2. Let 0 < r < R < 0o and let Q = D(P,R)\ D(P, r) for some P € C. (We take D(P,00) = C.)
Suppose that f : Q — C is holomorphic. Then there exist constants ax such that the series

o]

Z ak(z — P)k

k=—o00

converges absolutely to f(z) for all z € Q. o
Furthermore, if r < o < 7 < R then the series converges uniformly on D(P,7)\ D(P, o).

Theorem 4.3.1. Let f, r, R be as in Theorem 4.3.2. If r < 0 < |z— P| < T < R, then

_ 1 fQ) . 1 Q)
fle) = 2mi ?iD(P,T) ¢—z % 2mi ]gD(P,a) (—z .

(Problem 2240) Let f, r, R, o, T, and z be as in Theorem 4.3.1. We will use Theorem 4.3.1 to prove
Theorem 4.3.2 (so you may not use Theorem 4.3.2). Begin the proof of Theorem 4.3.1 by computing

L f2) 4o L f LGNS
2mi Joppry ¢ — 2 27i Jap(po) ¢ — 2

Because z is outside D(P o), we have that 3§6D(PU -~ d{ = 0 by|Theorem 2.4. 3l Because z € D(P, 1),
we have that SEaD (Pr) =2 d¢ = 27i by the special case of the Cauchy integral formula (Lemma 2.4.1)). Thus

1 f(z) 1 f(z)
el d¢ — — d¢=f
27i Jap(o,r) € — 2 ¢ 27 jéDoO—)C ¢=1)

(Problem 2250) Let r < 0 < |z — P| < 7 < R. Complete the proof of Theorem 4.3.1 by computing
R T (& P N S O T
27i Jap(p,r) (—z 27i Jop(P,o) (—z

Let g(¢) = L if ¢ # z and let g(z) = f'(z). Then lim¢_,, g(¢) = g(z) € C and g is holomorphic

—Z

on Q\ {z}, so by [Theorem 4.1.1}/Problem [1490] g is holomorphic on Q. Thus

roor® ™ oo
OD(P,o) OD(P,T)

1 fO=F2) g L D=1 4o o,

2mi Joppry C—Z 2mi Joppoy C—Z

by Problem so

(Problem 2260) Let f, r, R be as in Theorem 4.3.2. We seek to show that f may be represented by a Laurent
series. By Problem [2230} the only possible Laurent series is 3 7> ax(z — P)k, where
1 f(<)

= — ——d
2mi aD(P,T) (& P)kJrl ¢

for any 7 € (r, R). Begin the proof of Theorem 4.3.2 by showing that the sum Y 2 _ ax(z — P)¥ converges
absolutely for all z € Q. (By Problem [2190} this means that the series converges uniformly on compact subsets
of Q.) Hint: Let r < o < |z— P| <7 < R and find upper bounds on ax in terms of M. = supsp(p ) |f| and

Mo = supsp(pq) If]-
(Problem 2270) Continue the proof of Theorem 4.3.2 by showing that, if r < o < |z — P| < T < R, then

> a(z-P)=— L ) de.

=0 2mi Joppry ¢ — 2




Define

Z ax(z — h(z) = i fe) d¢.

2mi Joppry € — 2

By the previous problem and [Lemma 3.2.10] m g is holomorphic in D(P, ), while by W [Theorem 3.1.3| and

because holomorphic functions are continuous, we have that h is also hoIomorph|c in D(P, T).
Furthermore, by our generalization of we have that if n > 0 is an integer then

nl (<)

(N () — _ &)
e 2mi Jop(pry ({ —2)™*1 v
while by [Cemma 3210
(o)
= Z ak(z — P)k n
k:n
In particular,
n! (<)

WP) = 2t By (€ Pyt 960 €72 = mlan

By definition of a,, we have that g("(P) — h(")(P) = 0 for all n > 0, and so by |Corollary 3.6.5, g = h
everywhere in D(P, 7).

(Problem 2280) Complete the proof of Theorem 4.3.2.

We need only show that if r < o < |z — P| < T < R, then
-1

> alz-P)k= _— o) d¢.

2mi Jop(po) ¢ — 2

k=—o00
Recall a = 27” faD(Pa) = P —fO__d¢. Then

- 21 f(¢
Z aulz — PY< = Ew L 72 o Py _(Pikﬂ de(z — P)-.

k=—o00

Let M = sup;_p|—, |f(¢)]; because f is continuous on Q2 and dD(P, o) C § is compact, M is finite. Then
k
‘ f($) k §M01<Z_P>
o

Py
forall ¢ € dD(P,0), and 3} . Mo1 2=l converges b -P PR (9 My P
,0), K00 - ges because [z—P| > 0,50 ,~ Py (z

P)* converges uniformly in . Thus

—P)

—1 —1
1 f($) K
ak(z—P)k:—_y{ >l __(z - P)<d¢.
k;)o 271 Jap(po) k:Z_OO (¢ — Pkt
Applying the formula for the sum of a geometric series, we see that
—1

S oo P =g f L O ( ) e

e 8D(P,c)
1
" omi 6D(Pa P§<Z )
- = Q) — d¢
270 Jap(po) Z—Pl—(C—P)/(Z—P)
RN

2mi Jop(po) 2 — ¢
as desired.



4.3. THE LAURENT SERIES NEAR AN ISOLATED SINGULARITY

Proposition 4.3.3. Suppose that f is holomorphic in the punctured disc Q = D(P, R) \ {P} for some P € C
and some 0 < R < 0o. Then f has a unique Laurent series
(e 9)
fz)= > alz—P)
k=—o00

which converges absolutely to f(z) for all z € D(P, R)\ {P}. The convergence is uniform on compact subsets of
D(P, R) \ {P}. The coefficients are given by

1 f($)

21 Jop(poy (¢ — P)FH

d¢

ak

forany 0 < o < R.
(Problem 2290) Suppose that f has a removable singularity at P. Show that a;, = 0 for all k < 0.

By the Riemann removable singularities theorem (Theorem 4.1.1f) there is a function Fholomorphic in
D(P, R) with f(z) = f(z) for all z € D(P, R)\ {P}. Because f is holomorphic, there are constants by such
that f(z) = 3 ;2 bu(z— P)* for all z € D(P,R). Thus f(z) = Y 3, bk(z— P)* for all z € D(P, R)\{P}.

By uniqueness of Laurent series (Proposition 4.2.4)), ax = by for all k > 0 and ax = 0 for all kK < 0.

(Problem 2300) Suppose that ax = 0 for all k < 0. Show that f has a removable singularity at P.

We have that f(z) = 3 32 ax(z — P) for all z € D(P, R)\ {P} and the series converges for all such z.
By the radius of convergence of the power series is at least R. Thus, by the
series converges to a function # holomorphic in D(P, R). In particular, f is bounded on D(P,R/2), and so
f must also be bounded on D(P, R/2).

[Definition: Order of a zero] Suppose that f is holomorphic in D(P, r) for some r > 0 and f(P) = 0. Then
f(z) = Y 2o ak(z — P)* for all z € D(P, r). The order of the zero of f at P is the smallest n such that a, # 0;
note that the order is at least 1.

[Chapter 4, Problem 15b] Suppose that f is holomorphic in D(P, R) \ {P} and that f has a pole at P. Then
1/f is holomorphic in D(P,r) \ {P} for some r > 0, has a removable singularity at P, and the holomorphic
extension g of 1/f to D(P, r) satisfies g(P) = 0. Let n be the order of the zero of g at P. Then (z — P)"f(2)
has a removable singularity at P.

(Problem 2310) Suppose that f has a pole at P. Show that there is some N > 0 such that a_y # 0 and such
that ax = 0 for all k < —N.

By |Proposition 4.3.3] f has a Laurent series in D(P, r) \ {P}, so

flz)= Y alz—P)*

k=—o00

for all z € D(P,r)\ {P}.
Let n be as in Problem 4.15b. Then

(z—P)'f(z) = Z a(z — P)<tn = Z ap_n(z — P)*
k=—o0 {=—o0
has a removable singularity at P, and so by Problem we must have that a;_, = 0 for all £ < 0, that
is, ax = 0 for all k < —n.
Conversely, f does not have a removable singularity at P, and so by the contrapositive to Problem 2300}
there is at least one m < 0 such that a,, #0. Thus {m € Z : a,, # 0, m < 0} is nonempty and bounded
below. Letting N = min{m € Z : a,, # 0, m < 0} completes the proof.



[Chapter 4, Problem 15c] Suppose that f is holomorphic in D(P, R)\{P}, that f is not bounded in D(P, R/2)\
{P}, and that there is a m € N such that the function g given by g(z) = (z— P)™f(z) is bounded in D(P, R/2).
Show that f has a pole at P.

(Problem 2320) Suppose that there is some N > 0 such that a_p # 0 and such that a, = 0 for all k < —N.
Show that f has a pole at P.

We may write
o0

f(z) = Z ax(z — P)k
k=—N
for all z € D(P, R) \ {P}. Because a_y # 0, f does not have a removable singularity, and so f cannot be
bounded in D(P, R/2)\ {P}.
Then

o0
(z=P)Vf(2)= D> alz= PN =) a n(z—P)
k=—N =0
for all z € D(P, R) \ {P} and the series converges in that region. Thus the power series > 7o, ax(z —
PN =5, o a—n(z — P)* must yield a function holomorphic in D(P, R), and in particular bounded in
the compact set D(P, R/2). The result follows from Problem 4.15¢c.

[Definition: Order of a pole] Suppose that f has a pole at P. Then there is some N > 0 such that a_y # 0
and such that f(z) = Y ;o ak(z — P)¥ for all z in a punctured neighborhood of P (that is, for all z in in
D(P, r)\ {P} for some r > 0). We call N the order of the pole at P. If N = 1 we say that f has a simple pole
at P.

[Definition: Pole/zero of nonpositive order] If you write “pole of order 0", I will assume that you mean
“removable singularity”. If you write “zero of order 0 at P", I will assume that you mean "holomorphic near P
and nonzero at P.” If you write “zero/pole of order —n", for n € N, I will assume that you mean a pole/zero of
order n (possibly after the additional step of applying the Riemann removable singularities theorem).

(Problem 2330) Show that f has an essential singularity at P if and only if, for all N > 0, there is a k € Z with
k < —N such that a, # 0.

Suppose that f has an isolated singularity at P. Then f has an essential singularity if and only if it does
not have either a pole or removable singularity. By the previous four problems, f has an essential singularity
if and only if both of the following conditions are false:

e g, =0 forall k<0,

e The previous statement is false, but there is a N € N such that if kK < —N then a;, = 0.

Thus, f has a pole or removable singularity if and only if there is a N € N such that if k < —N then a, =0
(with a pole if ax # 0 for some —N < k < 0 and a removable singularity otherwise). The negation of this
statement is precisely the condition given in the problem statement.

4.4, EXAMPLES OF LAURENT EXPANSIONS

(Problem 2340) Suppose that f has a zero of order k at P. Show that —5f(z) has a removable singularity

(z—P)k
at P and that its limit at P is not zero.

(Problem 2350) Suppose that f has a pole of order n at P. Show that (z — P)"f(z) has a removable singularity
at P and that its limit at P is not zero.

By [Proposition 4.3.3|and definition of order, we have that if f is holomorphic in D(P, R)\ {P} then there
are coefficients a, such that if z € D(P, R) \ {P} then

(oo}

f(z) =Y a(z—P)

k=—n




and that a_, # 0. Then g(z) = (z — P)"f(z) has an isolated singularity at P because f(z), (z — P)" are
holomorphic in D(P, R) \ {P}, and so g must also have a Laurent series. It is

g(z) = Z ax(z — P)k+” = Z ag_n(z — P)‘Z
£=0

k=—n

which converges in D(P, R) \ {P}. Thus by Problem [2300] g has a removable singularity at P. By [Lemma |

3.2.10} the power series converges to a function holomorphic (thus continuous) on D(P, R), and in particular
satisfies

lim g(z) =a_, #0
z—P
as desired.

We observe that the same argument works if n =0 or n < 0 under the convention that a zero is a pole
of negative order and a removable singularity with nonzero limit is a pole of order 0.

(Problem 2360) Suppose that f is holomorphic in D(P, r)\{P} and that (z— P)*f(z) has a removable singularity
at P for k € N. Show that either f has a removable singularity at P or f has a pole of order at most k at P. If
in addition lim,_,p(z — P)kf(z) # 0 then f has a pole of order exactly k.

We may write f(z) =Y 02 a,(z—P)"in D(P,r)\{P}. Then (z—P)*f(z2) =Y am—«(z—P)™.
Because this function has a removable singularity, we have by Problem [2290] that an_x = 0 for all m < 0;
thus, a, =0 if n < —k.

Thus f(z) = 32, an(z — P)" in D(P,r) \ {P}, and so either a, = 0 for all n < 0 and so f has a
removable singularity at P by Problem [2300] or there is an m with 1 < m < k such that a_,, # 0 and
a, =0 if n < —m, and so by Problem [2320] and the definition of order f has a pole of order m < k.

Furthermore, lim,_p(z — P)*f(z) = a_k, and so if lim,_p(z — P)*f(z) # 0, then a_x # 0 and so f
has a pole of order exactly k.

[Chapter 4, Problem 29] Suppose that f has a pole of order n > 0 at P. Let k > —n be an integer. Let the
Laurent series for f in a punctured neighborhood of P be Y 2 ax(z — P)*. Show that

—n

. 1 ) n+k .
oy — Jgpw(az) ((z - PY'F(2).

(Bonus Problem 2361) Suppose that f is holomorphic in D(P, r) \ {P} for some P € C, r > 0, and that

L+k
ioila) (P

has a removable singularity at z = P for some integers k and £ with k + £ > 0. Show that f has a removable
singularity or pole of order at most £ at P and that

L+k
2= 'L“M(f) (2 - PY7(2)).

(Problem 2370) Suppose that f is holomorphic in D(P, r)\{P} and that (z— P)*f(z) has a removable singularity
at P for some £ > 0. Let f(z) =Y 2 ax(z— P)<in D(P,r)\ {P}. Show that

k—1
o0 = lm (=PI~ 3 ane P
If z € D(P, r) \ {P} then



By Problem 2290] we have that ap,—¢ = 0 for all m < 0, that is, a, = 0 for all n < —¢£. Thus

f(z) = Z an(z = P)".
n=—{
We compute
k—1 0o
(z—P)*kf(z)_ Z an(z—P)”fk:ZanZ— Zam+k z_ P
n=—{ n=k

The series converges for such z and so by the radius of convergence is at least r; thus, the
series converges to a holomorphic (thus continuous) function on D(P, r). In particular,

i (2= PY#7(2) = 3 anle — PY'™) = lim S amiilz — )" = a4
n=—{ m=0

as desired.

[Definition: Principal part] The principal part of the Laurent series 3 ;> ax(z— P)k is Z;:l_oo ak(z — P)k.
(Problem 2380) Let 7(z) = z/(z — 1). Find the Laurent series for f about z =1 by direct computation.
(Problem 2390) Find the Laurent series for f(z) = z/(z — 1) at P =1 by using Problem 4.29.

lim,_1(z —1)f(z) =1, and so f has a pole at 1 of order 1. Thus

() ©

Thus a_; = éz|z:1 =1 a = %%z =1, and ax = 0 for any k > 0 because (%)Hk(z) = 0. Thus

e — 14

Problem 2400) Find the Laurent series for f(z) = ~% at P = 2.
(z=2)

lim,_,2(z — 2)?f(z) = € exists and is not zero, so f must have a pole of order 2 at 2. Thus

1 5\ 2tk ] 2
2= R <62> (e )_(2+k)

f2)=S_ ﬁ(z —o)n.

Thus

(Problem 2410) Find the principal part of the Laurent series for f(z) = W at P =3.

(Problem 2420) Find the principal part of the Laurent series for f(z) = - at z=0.

sin z has an isolated zero at 0 and e® is continuous and nonzero at 0, and so I|mz_,0| } = 00. Thus
f has a pole at 0. Therefore, by Problems [2310] [2300] and [2320] zf(z) has either a pole or a removable
singularity at 0.

X

=1

lim x—
x—=0  sIn X
x€R

by I'Hépital’s rule in the real numbers. Therefore lim,_,q |zf(z)| # oo and so zf(z) does not have a pole at 0.

It must have a removable singularity and satisfy lim,_,q zf(z) = Imialg xf(x) = 1. So by Problem [2360|

has a pole of order 1 at 0, and by Problem 4.29 a_; = 1. Thus the principal part of the Laurent series is %



4.5. REAL ANALYSIS

(Memory 2430) Let (X, d) be a metric space and let Y C X be a closed subset. Suppose that F C Y is relatively
closed, that is, closed in (Y, d). Show that F is also closed in (X, d).
(Memory 2440) Let (X, d) be a metric space and let Y C X be an open subset. Suppose that G C Y is relatively
open, that is, open in (Y, d). Show that G is also open in (X, d).

4.5. THE INDEX OF A CURVE AROUND A POINT

(Problem 2450) Let r : [0,1] — (0,00) and 8 : [0,1] — R be two C! functions. Let 9(t) = r(t)e”®®). Show
that 9'(¢) = Im(9/'(¢)/9(t)) and r'(t)/r(t) = Re(¢'(t)/4(t))-
(Problem 2460) Suppose that 9 is a closed curve. What can you say about r(0), r(1), 6(0), and 6(1)? What
is the geometrical significance of the number 5-(6(1) — 6(0))?

We have that 9(0) = (1), so r(0) = |¢(0)| = |4(1)| = r(1) and 6(0) = 6(1) + 2n7 for some n € Z.
The number n denotes the number of times the curve wraps around the origin counterclockwise.

(Problem 2470) Suppose that 1 is a closed curve. Show that

1 d¢
200 —00) = 5 %

We call this number the index of ¥ with respect to 0, or the winding number of ¢ about 0.
We compute that
L 60)-0(0) = = /19’(t)dt
2T - 2 0
1 1 /
= — Im v'(t) dt

- 2m o P(t)
and
O:%(Inr(l)—lnr 2171_ t
1
Thus,
1 1Y)
5O —00) = - [ Y ae
1 1
“amife dc.

(Lemma 2471) Suppose « : [0,1] — C\ {0} is a C! curve. Then there exist two C! functions r : [0,1] — (0, o)
and 6 : [0, 1] — R such that y(t) = r(t)e®® for all t € [0,1].

(Problem 2480) Begin the proof of Lemma by letting r(t) = |y(t)| and showing that r is a C! function.

(In particular, show that r((t)) =Re 'Z,/((:))')

We have that

r(t) = V/(Rey(1)2 + (Im (1))
Furthermore, Rey and Im< are real-valued C! functions. Because «(t) # O for all t, we have that the
function R(t) = (Rev(t))? + (Im~(t))? maps [0, 1] to (0, 00) and is C*.



The function h(t) = 4/t is C* (in fact, C*°) on (0, o), and so by the chain rule, r is C'. Furthermore,

again by the chain rule
(Rey(t))(Re'(t)) + (Im~y(2))(Am ()

" VRN + (I (0))
Conversely,
() _ (Rey'(t)) +i(Imv'(t)) _ (Re'(t) +iIm+'(t))(Rey(t) — iIm~(t))
v(t)  (Rey(t)) + i(Im~(t)) [y(t)[?
_ Re/(t) Rey(t) +Im«/(t) Im~(t) ,,Imfy’(t) Rev(t) — Revy'(t) Im~(t)
ly(t)? ly(t)?
and so 20 — B _ Re Y1) g desired.

r(t) ()l y(t) !

(Problem 2490) Show that there exists a C* function 6 : [0,1] — R such that y(t) = r(t)e™®®) for all t, where
r(t) = |y(t)| as in the previous problem. Hint: There is a 6y € R such that y(0) = r(0)e’®. What do you think
0'(t) ought to equal?
Lemma 4.5.5. Let v be a C! closed curve and let P € C\ 4. Then
1 1

— ¢ ——d

2ni J, (=P ¢
is an integer.
(Problem 2500) Prove Lemma 4.5.5.

Definition 4.5.4. We define Ind,y(P) = % » GLP d{; this is the index of <y with respect to P, or the winding
number of «y about P.

[Definition: Simply connected] A connected open set Q C C is simply connected if, whenever v : [0,1] — Q
is a closed curve, we have that -y is homotopic to a point (that is, to some constant function 7, : [0, 1] — C).

(Problem 2510) Suppose that Q is simply connected, v : [0, 1] — Q is a C! closed curve, and P € C\ 7 satisfies
Indy(P) # 0. Show that P € Q.

Suppose that P ¢ Q. Then f(¢) = 1/({—P) is holomorphic in Q, and so § C*LP d¢ = 0 by Problem
Taking the contrapositive, if Ind,(P) # 0 then P € Q.

(Problem 2520) Let 7y : [0,1] — C be a C! closed curve. Show that Ind., is a continuous function on C \ .

Pick P € C\ 4 and € > 0. Because 7 is closed, there is an r > 0 such that D(P,r) C C\ 4.
Let § = min (r/z, rme ) If w € D(P,6), then w € D(P, r/2) C D(P,r) C C\ 7 and

£(v)+1
1 1 1
— - d
27ri7,{z—P zZ—w z

N et

T or

[Indy(w) — Ind,(P)| =

By [Proposition 2.1.8|

1 w—P
~—4(v) sup | |

27 ze5 |z — Pllz —wl|’

By assumption |w — P| < § <. If z € 4 then z ¢ D(P, r) and so |z — P| > r. By the triangle inequality
lw—2z| > |w—P|—r>r/2. Thus

[Ind,(w) —Ind,(P)| <

1 2

as desired.



(Problem 2530) Show that Ind,, is constant on every connected component of C \ 4.

Let Q be such a connected component. Let z € Q, n = Ind,(z). Let f =1Ind, |,.
If w e Qand f(w) € D(n,1/2), then because f(w) is a (real) integer we must have that f(w) = n.

Thus

F({n}) = F71(D(n,1/2)).
But {n} is a closed set and D(n, 1/2) is an open set, and so f~({n}) = f~1(D(n,1/2)) must be both
relatively open and relatively closed in Q. By definition of connected set, this implies that Q = f~1({n})
and so f = n (and in particular is constant) on all of €.

(Problem 2540) Suppose that 1 and -y, are homotopic closed curves in C\{P}. Show that Ind.,, (P) = Ind.,(P).

The function f(¢) = 15 is holomorphic in C\ {P}. Thus Ind,,(P) = 5L § A = i.fﬁy A =

= b
Ind,,(P) by Problem

(Problem 2550) Show that if ¥ = OD(P,r) is a circle traversed once counterclockwise, then Ind,(z) = 1 if
z € D(P,r) and Ind,(z) =0 if z ¢ D(P, r).

The case z € D(P, r) follows immediately from the Cauchy integral formula (Theorem 2.4.2).

If z ¢ D(P,r), then f(¢) = &1 is holomorphic in D(P,|¢ — P|) D D(P, r), and so the result follows

from the Cauchy integral theorem ({Theorem 2.4.3).

(Bonus Problem 2560) Let t € (0,1) be such that 4/(t) # 0. Let r > 0 be such that if z € D(v(t), r) then
z = «(s) for at most one s € [0,1]. Show that there is some s > 0 such that, if 7 € R and |7| < s, then

V(t) +iTy'(t) € 7.
(Bonus Problem 2570) Show that for such 7 we have that Ind,(y(t) + iTy/(t)) = Ind,(y(t) — iTy/(t)) + 1.

4.5. THE CALCULUS OF RESIDUES

[Definition: Simply connected open set] An open set Q C C is simply connected if every closed curve
v :[0,1] — Q is homotopic to a point (that is, to a constant curve).

[Definition: Residue] If Q C C is open, P € Q, and f : Q\ {P} — C is holomorphic, then Res¢(P) is defined
to be the coefficient of (z — P)~! in the Laurent expansion of f about P.

Theorem 4.5.3. Suppose that Q C C is open and simply connected, {Py, P>, ..., P,} C Q is a set of n distinct
points, v : [0,1] = Q\ {P., P, ..., P,} isa C! closed curve, and f : Q\ {P1, P, ..., P,} is holomorphic. Then

7{ f=2miY Rese(Ps)-Indy(Pe).
vy

k=1

(Memory 2580) By Problem [1450] Theorem 4.5.3 is true in the special case where n = 0, that is, where f is
holomorphic in all of €.

(Problem 2590) Prove Theorem 4.5.3 in the special case where n = 1 and where the Laurent series for f about
P = P; converges uniformly on 4.

Let r > 0 be such that D(P,r) C Q and let f(z) =Y 2 ax(z — P)* for all z € D(P,r).

By Problems W and m if k # —1 then the function (z — P)* has a holomorphic antiderivative in
C\ {P}, and so by |Proposition 2.1.6|, f,y(z — P)kdz =0.

By Problem [1610]

7{"(2)0’2:7{ S alz-Pldz= Y falz-P)dz

k=—00 k=—00 "

1
:a,lﬁz_sz
v




and the result follows by definition of Ind.,(P).

(Problem 2600) Suppose that Q C C is open, P € Q, and f : Q\ {P} — C is holomorphic. Show that the
principal part of the Laurent series for f at P converges absolutely for all z € C\ {P} to a function holomorphic

in C\ {P}.

Because Q2 is open, there is a r > 0 with D(P,r) C Q. By [Theorem 4.3.2] there is a Laurent se-
ries Y 5 ak(z — P)k that converges absolutely to f(z) for z € D(P,r) \ {P}. The principal part is

;ifoo ak(z — P)*; by definition of convergence of a doubly infinite series, it converges absolutely for
ze€ D(P, r)\{P}.

If |w| > 1/r, then the series converges at z = P + 1/w, and by reindexing we see that y ,°; a_,w?*
converges. Thus by Zil a_g¢t converges for all ¢ € C. Reindexing again we see that
Z;i_oo ak(z — P)¥ converges for all z € C\ {P}.

By Problem Z;i_oo ak(z — P)* is holomorphic in the interior of the annulus of convergence, that
is, in C\ {P}.

(Problem 2601) Suppose that h is holomorphic in D(P, r) and that g is holomorphic in D(P,r) \ {P}. If
f =g+ hin D(P,r)\ {P}, show that Ress(P) = Resg(P).

f is holomorphic in D(P, r) \ {P}. By [Theorem 3.3.1| and [Theorem 4.3.2| there are constants ax, b,
and ¢, such that

f(z) = Z a(z—P), g(z)= Z bi(z — P)%,  h(z) = Z ck(z — P)*
k=—o0 k=0 k=—o00
for all z € D(P,r)\ {P}. Define by = 0 for all k < 0; then g(z) =3 ;2 bx(z — P)* and so
Y alz—P)=f(z)=g(z) +h(z)= ) (b+cx)(z~P)
k=—o00 k=—o00

for all z € D(P,r) \ {P}. By [Proposition 4.2.4] we have that ay = by + cx for all k; in particular,
Resf(P) = a_1 = b_1 + c_1 = c_1 = Resy(P).

(Problem 2610) Prove Theorem 4.3.2.

By Memory [2580] the theorem is true if n = 0.

Because Q \ ({Pl,Pg,...,P,,} \ {Pk}) is open, for each 1 < k < n there is a r, > 0 such that
D(Pe.ri) € Q\ ({P1, Po,.... Pa} \ {P«}), that is, such that D(Px,r) \ {P«} € Q\{P1, P, ..., P}
Observe that f is holomorphic in D(Px, rk) \ {P«} for each k.

Suppose n > 1 and the theorem is true for n — 1. Then there are coefficients ajx such that

oo
f(z)= > aw(z— P,)* forall z€ D(P,,r,) \ {P}.

k=—o00

Let g(z) = Z;:lfoo ak(z — P,)¥; by Problem [2600, g is holomorphic on C \ {P,}, and by Problem [2590

%g = 27iInd,(P,) Resg(Pp).
~

Observe that Resg(P,) = a_1 = Res¢(Py).
Define h: Q\{P, ..., P,—1} — C by



We then have that h(z) = Y 3, ak(z— P)* and the series converges for all z € D(P,, r,), and so by
3.2.10} h is holomorphic in D(P,, r,), and thus in Q\ {Py,..., P,—1}. Thus by our induction hypothesis

n—1

]{ h=2miy Resy(Pi)Indy(Ps).
g k=1
Because P, ¢ 4 we have that f = g + h on 7, and so
n—1
f f= 27ri<z Resy(Py) Indy (Pe) + Resf(P,,)IndW(Pk)).
v k=1

The proof follows by Problem 2601}

4.6. APPLICATIONS OF THE CALcULUS OF RESIDUES TO THE CALCULATION OF DEFINITE INTEGRALS AND SUMS
(Memory 2620) By Problem 4.29, if f has a pole of order k at P, then
1 5\ <1
Rese(P) = 77— | a2 — P)<f
(P = oy (3s) (- PIFE)
In particular, if f has a simple pole at P, then

Resf(P) = lim (z — P)f(z).

z—P

z=P

[Chapter 3, Problem 22] L'Hépital’s rule is valid for quotients of meromorphic functions.

That is, let r > 0 and P € C. Suppose that f and g are both holomorphic in D(P, r) \ {P}, and that neither
f nor g has an essential singularity at P. Finally suppose that g is not a constant in D(P, r) \ {P}.

Then there is a o with 0 < p < r such that g(z) # 0 # g'(z) for all z € D(P, ) \ {P}. Furthermore, the
functions f/g and f'/g’, which are holomorphic in D(P, ¢) \ {P}, do not have essential singularities at P.

Finally, if f and g both have poles at P or if lim,_,p f(z) = 0 = lim,_,p g(z), then f/g has a pole at P if and
only if f'/g' has a pole at P, and if f'/g’ has a removable singularity then lim,_,p f(2)/g(z) = lim,_p f'(2)/g'(2).

(Problem 2630) Consider the integral [°°_ Xf; dx. Write down a family of closed C* curves yg and a function

f holomorphic in a neighborhood of 4 such that limg_, wa f= ffooo Xf; dx.
Then find [* X dx by finding wa f for all R large enough.

oo x2+4

(Problem 2640) Compute [ X dx. Hint: Recall that Re [ f(x) dx = [ Re f(x) dx.

—o00 x2+4

Let f(z) = Z?—L. Then f has two poles, at =4/, and both are of order one.

Let ¥ : [-R, R] — C be given by yr(t) = t. Let 8g : [0, 7] — C be given by 8g(t) = Ret. Then ¥r
and 0 are two C* curves with ¥r(R) = 6g(0), and so we can combine them using Problem [1050| to get a
C! curve yg : [-1,1] — C. Because yg(—1) = Yr(—R) = —R = Re'™ = 0r(7w) = yr(1), Y& is a closed
curve.

Here are the traces of the curves y¥r and 6 together with the singularities of f:

Or
[ ]
4i
YR R
—4i
[ )

If you would like to use the above picture on your homework, you may generate it with the following code:



\usepackage{tikz}

\begin{tikzpicture} [scale=0.3]

\begin{scope} [green!60!black]

\node at (0,4) {$\bullet$};

\node [below] at (0,4) {$4i$};

\node at (0,-4) {$\bullet$};

\node [above] at (0,-4) {$-4i$};

\end{scope}

\draw
(-3,0)-- node [below] {$\widetilde\psi_R$}
(3,0) node [below] {$R$}
arc (0:45:3) node [above right] {$\widetilde\theta_R$}
arc (45:90:3)
arc (90:180:3);

\end{tikzpicture}
Then
oo R R i
R X
/ X dx = Iim/ X dx = Iim/ S8 dx
oo X214 R—oo J_p x*+ 4 R—oo J_p x*+ 4
R eIX
= lim Re/ 27dX: lim Re]g f.
R—o00 _RX +4 R—o0 R
As before
1
f‘sewRﬁupf|sﬂR
7, 0 |f] < 7R g

and so limr_ o0 359 f=0.
By Problem f'm f= fGR f+ ﬁpR f, and so

oo
/ 2 dx = lim Rey( f.
oo X2+ 4 R—00 vr
But by [Theorem 4.5.3] if R > 2 then

f = 2mi Res(2i) Ind.y, (27) = 27i Resf(2i).

TR
We find
N . o (z—2i)emef e?
Res (27) = lim (z = 2)f(z) = Jim = = =M % = &
Thus

2 -2

o0 —
/ Czoldx:ReZW'e—_:e 71'_
Coo X° 14 4i 2




(Problem 2650) Compute f0°° % dx by finding an appropriate function f and closed contour yg s that satisfies
j;'ms f = 0. (This is the exercise immediately after Example 4.6.3 in your book; a verbatim presentation of

Example 4.6.3 will not be accepted.)

Let f(z) = <.
z
Define the curves p; to have the following traces, with the curve p given by Problem oriented
counterclockwise.

ivR pa R+ ivVR

Us w3

0¢€ H2 R
\usepackage{tikz}

\begin{tikzpicture}

\begin{scopel} [green!60!black]

\node at (0,0) {$\bullet$};

\node [below] at (0,0) {$0$};
\end{scope?}

\draw

(0.3,0) node [below] {$\varepsilon$}
-- node [below] {$\mu_28%}

(3,0) node [below] {$R$}

-- node [rightl]{ $\mu_3%$}

(3,2) node [above] {$R+i\sqrt{R}$}
-- node [above] {$\mu_4$}

(0,2) node [above] {$i\sqrt{R}$}

-- node [left] {$\mu_5$}

(0,0.3) node [left] {$i\varepsilon$}
arc (90:45:.3) node [above right] {$\mu_1$}
arc (45:1:0.3)

\end{tikzpicture}

Then 55“ f = 0 because f is holomorphic on C \ {0}.
By definition of line integral and Problem [L010} and parameterizing the reverse of u; by fi(t) = ge't,

we see that
/2 ) ) /2 i
f f= —/ f(ee't)iee' dt = —i/ e' e dt.
B 0 0

s it . .
Because e*¢" — 1, uniformly in t, as ¢ — 0", we have that

) K

lim 74 f= —/—2.
+

£—0 w1

By the definition of line integral and of integral of complex function, using the natural parameterization of

W2, we have that
o -
sin x . .
/ dx =Im lim lim 74 f.
0 X R— o0 e—0t U2




We compute

1 1
f’ £(u3) sup|f| VR == —,
ﬁa 3 R \/ﬁ
f o] <twpswin == 2
fl < 4(ua) sup f —_—
Ha Ha \/ﬁ

and so limg_, o fus f =limr_o oo 3§“4 f=0.
Finally, parameterizing the reverse of us by fis(t) = it,

R Reft
?{ f:—/ f(it)idt:—/ —idt
us € e It

is an entirely real integral, and so Im ﬁﬂs f=0.
Combining the above results, we have that

0= lim Ilim Im]{f

R—00 e—07*

7
= |im Im?{ f+ lim lim Imjl( f
e—0+ w R—00 e—0F wo
+ lim Im?! f+ lim Im?{ f+0
R— o0 R— o0

M3 1223

—E-F/Oo Sinxdx.
2 0 X
o -
/ smde:E.
0 X 2

(Problem 2660) Let n € N and let 6y € R. Define z!/" with branch cut at angle 8 by (re®®)}/" = r/nei®/n for
all r > 0and all 6y < 6 < 6y + 2. Show that z'/" is well defined and holomorphic on C\ {te’® : t € R, t > 0}
and that 27/ = 1

n(z/7)n=1"

Thus

That z1/" is well defined follows from Problem 1.25 in your book and from Problem m
Recall from Homework 5 that the function In given by

In(re®y=1Inr4i6 ifr>0 —T<f<m

is holomorphic on C\ (—o0, 0] and satisfies a% Inz=1

Observe that
24" = exp((In(ze’C™=%)) + igy + i) /n)

1/n

and so z*/" is holomorphic, as it is a composition of holomorphic functions.
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x24+2x+1 dx.

(Problem 2670) Find [

If 0 < £ < /2 < R < o0, define the contours 1, as shown below. 7, is oriented counterclockwise, and 7,

Reis

Yp

L 4

Rei(27r—s)

is a subset of the circle of radius 1/R centered at 0.

\usepackage{tikz}

\begin{tikzpicture}
\draw
(10:0.3)
-- node [above] {$\eta_1$}
(10:3) node [right]{$Re"{i\varepsilon}$}
arc (10:180:3)
node[left] {$\eta_2$}
arc (180:350:3)
node [right]{$Re"~{i(2\pi-\varepsilon)}$}
-- node [below] {$\eta_3$2}
(-10:0.3)
arc (-10:-180:0.3)
node [left] {$\eta_4$}
arc (-180:-350:0.3);
\end{tikzpicture}
Let f(z) = (szr% where the branch cut of z!/2 is taken to be at y = 0, that is, the positive real axis.
We may then compute that f is holomorphic in a neighborhood of 77 for any such € and R and has only
one singularity in the interior of 1, namely z = —1. Because f has a pole of order 2 at z = —1, we compute
using Problem 4.29 that

and so

i fr-frefrif e
n m 2 3 M4

By [Proposition 2.1.8} if R > 1 then

T = lim ?{ f+jl§ f.
R—o0 m m

1/R
f o] <ant T
N4

and so limr_ 00 fm f+ fm f =0. Thus



By definition of line integral,

f‘ fz/R Vie? e dt
m l/R (teis + 1)2

o 1/2 R X172
/ ————dx = lim / ————dx= lim Iim 7{ f.
0 X2+2x+1 R—co J1/g X2 +2x + 1 R—c0e—0+ f

By Problem [I010]
R i(r—e/2
[ AR
UE

1R (telﬂ'fls + 1)2

and so

and so
o 1/2 R 1/2
/ S dx= Iim/ —————dx= lim lim 7{ f.
0o X°+2x+1 R—oo J1/p x*+2x +1 R—coe—0+ [
Thus
(%) 1/2 1
/ 2X7d = — lim I|mjl§f—|—]§f:I
0o X°+2x+1 2 R—o0 e—0+ m n 2
as desired.

(Problem 2680) Use the calculus of residues to compute [;° m

Recall from Homework 5 that the function In z is holomorphic on C\ (—o0, 0]. Let log(z) = im+In(—2);
then log is holomorphic as a composition of holomorphic functions and satisfies log(re’®) = log r + if if

0<r<ooand0<6<2m. Define g(z) = ZZIJS§ZZ+6' Let nx be as in the previous problem.

We can show as usual that limg_,e ﬁ'lZ g =limr 00 fm g =0.

Observe that
R .
log t
fom [ mtrie
m I/Rt e’g+5te’g+6

R logt+2mi—ie
&§=" 2 n—2ie —ie dt.
m 1R t°€ + bte™’#+6

Fix R. The integrands converge uniformly as € — 0T, and so

m
€0+ mg ,,3 R 2 +5t+6

(e 9)
1 1
————dx=—— lim lim g

0 X2+5x+6 27/ R—o0e—0+ [,

= — Resg(—2) — Resg(—3)
log2+im  log3+im
-2+3 -3+2

= —log2+ log3.

and

Thus




fdx

(Problem 2690) Find [° -5

Let 11, M2, 13, and n4 (the small unlabeled contour) be as shown, and let n be the contour obtained by

Problem [1050]
Re27ri/7

e37mi/7 T3 2

ebmi/Te emi/7
[ ]
¢ . R

-1 € o, ™

° efﬂl’/7
—57i /7 o

e —37i/7
e 3/ Let f(z) = where z1/5 = r

7+11

1/54i0/5

where r and 0 are

the unique real numbers with r > 0, — 7 <0 < 7 and z = re®. A standard argument shows that

lim % f=0= Iim%f
R— o0 - e—0t M4

7{1‘ — 27i Res(e™/7).
n

lim ]{ er?{ f
R—00,e—0t m M

R _1/5
/ X —dx,
e X' +1
27\'1/7 1/5
/ CoxXT+1 1

12m/35/ x1/® dx
e X' +1

and
Thus

2miRes¢(e™/7) =

We compute that

27'ri/7dX

fr-
fi -

SO

(1- e127n'/35)/(>o x1/®
0

xT+1
We now consider

e™Nf(z) = lim (z

lim (z-—
z—eim/T

z—eim/1

zZT+1

The numerator and denominator are both holomorphic in a neighborhood of e

Thus we may apply I'HSpital’s rule. We observe that

9 ijn_ 0

il — 2 1n
0z axz

by [Proposition 1.4.3|, and so

dx = 27i Res(e™/7).

_ ei-rr/?)zl/S

in/7

and equal zero at e

in/7

a%zl/" = %21/”’1 if z is a positive real number. By|Corollary 3.6.3|this implies

that 221/" = 1z1/n=1 for all z in the domain of z!/". Thus
1/5 1/5 —4/5(, _ Aim]T im/35
lim (z—e™")f(z)= lim Z0+ (1/5)z Pz = &™) S
z—elm/7 z—elm/7 725 7e0im/7



Thus f has a simple pole at e/™/7 (this may also be seen by factoring the denominator) and the residue is
given by the above limit, and so

o x1/5 2mi eim/35
/0 X +1 dX = T Tami/s 767
_ 2i s
T e29im/35 _ g4lmi/35 7"
But e#lmi/35 — lmi/35-2mi _ g=20mi/35 oo

% 1/5 9]
/0 x7 +1 dx = 020/ /35 _ o 297”/35 777 CSC(297T/35)-

Because sin(x + m) = —sin(x) for all x € R, we compute that csc(297/35) = —csc(297/35 — ) =
— csc(—67/35) = csc(67/35). Thus

o x1/5 s

(Problem 2700) Compute fo

3+S|n 9

Recall that sin§ = € ’e - . Thus,

ode 7T 2id8
/0 3+sin97/0 6/ + 2isiné
[ 2ide
[ 2iedp

B /2w 2ie™ df
~ Jo 6ie® +(ef)2 -1

Then

Let y(t) = e/, 0 < t < 2m. Let f(z) = g2

27\' 27 2 .
o bielt+e2it—1
27
do
[
o 3+sinf y

The function f has poles at (—3 & 1/8)i. The point (—3 — v/8)i lies outside the unit disc, while the point
(—3 4 +/8)i lies inside the unit disc. Thus

/Oﬂ3+d:r19 :?{ = 27 Res¢(i(v/8 — 3))
=2ni lim (z—i(vV8—3))f(z)

Thus

z—i(v/8-3)
= 27riz_)i|(i\r/n§_3)(z — (V8 — 3))m
=27 lim (Z — I(f 3))
2-i(v8-3) (z — i(v/8 = 3))(z — (i(—Vv8 — 3)))
_ 2
S B 3) - (VB -3)
2m



4.6. CALCULATION OF SuMs

(Problem 2710) Let cotz = 2. Show that cot is holomorphic on C\ {n7 : n € Z} and that Resco: (nm) =1
for all n € Z.
Recall that sinz = eizsziz, while cosz = €2+ Thys, cot z = I:jt::i
If x, y € R, then
ei(x+iy) + efi(x+iy) .eixfy 4 efiery

cot(x +iy) = "oiHy) — eilctiy) ' aix—y — e—ixty"

The singularities occur when the denominator equals zero, that is, when
oY — gmixty
Recall that =¥ = eXe™¥ = (cos x + isin x)e . Thus, singularities occur when
(cosx + isinx)e™ = (cos(—x) + isin(—x))e”.
Because cos is an even function and sin is an odd function, singularities occur precisely when
(cosx + isinx)e™ = (cosx — isinx)e”.
Taking the real and imaginary parts of this equation, we see that cot has a pole at x + iy if and only if
e Ycosx =e’cosx and e sinx=—e"sinx.
Considering the second equation, we can solve to see
(e +e)sinx =0.

Since ¥ + e > 0 for all real numbers y, we see that sinx = 0, so x = nm for some n € Z.

Considering the second equation, we see that cos x = 1. In particular, cosx # 0, so e = e¥. This is
true only for y = 0.

Thus, cot z has singularities at z = nm for n € Z.

Now, choose some n € Z. By I'Hopital’s rule,

(z — nm)cosz

lim (z — nm)cotz = lim -
z—nm z—nm sin z
. cosz—(z—nm)sinz
= lim ( ) =1
Z—nT C0OS zZz

because sin(nm) = 0 and cos(nm) = £1 # 0 for all n € Z. Thus, Resct(nm) =1 for all n € Z.

(Problem 2720) Show that cot(x + iy) converges to —i as y — oo and to i as y — —oo, uniformly in x € R.

If x, y € R, then

eix—y + e—ix+y

cot(x +iy) +i +i

ey ey
eXe™V + e7ixeY
Veixe—y — e—ixey

2eXe™Y
Veixey —e—ixer’
By the reverse triangle inequality |ee™ — e~ ¥e¥| > |[e~™*e¥| — |eXe Y| = &’ —e™Y. Thus, for all x € R
and all y > 0 we have that

iy < 282

|cot(x + iy) +i] < 5 ey " & T

We know from real analysis that lim,_, ﬁ = 0, that is, for every £ > 0 there is a N € R such that
if y > 0 then 2 < . Thus, if y > N, then for all x € R we have that |cot(x + iy) 4+ i| < £, and so
cot(x + iy) — —i as y — oo uniformly in x.

(Problem 2730) Show that if y € R and x = (n+ 1/2)w for some n € Z, then |cot(x + iy)| <1 for all y € R.



Recall

XY 4 e~ixty eXe Y 4 e"ixey
cot(x + iy) = i— —— = [ — — .
elx—y — e—lx+y elXe—y — e~ Ixgy

If x = (nm + 7/2), then e = cosx + isinx = isin(nm + 7/2) = i(—1)" because cos(nm + m/2) = 0 and
sin(nm) = (—1)" for all n € Z. In particular, e~ /("t1/2)7 — @i(=n=1/2)m — j(_1)=n—1 = _gi(nt1/2)m
Thus, in either case, e = —e™™ £ 0, so
12y 4 iy) =i
t =l—.
cot((n+1/2)m + iy) ST

Note that e — ¥ is a real number with |[e™ — e¥| < e + €Y, and so

|cot((n+ 1/2)7 + iy)| e — €]
CO n iy i =
Y ey + e

(Problem 2740) We would like to compute 3 7°; . In this problem we begin the proof. Let v, : [0,1] — C
be a C! parameterization of the rectangle with corners at =(nm + ) £ in, for n € N. Let f(z) = <42, Show
that limp— oo ﬁyn f =0.

(Problem 2750) Find the residue of f at zero.

First observe that

ZC0sz

lim 23f(z) = lim zcotz = lim —
z—0 z—0 z—0 sinz

. Cosz—zsinz
= lm ——— =
z—0 cos z
by I'Hopital’s rule. This is a nonzero finite complex number, so f must have a pole of order 3 at 0.
We write the Laurent series of f about z =0 as

f(z) = Z azk
k=—
Note that a_3 = 1. Thus
1 [ee]
f(z) - = = K
(Z) 3 k; axz

and

o0 o0
a_r = lim E 2,z = lim 22 E a,z"
z~>0k ) z—0

k=—2
. 1 . 1
=limz?(f(z) - = | = limcotz — =
z—0 z3 z—0 V4
. ZCosz—sinz . —zsinz
=lim—=Ilm——
z—0 zsinz z—0sInZz 4+ zcosz
. —sinx—zcosz
=lm —=

z—0 2c0sz — zsinz



Thus,

. 1 0 . cotz 1
Ress(0) =a1=limz(f(z) - 5 — — | = lim - =
20 z3  z z—0 Zz z
. zcotz—1 . Zcosz —sinz
=lim——=Im —
z—0 22 z—0 Zzslnz
. —zsinz
= lim - >
z—02zsinz + z°cosz
. —sinz — zcosz
= lim — >
z—02sinz+4zcosz — z°sinz
i —2cosz + zsinz 1
= lim . = — .
z—06cosz — 6zsinz — z2cos z 3

(Problem 2760) Find all the singularities of f and then find the residues of f at each singularity.

(Problem 2770) Use the above results to compute zj; %2
4.7. REAL ANALYSIS

(Problem 2780) Let X = C U {oo} (where oo is a single point not in C) and define d : X x X — [0, 00) by

0, Z=00=W,
2
—, zeC, w= o0,
£/ 14|z|? =
d(z,w) = -2 weClC, z=0o
TowE ) ,
2|z—w|
—__ zeC, weC.
v/ 1+|z[2 4/ 1+|w]? < <

This is called the spherical metric on X. Then (X, d) is a metric space. (See Problem 4.32 in your book.)

This metric arises as follows. If z =& + in, where &, n € R, then we let the stereographic projection p(z) be
the point in R3 that lies on the unit sphere {(x, y, t) : x>+ y?+t2 = 1} and also lies on the line through (0,0, 1)
(the north pole) and the point (x,y,0). See the following figure. Then d(z, w) = ||p(z) — p(w)]| (if z, w € C

and || - || denotes the standard Euclidean metric in R3) and d(z, 00) = ||(0,0,1) — p(z)||.
(0,0,1)
p(w)
w z
p(2)
(Problem 2790) The subspace (C, d) is equivalent to (C, |- —-|) (that is, C equipped with the standard metric)

in the sense that, if x, x, € C, then x, — x in (C, d) if and only if x, — x in (C,

).

(Problem 2800) The subspace (C, d) is equivalent to (C, |- — - |) in the sense that if z € Q C C and f is a
function defined on Q, then f is continuous at z as a function on (£, d) if and only if f is continuous at z as a
function on (Q,|- —- ).

(Problem 2810) The subspace (C, d) is equivalent to (C, |- — - |) in the sense that if f : Y — C is a function
defined on a metric space Y and a € Y, then f is continuous at a as a function mapping into (X, d) (or (C, d))
if and only if f is continuous at a as a function mapping into (C, |- —-|).

(Problem 2820) If {x,}>; C C, then x, — oo in (X, d) if and only if lim,_c |Xs| = 00 in the sense of real
analysis.



(Problem 2830) If Q C C is unbounded and f : Q — Y for some metric space (Y, p), we may define lim,_,o f(2)
in (C,|-—-|) as follows: lim,_,c f(z) = L if, for every € > 0, there is a N > 0 such that if z € Q and |z| > N,
then p(f(z), L) < e. Show that lim,_,o f(z) =L in (C,|- —-|) if and only if lim,_,o f(z) = L in (X, d).

(Problem 2840) If (Y, p) is a metric space, a € Y, and f : Y \ {a} — C, then we say that lim,_,, f(y) = o
in (C,|-—-1) if for every R > 0 there is a § > 0 such that if 0 < p(a,y) < § then |f(y)] > R. Show that
limy_,f(y) =00 in (C,|-—-|) if and only if lim,_,, f(y) = o0 in (X, d).

4.7. MEROMORPHIC FUNCTIONS

Definition 4.7.2. Let Q C C be open. A function f is said to be meromorphic on Q if there is a set S such that

e SCQ,

e S has no accumulation points in Q,
e F:Q\S—C,

e f is holomorphic on Q\ S,

e If P€ S, then f has a pole at PE|
We call S the singular set for f.

Recall [Problem [2050]: Let Q be a connected open set and let f : Q — C be holomorphic and not constant.
Then the set S ={z € Q: f(z) =0} C Q has no accumulation points in .

(Problem 2850) Let Q C C be open and let S C € have no accumulation points in Q. Show that Q\ S is both
open and dense in Q.

Let z € Q. Then there is an r > 0 such that D(z,r) C Q.

z is not an accumulation point for S, and so there is an € > 0 such that D(z, €)\ {z} contains no points
of S.

Let o = min(r, €); since r > 0 and £ > 0 we have that g > 0 as well.

If ze Q\ S then D(z,0) C 2\ S and p > 0. This is true for all z € Q\ S, and so Q\ S is open.

If z € Q let§ > 0. Then D(z,min(4,0)) \ {z} is not empty because min(d, ¢) > 0 and it lies
entirely within Q \ S; thus, in particular D(z, d) contains at least one point of Q\ S (all of the points in
D(z, min(d, )) \ {z}), and so 2\ S is dense in Q.

[Chapter 3, Problem 42 (generalized)] Let K C Q be compact. Then KNS is finite.
(Problem 2860) Suppose in addition that € is connected. Show that Q\ S is connected.

(Problem 2870) If Q C C is open, and if S and Z are two subsets of Q with no accumulation points in €2, show
that S U Z has no accumulation points in £2.

In particular, let f be meromorphic and non-constant in Q2 for some Q C C open and connected. Let S be the
singular set for f and let Z = {z € Q\ S : f(z) = 0} be the zero set. Show that S U Z has no accumulation
points in Q.

Let z € Q. z is not an accumulation point for S, and so there is a rs > 0 such that SND(z, rs)\{z} = 0.
Similarly, there is a rz > 0 such that Z N D(z,rz) \ {z} = 0. Letting r = min(rs, rz), we see that r > 0
and that (SUZ) N D(z,r) \ {z} =0, as desired.

[Chapter 4, Problem 63] The sum of two meromorphic functions is meromorphic.
[Chapter 4, Problem 64a] The product of two meromorphic functions is meromorphic.

(Problem 2880) Show that the derivative of a meromorphic function is meromorphic.

Let S be the singular set for ; by definition of meromorphic S C € and S has no accumulation points

in Q. Then f is holomorphic in 2\ S. Q\ S is open by Problem [2850| and so by [Corollary 3.1.2| ' is also
holomorphic in Q\ S.

2O<:casiona||y it is convenient to allow f to also have removable singularities at points of S; we can however take the convention
that all removable singularities should be extended as much as possible using the Riemann removable singularities theorem.



We need only show that, if s € S, then f’ has a pole at s. Because Q is open and the points of S are
isolated, there is a r > 0 such that D(s,r) C Q and D(s,r) NS = {s}. Therefore f has a Laurent series in
D(s, r)\{s}. By assumption f has a pole at S, and so by Problem [2310| there is a n > 0 such that a_, # 0
and such that

f(z) = Z a(z — s)*
k=—n
for all z € D(s, r) \ {s}.
By |Proposition 4.3.3|and |Corollary 3.5.2} if z € D(s, r) \ {s} then

flz)=) ka(z—9) "= D (+1aj(z—sy

k=—n j=—n-—1

and so by Problem [2320] ' has a pole at s.

[Chapter 4, Problem 64b] Suppose that f is meromorphic in Q. Then the function obtained by extending 1/f
as much as possible using the Riemann removable singularities theorem is meromorphic in €.

(Problem 2890) Suppose that Q, W C C are open and connected, that f : Q@ — W is holomorphic and not
constant, and that g : W — C is meromorphic in W. Show that g o f is meromorphic in Q.

Let S; C W be the singular set for g. Let S=f"(S;) ={z € Q: f(z) € S.}.

First, we claim that S has no accumulation points in .

Suppose not. Let ¢ € Q. Then () € W and so f(¢) is not an accumulation point of S;. There is
thus a € > 0 such that D(f({),€) N Sg € {f({)} (that is, the intersection is either empty or the single
point f(z)).

Suppose that ¢ is an accumulation point for S. Let {s,}%2; be a sequence of distinct points in S with
sk — ¢. Then by continuity of f we have that f(sx) — 7(¢) € W. Thus, there is a N € N such that if
k > N then f(sx) € D(f(¢), €).

By definition of S, f(sk) € Sg for all k. Thus if k > N then f(sx) € D(f({), €)NSk C {f({)}, and so we
must have f(sx) = f(¢) for all k > N. Thus {z € Q: f(z) = f({)} has an accumulation point, namely ¢;
by f is a constant, contradicting our assumption.

Thus S C Q has no accumulation points. By Problem 1.49 in your book, g o f is holomorphic in Q\ S.

Now, let s € S. We need only show that g o f has a pole at s.

Because s is not an accumulation point of S there is a r > 0 such that D(s,r) NS = {s}.

We know that f(s) € Sg, and so g has a pole at f(s). Thus lim, ) |g(w)| = co: for any N € R
there is a £ > 0 such that if 0 < |w — f(s)| < € then |g(w)| > N. But f is continuous at s, and so there is
a 6 > 0 such that if |z — s| < & then |f(z) — f(s)| < e.

Thus if 0 < |z —s| < min(d,r) then z ¢ S and so f(z) ¢ Sz, and so f(z) # f(s) € Sg. Thus
0 < |f(z) — f(s)] < € and so |g(f(z))| > N, as desired.

(Problem 2891) Suppose that Q C C is open and that S C € has no accumulation points in €. Show that f is
meromorphic in Q with singular set S if and only if f is holomorphic in Q\ S and if the function f given by

is continuous as a function from Q to (X, d), where (X, d) is the metric space in Problem 2780
4.7. SINGULARITIES AT INFINITY

Definition 4.7.4. Let Q C C be open. Suppose that there is some R > 0 such that
C\D(0,R)={zeC:|z| > R} C Q.

If £ is holomorphic on 2, then we say that f has an isolated singularity at co.
Let W ={ze€ C\{0}:1/z € Q} and define g : W — C by g(z) = f(1/z).
(i) If g has a removable singularity at 0, we say that f has a removable singularity at co.



(ii) If g has a pole at 0, we say that f has a pole at co.
(i) If g has an essential singularity at 0, we say that f has an essential singularity at co.

If £ has a removable singularity or pole at co, we say that f is meromorphic at co.

Recall [Theorem 4.3.2]: If f is holomorphic on an open set Q, and Q 2 D(0,0)\D(0,R) = {z € C: |z| > R},
then there is a unique Laurent series 3 72 a,z" that converges to f on {z € C: |z| > R}.

L . . - . . . o0 n
. —— n
[Definition: Laurent expansion around infinity] If there is an R > 0 such that Y |~ a,z" that converges

to f on {z € C: |z| > R}, then we call 392 a,z" the Laurent expansion of f around co.

(Problem 2900) Let f have an isolated singularity at co.

(a) State equivalent conditions for f to have a removable singularity, pole, or essential singularity at co in
terms of the limits of f and |f| as |z] — 0.

(b) State equivalent conditions for f to have a removable singularity, pole, or essential singularity at oo in
terms of the Laurent expansion of f about co.

oo n
n=—o0 9nZ

If f has an isolated singularity at oo, and the Laurent expansion of f about co is f(z) = Y
for all |z| > R, then the rows in this table all contain three equivalent statements.
f has a removable singularity | limsup,_, o |f(z)] < oo|a,=0foralln>0
at o (this  means that there
is a r > 0 such that
SUP|z|>r |f(Z)| < OO) Al-
ternatively, lim, o f(z) = L
for some L € C.

f has a pole at co lim, e |F(2)] = o0 There is a n € N (with n > 0)
such that a, #0 and ax = 0
for all k > n

f has an essential singularity | limsup,_,, |f(z)] = oo |If n €N then thereisa k€ N
at oo and liminf, o |[f(2)] = 0| with k> nand a, #0

(or  limsup,, |f(2)]  #
liminf, e |F(2)])

(Problem 2910) Let Q, W C C be open. Suppose that f is meromorphic and not constant in Q and that g
is meromorphic in W. If f has any poles, we require that g be meromorphic at oo; that is, there is an R > 0
such that{z € C : |z] > R} C W and g has no poles in {z € C : |z| > R}, and furthermore that g has either
a removable singularity or a pole at co. Suppose furthermore that f(Q\ S¢) C W where S is the singular set
for f. Show that g o f is meromorphic on Q (possibly after “filling in” removable singularities).

We claim that g o f is meromorphic with singular set a subset of S¢ U f~1(S,).

By Problem we have that g o f is meromorphic in Q \ S¢ with singular set f=1(S,); that is, if
¢ € Q\ Sr then ¢ is not an accumulation point of f~1(S,), and either gof is holomorphic in a neighborhood
of { or go f has a pole at (.

We must show that if { € S¢ then ¢ is not an accumulation point of f~1(S,), and that gof has a pole or
removable singularity at {. By Problem this will imply that the set S¢ U f’l(Sg) has no accumulation
points in €.

Recall that if ¢ € Sf then f has a pole at {. Thus there is a § > 0 such that if 0 < |z —¢{| < § then
|f(z)| > R. But by assumption g has no poles in {z € C : |z| > R}, and so f(z) cannot be in S,; thus,
D(¢, 8) \ {¢} contains no points of f71(S,) and so ¢ is not an accumultation point of f1(S,).

Finally, it follows from the properties of limits that lim,_¢ |g o f(z)| = limy— |g(w)|, which is either
finite or infinite but in either case exists, and so g o f has either a removable singularity or a pole at (.



(Problem 2920) Suppose that Q C C is open and that S C Q has no accumulation points in Q. Further suppose
that there is some R > 0 such that {z € C: |z|] > R} C Q\ S. Show that f is meromorphic in Q and at co with
singular set S if and only if f is holomorphic in Q\ S and if the function f given by

f(2), zeQ\S,
f(z) = { oo, z€S,

limeo0 F(¢), 2 =00

is continuous as a function from Q U {oco} C X (with the metric d) to (X, d), where (X, d) is the metric space
in Problem [2/80)

Theorem 4.7.5. Suppose that f : C — C is entire and is also meromorphic at co. Then f is a polynomial.

(Problem 2930) Prove Theorem 4.7.5.

Because f is entire, f has a power series

f(z) = i apz"
n=0

for all z € C. This is then the Laurent expansion about co of f, and so by Problem [2900| we have that
there is a N € Ny such that a, =0 for all n > N. Thus

N
f(z) = Z apz"
n=0

and so f is a polynomial.

Theorem 4.7.7. Suppose that f is meromorphic in C and also is meromorphic at co. Then there are two
polynomials p and g such that the singular set of f is equal to the zero set of ¢ and such that f(z) = PLz) for all

q(2)
z in C outside of the singular set.

(Problem 2940) Prove Theorem 4.7.7.

Because f is meromorphic at oo, we have that f has an isolated singularity at oco; that is, there is a
R > 0 such that if S is the singular set for f then SN{z € C: |z| > R} = 0.

Thus S € D(0, R). D(0, R) is compact and S has no accumulation points, so by Problem 3.42 D(0, R)
contains only finitely many points of S. But D(0, R) contains all points of S, so S is finite. Let S =
{s1,%2, .-, Sm}

Let ny be the order of the pole of f at s,. Then q(z) = [],_,(z—sk)" is a polynomial. By Problems
and 2350} q(z)f(z) has removable singularities at each s,. We may extend gf using the Riemann removable
singularities theorem to an entire function p.

The function f has a Laurent expansion ZZZ_OO axz* about co; because f is meromorphic at co, we have
n+m k
k=—o00

that n < co. Multiplying by a polynomial yields that the Laurent expansion of p about oo is 3 bxz

where m is the degree of the polynomial g(z); thus p is also meromorphic at .
Because p is meromorphic at co and also entire, p is a polynomial by Then

where p and g are polynomials, as desired.



5.1. COUNTING ZEROS AND POLES

Theorem 5.1.4. (Argument principle for meromorphic functions.) Let Q C C be open and let f be meromorphic
in Q. Let D(P,r) C Q. Suppose that f has no poles on D(P, r) and that f(z) # 0 for all z € D(P, r). Then

1 £ P q
=2 m-2 m
=1 k=1

2mi 8D(P,r) f
where nq, ... n, are the multiplicities of the zeroes z;, ..., z, of f in D(P, r) and where my, ... myq are the orders
of the poles wy, ..., wq of f in D(P,r).
[Chapter 5, Problem 1] Suppose that 2 C C is open, f is meromorphic in 2, and D(P,r) C Q. Then f has at
most finitely many poles and at most finitely many zeroes in D(P, r).

(Problem 2950) In this problem we will prove [Theorem 5.1.4] Let Q C C be open and connected and let

f : Q — C be meromorphic and not uniformly zero. Let g(z) = %; then g is meromorphic in €.

o Let z; € Q be a zero of f and let n; be the order of the zero at z;. Show that Resg(zj) = n;.
e Let w, € Q be a pole of f and let my be the order of the pole of f at wi. Show that Resg(zx) = —my.

e Prove[Theorem 5.1.4

Suppose that f has a zero or pole at {. Let n be the order of the zero or the negative of the order of the
pole; then (z — ¢)~"f(z) has a removable singularity at ¢ and lim,_; f(z) # 0. Let h(z) be the extension
of (z—¢)~"f(z) given by the Riemann removable singularities theorem.

Then f(z) = (z —¢)"h(z) in a punctured neighborhood of ¢, and so

f(z) _ n(z=¢)" " h(z) +(z=¢)"'(z) _ _n _ H(z)

f(2) (z=¢)"h(2) z—=¢  h(z)
But h(¢) # 0 and h is continuous, so h # 0 in a neighborhood of ¢ and so h'/h is holomorphic in that
neighborhood. Thus Resf /¢({) = n+ Resy/p = n.

The conclusion follows from the residue theorem ([Theorem 4.5.3]).

(Problem 2960) Write down a version of the argument principle that allows us to count the number of solutions
to f(z) =3 in D(P,r).

5.2. THE LocAL GEOMETRY OF HOLOMORPHIC FUNCTIONS

Recall [Problem [1140|: If yis a C! curve and f is holomorphic in a neighborhood of 7 then f o+ is also a C?
curve. Clearly, if v is closed then so is f o «.

(Problem 2970) Suppose that - is the standard counterclockwise parameterization of D(P, r), that f is holo-
morphic in D(P, R) for some R > r, and that f(0D(P, r)) C C\{0}. Show that Indfo,(0) is equal to the number
of solutions to f(z) = 0 in D(P, r) (counted with multiplicity). Hint: Use the argument principle.

Recall that, if n is a closed path and w € C\ 9, then Ind,(w) is defined to be

1 1
n
1

1 1 1
I o = — — = —
ndrer(0) 27 %:O,Y ¢ d¢ 27i ?{wg
where g(z) = =.

Because f is continuous and dD(P, r) is compact, we have that there exist r;, Ry with 0 < n < r <
R1 < R such that f is nonzero on Q = D(P, Ry)\ D(P, 1), that is, f : Q — W = C\ {0}. Observe that g
is continuous on W

By our change of variable result [I380] with u replaced by f and f replaced by g, we have that

1 1 '

1
Indfoy(0) = =— == Ffl=—¢—.
ndror(0) 27ri7€07g omi ), 8° omi ), F

Thus



The argument principle completes the proof.

(Problem 2980) You are given that f is holomorphic in D(0,2) and that there are at most finitely many points
w such that f(z) = w for more than one z € 8D(0,1). Illustrated are the three points 0, —3, and 5 and the
set f(0D(0,1)). Counted with multiplicity, how many solutions are there to the equation f(z) = —3 in the unit
disc? How many solutions are there to the equation f(z) = 5 in the unit disc?

We must have that f(z) = —3 has three solutions and f(z) = 5 has two solutions (counted with
multiplicity).

(Problem 2990) For the function f illustrated above, the only solution to f(z) = 0in D(0,1) is z=0. How is
this possible?

The multiplicity of the zero at 0 must be 3.

(Problem 3000) You are given that g is holomorphic in D(0, 2). Illustrated is the point 0 and the set g(0D(0, 1)).
You are given that there are four solutions to the equation g(z) =0 in D(0,1). How is this possible?

The curve g oy, where v : [0,27] — C and «(t) = e't, must be 2-to-1 at most points; that is, most
points in g(8D(0, 1)) must have two preimages instead of one.



5.2. REAL ANALYSIS

Recall [Problem : Let X be a compact metric space and let f : X — Z be a continuous function. Then
f(X) is compact.

(Memory 3010) Let K C C be compact and let Q C C be a connected component of C\ K. Then Q is open.

5.2. THE OPEN MAPPING THEOREM

Theorem 5.2.1. (The open mapping theorem.) Let Q C C be open and connected and let f : Q — C be
holomorphic. Then either f(Q2) = {Q} for some Q € C or () is an open subset of C.

(Problem 3020) In this problem we begin the proof of Theorem 5.2.1. Let Q C C be open and connected and let
f : Q — C be holomorphic and not constant. Let P € Q and let Q@ = f(P). Show that if r > 0 and D(P,r) C Q,
and if y(t) = P + ret, 0 < t < 27, then Indroy (Q) > 0.

There is (counted with multiplicity) at least one solution to f(z) = Q in D(P, r), namely z = P. Thus
by Problem [2970| the index must be positive.

(Problem 3030) [Redacted)]
(Problem 3040) Let Q be the connected component of C\ f(8D(P, r)) containing Q. Show that U C f(Q).
(Problem 3050) [Prove the open mapping theorem.] Show that () is open.

(Problem 3060) Give an example of an open set 2 C R? and a non-constant C* function f : Q — R? such
that () is not open.

Let f(x,y) = (x*> + y?,2xy) and let Q = R2. Then (0,0) = £(0,0) € f(R?) but f(R?) C [0, 0) x R,
so (0,0) € f(R?) is a boundary point of f(R?) and so f(R?) cannot be open.

(Problem 3061) Let Q C C be open, connected, and bounded, and let f : Q — C be continuous on Q and
holomorphic in Q. Show that 8(f(2)) C f(02Q).

(Problem 3062) What can you say if Q is unbounded?

5.2. SIMPLE POINTS, MULTIPLE POINTS, AND INVERSES

[Definition: Multiple point] Let Q C C be open and connected and let £ : Q — C be holomorphic and not
constant. Then P € Q is a multiple point of f if the function g(z) = f(z) — f(P) has a zero of multiplicity at
least 2 at P. If f(P) = Q and g has a zero of multiplicity k, we say that f(P) = Q with order k.

[Definition: Simple point] Let Q C C be open and connected and let f : Q@ — C be holomorphic and
not constant. Then P € Q is a simple point of f if it is not a multiple point of f, that is, if the function
g(z) = f(z) — f(P) has a zero of multiplicity 1 at P. If f(P) = Q, we say that f(P) = Q with order 1.
Theorem 5.2.2. Let 2 C C be open and connected and let f : 2 — C be holomorphic and not constant. Let
P € Q and let @ = f(P) with order k.

Then there exists a § > 0 and a € > 0 such that if w € D(Q,¢) \ {Q} then there are exactly k points
71, ...,z € D(P,4) such that f(z) = w. Furthermore, each z; is a simple point.
(Problem 3070) In this problem we begin the proof of Theorem 5.2.2. Show that if P € Q, then thereisa p >0
such that there are no multiple points in D(P, p) \ {P} C Q. Hint: Start by showing that P is a multiple point
of f if and only if f/(P) = 0.
(Problem 3080) [Redacted]

(Problem 3090) Let R > 0 be such that z = P is the only solution in D(P, R) to f(z) = f(P). Such an R
must exist by Problem Let p be as in Problem , and let 0 < & < min(R, p). Let U be the connected
component of C\ f(8D(P, §)) containing Q; recall from Problem[3010]that U is open. Suppose that w € U\ {Q}.
Show that there are exactly k points zi, ..., zx € D(P,§) \ {P} with f(z) = w.

(Problem 3100) Prove Theorem 5.2.2.



(Problem 3110) Let Q C C be open and let f : Q — C be holomorphic. Let P € Q and suppose that f'(P) # 0.
Show that there is a r > 0 with D(P, r) C Q and such that f is one-to-one on D(P, r).

Let @ = f(P). By Problem P is a simple point of f. Thus, by Theorem 5.2.2, there isa € > 0 and
a 6 > 0 such that if w € D(Q, €) then there is exactly one solution z € D(P, §) to the equation f(z) = w.
Let U = f~1(D(Q,€)) N D(P,§); observe that f is continuous and so Q is open. Thus, there isa r > 0
such that D(P,r) C U.

If { € D(P,r) C D(P,$), then there is precisely one solution z in D(P, §) to f(z) = £({); it is necessarily
z ={. Thus, f must be one-to-one on D(P, r).

This may also be established using the Inverse Function Theorem of real analysis, but this proof is shorter
and involves techniques that you have probably seen more recently.

(Problem 3111) Let Q C C be open and let f : Q — C be holomorphic. Let P € Q and suppose that f(P) = 0.
Show that there does not exist a r > 0 with D(P, r) C Q and such that f is one-to-one on D(P, r).

(Problem 3120) Let Q C C be open and let f : Q — C be holomorphic and one-to-one. Let W = (). Show
that f~1: W — Q is continuous.

The statement is vacuous if © = () so we assume ) is not empty; because it is open each connected
component must contain infinitely many points. Because f is one-to-one, f cannot be constant on any
connected component.

By the Open Mapping Theorem, if U C Q is open, then (f~1)~1(U) = f(U) is open. Thus, the preimages
of all open sets in (f~1)(W) = Q under f~1 are open. Thus, f~1 is continuous.

[Chapter 5, Problem 7] Let Q be open and connected and let f : Q — C be holomorphic and injective. Then
f=1:f(Q) — Qs also holomorphic.

5.3. FURTHER RESULTS ON THE ZEROS OF HOLOMORPHIC FUNCTIONS: ROUCHE'S THEOREM

Theorem 5.3.1. [Rouché’s theorem.] Let Q C C be open. Let f : Q — C and g : Q2 — C be holomorphic.
Suppose that D(P, r) C Q and that
(2) — &(2)| # [£(2)| + |g(2)]

for all z € OD(P, r). Then f and g have the same number of zeroes (counted with multiplicities) in D(P, r).

(Problem 3130) In this problem we show an example of an application of Rouché’s theorem. The polynomial
p(z) = z" + 4z% + 2 has seven zeroes (with multiplicity). Use Rouché’s theorem to determine how many of these
zeroes are in the disc D(0, 1).

(Problem 3140) The polynomial p(z) = z +322+2 has seven zeroes (with multiplicity). Use Rouché's theorem
to determine how many of these zeroes are in the disc D(0, 1).

(Problem 3150) In this problem we begin the proof of Rouché’s theorem. Let 1, ¢ : [0, 1] — C be two C! closed
curves. Suppose that

In(t) — ¢(t)] # [n(2)] + [$(2)]
for all 0 < t < 1. Show that n and ¢ are homotopic in C\ {0}.

Let W(t,s) = sn(t) + (1L — s)é(t). Then V is clearly C! in both t and s and satisfies W(t,0) = ¢(t),
W(t, 1) = n(t), so ¥ is a C! homotopy between ¢ and .

It remains to show that W : [0,1] x [0,1] — C\ {0}, that is, that 0 is not in the image of W. Suppose
for the sake of contradiction that W(t,s) = 0. Then

0= sn(t) + (1 - 5)¢(t).

If s = 0 then ¢(t) = 0 and so [n(t) — ¢(t)| = [n(t)| = [n(t)| + |$(t)|, which is a contradiction.
If s # 0 then n(t) = 2 ¢(t). Then

in(e) - $(0)] = |(C—

140 = |LII8(0)].



But s >0, s0 [1| =1 and so

In(6) — BB = I#(0)] = (14— )I$(0)] = I8(1) +

s s
But 1=* > 0 and so == = |1=2|. Thus
S S S

n(t) — $(2)| = [#(2)] + In(t)].

2 |g(8)].

This is again a contradiction.

Recall [Problem|[2540]: Suppose that ¢ and 1 are homotopic closed curves in Q\{P}. Then Indg(P) = Ind,(P).

Recall [Problem [2970]: Suppose that « is the standard counterclockwise parameterization of dD(P, r), that
f is holomorphic in D(P, R) for some R > r, and that f(OD(P, r)) C C\ {0}. Then Indsoy(0) is equal to the
number of solutions to f(z) = 0 in D(P, r) (counted with multiplicity).

(Problem 3160) Prove Rouché’s theorem.

Let y(t) = P+ ret, 0 < t < 2m. Then vy is a C! closed curve. By Problem [1140} if n = f o« and
¢ = g o+, then 1 and ¢ are also C! closed curves.
But
(1) = n(t)] = [F(v(2)) — g(v () # [F(v(£))] + [g(v(2))] = [$(£)] + [n(2)]
and so by the previous problem 1 and ¢ are homotopic in C\ {0}.

Thus by Problem Ind,(0) = Indg(0).
But by Problem [2970| Ind,,(0) is the number of zeroes of f in D(P, r) with multiplicity and Indg(0) is
the number of zeroes of g in D(P, r), so they must be equal, as desired.

5.4. THE MAXIMUM MoDuULUS PRINCIPLE

Theorem 5.4.2. (The maximum modulus principle.) Let Q C C be a connected open set and let f : Q — C be
holomorphic. Suppose that there is a w € Q such that |f(w)| > |f(z)| for all z € Q. Then f is constant.

(Problem 3170) Prove the maximum modulus principle. Hint: Show that () is not open.

We will prove the contrapositive. Suppose that f is not constant and w € Q; we need only show that
|f(2)| > |f(w)] for some z € Q.
By [Theorem 5.2.1} () is open and thus there is a r > 0 such that D(f(w), r) C f(2). In particular,

¢ = F(w)+ riped: € £(Q) if f(w) # 0 and ¢ = r/2 € £(Q) if f(w) =0,

But then either |{| = |f(w) + r‘igxm = |f(w)|(1+ r/2[f(w)]) > |f(w)] or || = |r/2| =r/2 >0 =
|f(w)]|, and so in either case [¢| > |f(w)].
But by definition of f(2) we have that { = f(z) for some z € €, and so |f(z)| > |f(w)| for some z € Q,

as desired.

Theorem 5.4.4. (The maximum modulus principle, sharpened.) Let Q C C be a connected open set and let
f : Q — C be holomorphic. Suppose that there is a r > 0 and a w € Q such that D(w, r) C Q and such that
|f(w)| > |f(2)] for all z € D(w,r). Then f is constant.

(Problem 3180) Prove Theorem 5.4.4.

Corollary 5.4.3. (The maximum modulus theorem.) Let Q@ C C be a bounded open set. Let f : ﬁi—> C be
continuous on € and holomorphic on Q. Then there is a w € 98 such that |f(w)| > |f(2)] for all z € €.

(Problem 3190) Prove Corollary 5.4.3.

Q is a closed bounded subset of C = R?, and so by the Heine-Borel theorem Q is compact.

Since f is continuous on Q, so is |f]. Because continuous functions on compact sets attain their maxima,
there is a w € Q such that |f(w)| > |f(z)| for all z € Q.

If w € 0Q then we are done. Otherwise, by the maximum modulus principle f is constant on the
connected component U of Q containing w. Because (Q is bounded, there is at least one point w € OU. It



is an elementary argument in real analysis to show that QU C 9%2. Because f is continuous on QDO U, we
have that |f(w)| = |f(w)| > |f(2)] for all z € Q.

(Problem 3200) Give an example of an unbounded connected open set {2 with nonempty boundary and a
continuous function f : Q — C such that f is holomorphic in © and such that |f(w)| < sup,.q|f(z)| for all

w € Q. Bonus: Can you give an example in which f is bounded in Q and another example in which f is bounded
on 0N but unbounded in Q7

Let Q = {x + iy : x > 0} be the right half plane and let f(z) = exp(z). Then |f(z)| =1 for all z € 6Q
but |f| is unbounded in Q.

Now let g(z) = ;%5. Then lim,_ |g(2)[ =1 and so we may find z such that |g(z)| is arbitrarily close
to 1, but if |g(z)| > 1 then Rez < —1/2 and so |g| cannot achieve its maximum in Q.

Proposition 5.4.5. (The minimum modulus principle.) Let Q C C be a connected open set and let f : Q — C
be holomorphic. Suppose that there is a w € Q such that |f(w)| < |f(z)] for all z € Q. Then either f is constant
or...

(Problem 3210) Finish the statement of Proposition 5.4.5 and prove that your claim is correct.

Either f is constant or f(w) = 0.

The proof is as follows. If f(w) = 0 then we are done, so suppose that f(w) # 0. Then 0 < |[f(w)| <
|f(z)| for all z € Q, and so f is never zero.

Let g(z) = 1/f(z); then g is also holomorphic in Q. Furthermore, |g(z)| = 1/|f(2)| < 1/|f(w)| = |g(w)|
for all z € Q, and so by the maximum modulus principle g is constant. Thus f is constant,

as desired.

5.3. FURTHER RESULTS ON THE ZEROS OF HOLOMORPHIC FUNCTIONS: HURWITZ'S THEOREM

Theorem 5.3.3. [Hurwitz's theorem.] Let Q C C be a connected open set. If k € N, let fy : Q@ — C\ {0} be
a nowhere zero holomorphic function. Suppose that f, — f, uniformly on compact subsets of 2. Suppose that
f(w) # 0 for at least one w € Q. Then f(z) # 0 for all z € Q.

(Problem 3220) Give an example of a connected open set Q C C and a sequence of holomorphic functions
fi : Q — C\ {0} such that f,(z) # 0 for all z € Q and all k € N but such that fy — 0 uniformly on all compact
subsets of Q.

Let Q@ = C and let f(z) =
and z.

2€?. Then f, — 0 uniformly on all compact sets, but f,(z) # 0 for all k

(Problem 3230) Prove Hurwitz's theorem.

By [Theorem 3.5.1] f is holomorphic. Suppose that f is not identically zero, and for the sake of contra-
diction suppose that f(P) = 0 for some P € Q.

Then by Problem (a corollary of , the zeroes of f are isolated. Thus, there is a
R > 0 such that f #0in D(P, R) \ {P}.

Let 0 < r < R. Then f # 0 on OD(P, r). |f| is continuous, so |f| attains its minimum on the compact
set OD(P,r). Let m = min,cap(p,ry |f(2)| > 0 and let € = m/3.

The set D(P, r) is compact and so f, — f uniformly on D(P,r). In particular, there is a k € N such
that |f(z) — f(z)| < & for all z € D(P, r).

By the triangle inequality, |fx(z)| > |f(z)|—& > 2m/3 for all z € @D(P, r). Because fi # 0, the minimum
modulus principle applies in D(P, r) and so |fx| > 2m/3 in D(P,r). In particular |f(P)| > 2m/3. Again
by the triangle inequality |f(P)| > |f(P)| — |fx(P) — f(P)| > m/3 > 0 and so f(P) # 0, contradicting our
assumption. This completes the proof.

(Problem 3231) Let Q C C be a connected open set. If k € N, let f, : @ — C\ {0} be an injective holomorphic
function. Suppose that fx — f, uniformly on compact subsets of Q. Show that f is either constant or injective.



5.5. THE SCHWARZ LEMMA

[Definition: The unit disc] We will let D = D(0, 1).

Theorem 5.5.1. (Schwarz's lemma.) Let £ : D — C be a function such that

e f(0)=0,
e f is holomorphic in D,
e f(D) C D, thatis, |f(z)| <1 forall ze D.

Then we have that both of the following statements are true:
e |f(2)] <|z| for all z € D,
o [f'(0) < 1.
If in addition either

e |f'(0)] =1, or
o |f(w)| = |w| for at least one w € D\ {0},

then there is a 6 € R such that f(z) = ze' for all z € D.

(Problem 3240) Let f : D — D be holomorphic with f(0) = 0. Begin the proof of Schwarz's lemma by proving
that |f'(0)] <1 and that |f(2)| < |z| for all z € D.

Define

) f(2)/z, zeD\{0},
g(z){f'(()), z=0.

g is clearly holomorphic on D'\ {0}. By definition of the complex derivative and because f(0) = 0,

f
= lim Q
Z— Z

£(0) = lim 12 =(0)

z—0 z—0

and in particular the limit exists. Thus by|Theorem 4.1.1| (the Riemann removable singularities theorem) we
have that g is holomorphic at 0 and thus on D.

If 0 < e <1and|z] =1-c¢, then |g(2)] = |f|(zz‘)‘ < i By the maximum modulus principle,
g(z)| < 1 for all z € D(0,1 — €). Taking the limit as € — 0" we have that |g(z)| < 1 for all z € D.

Recalling the definition of g completes the proof.

(Problem 3250) Complete the proof of Schwarz's lemma. That is, suppose that in addition either |f(z)| = |z
for some z € D or |f'(0)| = 1. Show that there is a @ € R such that f(z) = ze™® for all z € D.

Again let

=8 zeD\ {0},
g(z){f’(o), z=0.

By the limit definition of f/, g is continuous at 0, so by the Riemann removable singularities theorem, g is
holomorphic on D.

By the previous problem, |g(z)| < 1 for all z € D. If |f'(0)] =1 or |f(w)| = |w]| for some w € D\ {0},
then |g(w)| = 1 for some w € D. By the maximum modulus principle g is constant in D, so there is an
o € C such that g(z) = a or f(z) = az for all z € D. Since a = g(w), we have |a| = |g(w)| =1 and so
a = e® for some 6 € R.



5.5. MOBIUS TRANSFORMATIONS

(Lemma 3260) Let c € D and define

Z—C

Z) = .
$<(2) l1-7¢z
Then ¢, is a holomorphic bijection from D to itself, a continuous bijection from 0D to itself, and a continuous

bijection from D to itself.

(Problem 3279) In this problem we begin the proof of Lemma 3260l Show that ¢. is holomorphic on I and
continuous on D.

(Problem 3280) Show that ¢.(D) C D and that ¢.(0D) C 0D.
Let z € OD; then z = e for some 8 € R. We compute
; ol —ce
0\ __ 6
de(e”) = 1—ce®’
Let w =1 — ce™™; because |c| < 1 we have that w # 0 and so |w| = |w| # 0. Thus
|¢c(eie) =

Since z = €% was an arbitrary point of 8, we have that ¢.(6D) C oD.

We now observe that ¢ is not a constant function. In particular, ¢o(z) = z, and if ¢ # 0 then ¢.(c) =0
and ¢.(0) = —c, so in either case ¢, is not a constant.

Because ¢. is holomorphic and not constant in D and continuous on D, by the maximum modulus
principle we have that if z € D then |¢.(2)| < supgp [¢c| = 1. So ¢.(D) C D.

i W
elef‘ =1.
w

(Problem 3290) Show that ¢.(¢_.(z)) = z for all z € D.

Because ¢_.(D) C D and ¢, is defined on D, we have that ¢_ o ¢. is well defined on D. Then

¢c(¢—c(z)) - %

(1+<¢z)p_c(z) — c(1+<C2)
(14+7¢z) — (1 +cz)cp_c(2)
z4+c—c(l+7¢z)
(1+7<z)—(c+2z)c

z(1 — c?)

1—cc

(Problem 3300) Show that ¢.(D) = D and that ¢.(0D) = dD. This completes the proof of Lemma [3260

We have shown that ¢.(ID) C D. Conversely, let w € D. Then ¢_.(w) € Dsow = ¢(p_c(w)) € ¢p-(D).
Thus D C ¢.(D) and so D = ¢.(D).
Similarly ¢.(0D) = oD.

(Problem 3310) We will now establish some further properties of ¢.. Show that

/ _ 1- |C|2
¢c(z) - (1 _ EZ)Z.
(Problem 3320) If 6 € R, show that ¢.(e9z) = e¢..io(2).

This is a straightforward computation.

(Problem 3330) If ¢, w € D, show that ¢. o ¢,, = e, for some b € D and some 6 € R.



We compute

¢W(z) —¢
¢e(bu(2)) = —etn(2)

- (1=wz)¢u(z) — c(1 —wz)

T (1 —wz) - (1 - wz)edul2)
(z—w)—c(l—wz2)
(1—wz)—(z—w)cT

~zZ(1+cw) — (w+c)

14+ we—(W+0o)z

_l4+cw z—b

- 14+ wcl-bz

where b = £ — ¢, (c) € D. Because T+ cw = 1+ wc, we have that [{£%] = 1 and so {+2% = e/

for some 6 € R.

(Problem 3331) Let G = {¢. : c € D} U{f : f(z) = ze'® for some § € R}. Show that G is a group (with
function composition as the group action) and is a subgroup of the group of all holomorphic bijections from D to
itself.

5.5. THE SCHWARZ-PICK LEMMA

(Problem 3340) Let 7 : D — D be holomorphic. Let a € D and let b = f(a). Let g = ¢p o f o p_,. Show that
g satisfies the conditions of Schwarz's lemma ([Theorem 5.5.1]).

By Lemma [3260] we have that ¢_, : D — D and is holomorphic. By assumption f : D — D and is
holomorphic. Again by Lemma [3260| we have that ¢, : D — D and is holomorphic. Thus g : D — D, and
by Problem 1.49 in your book g is holomorphic.

Finally, g(0) = ¢5(f(¢-4(0))) = ¢u(f(a)) = ¢u(b) =

(Problem 3350) Apply Schwarz's lemma to g to derive an upper bound on |f'(a)|.
By Schwarz's lemma |g’(0)| < 1, and if |g’(0)| = 1, then g is a rotation.
By the chain rule (Problem 1.49 in your book), g’(0) = ¢, (f(¢#—-2(0))) - f'(¢—4(0)) - ¢"_,(0). So
12> g'(0)] = I¢b(b)[|f'(a)ll¢~.(0)

o 1 ! 1_|a‘2

This simplifies to

, 1-—|f(a)?
If'(a) < W-

(Problem 3351) What can you say about f if |g'(0)| = 17

We observe that |g’(0)| = 1 if and only if |f'(a)] = 1- If(a

—lal2 -

Thus, if |f'(a)| = =125 “b||2 then there is a 6 € R such that g(z) = ez

We observe that f(z) = ¢_p(g(¢.(2))) = ¢_b(e®(¢a(2))). By Problems [3320| and [3330} we have that

f(z) = e®¢.(z) for some ¢ € D and some a € R, and so f is a holomorphic bijection from D to itself.




(Problem 3360) Let w € D\ {a}. What does Schwarz's lemma tell you about f(a) and f(w)?

Recall ¢,(w) g(¢a(w))] < |$a(w)| and so
f(w) — £(a) | | F(w) B R
1— F(a) f(w) ‘1_“( )‘ |66 (F(W))] = |66(F($-a($a(w))))| = lg($a(w))|
<10l = |72

Furtermore, if we have equality then g must be a rotation, and so as in the previous problem there is an
a € R and a ¢ € D such that f(z) = e'*¢.(z) for all z € D.

Theorem 5.5.2. [The Schwarz-Pick lemma.] Let f : D — C be a function such that

e f is holomorphic in D,
o (D) CD, thatis, |f(z)] <1 for all z € D.

Then we have that
2
e If 2 € D then |f'(a)| < 1I‘F(a)‘ .

f(a)—F(w)
o If a, w € D then ’k@f(w)

If a nontrivial equality holds (either |f'(a)| = 1 | ‘2 * for some a € D, or ‘
w € D with a # w), then there is a 6 € R and a ¢ € D such that

a—w
1-aw

1aw

for some a,
f(w ‘

0 Z—C
f _ i
(z) =e 1—-¢z

for all z € D.
6.3. LINEAR FRACTIONAL TRANSFORMATIONS

Definition 6.3.1. We say that a function f : CU {00} — C U {00} is a fractional linear transformation if there
exist numbers a, b, ¢, d € C such that ad — bc # 0 and such that

aztb = 7 ¢ C and either c =0 or z # —d/c,

cz+d’
= —d 0
Fz) = 0, z_ /c,_c;é ,
00, z=o00, c =0,
2, z=o00, c #0.

(Problem 3361)
Theorem 6.3.4. Let a, b, ¢, and d € C with ad — bc # 0. Let f be the fractional linear transformation given in

[Definition 6.3
Then f is continuous as a function from C U {co} to itself if we use the metric in Problem [2780
Furthermore, f is a bijection from C U {co} to itself and its inverse is a fractional linear transformation.
Finally, if g is another fractional linear transformation then so is f o g.

(Problem 3362) Begin the proof of [Theorem 6.3.4] by showing that f is continuous as a function from CU {0}
to itself if we use the metric in Problem Furthermore, show that f is the only continuous function from

C U {oo} to itself that also satisfies f(z) = jiz for all z € C such that cz+d # 0.

(Problem 3370) Continue the proof of [Theorem 6.3.4] by showing that f is a bijection from C U {co} to itself
and that its inverse is a fractional linear transformation.

Define g by
dz—b .
<5 2¢€Cand either c=0o0r z # a/c,
0, z=a/c, c#0,
g(2) = = e ¢
0, z=00, c=0,

—d z=o00, c #0.



g is a fractional linear transformation because da— (—b)(—c) = ad — bc # 0 and d, —b, —c, a are complex
numbers.

We claim that f(g(z)) = z and g(f(z)) = z for all z € CU {oo}. This suffices to show that f has an
inverse and thus is a bijection from C U {oo} to itself.

We further observe that interchanging a and d and negating b and c interchanges f and g and does not
alter the value of ad — bc, and so we need only show that f(g(z)) = z for all z € CU {o0}.

We see immediately that if ¢ = 0 then f(g(c0)) = f(0c0) = o0, while if ¢ # 0 then f(g(o0)) =
f(—d/c) = oo. In either case f(g()) = .

It remains only to show that f(g(z)) = z for all z € C. Suppose that z € C.

If c =0 then a # 0 # d. Furthermore f(z) = (a/d)z+ (b/d) and g(z) = (d/a)z — (b/a) for all z € C,
and it is straightforward to compute that f(g(z)) = z for all z € C.

Suppose that ¢ # 0. Then f(g(a/c)) = f(o0) = a/c.

Now, we claim that if z € C\ {a/c} then g(z) € C\ {—d/c}. We have g(z) # oo by definition of g.
If g(z) = —d/c then fczzjrba = —d/c and so cdz — cb = cdz — ad and ad — bc = 0, contradicting the
definition of fractional linear transformation.

Thus g(z) € C\{—d/c} and so f(g(z)) € C. A straightforward computation establishes that f(g(z)) =
zforall ze C\ {—d/c}, and so f(g(z)) = z for all z € CU{o0}.

(Problem 3380) Complete the proof of [Theorem 6.3.4] by showing that the composition of two fractional linear
transformations is a fractional linear transformation.
More precisely, let £ and g be two fractional linear transformations and let a, b, ¢, d, «, B, 7y, & be the complex
numbers such that
az+b az+p

f(z) = p— ifzeC, cz+d#0, g(z)= P

Let ¢, m, 8, k be the complex numbers that satisfy

¢ n\ _(a b\ [(a B
0 ) \c d)\y &)
Show that (k — nf # 0 and that, if h is the fractional linear transformation such that

ifzeC, yz+46 #0.

n ifzeC, 6z+k #0,
K

then h="fog.

First observe that

¢k — 1B = det (g Z)

which we know from linear algebra to be equal to

det (i Z) - det (: f) .

Because f and g are fractional linear transformations, we know that

det (i 3) 40 # det (3 f)

and so (k — n@ # 0. Thus h is a fractional linear transformation; we need only show that h=1fog.

To prove this, let Q = {z € C: g(z) € C and f(g(z)) € C}. Because f and g are bijections from
C U {oo} to itself, we have that C \ Q contains at most two points, g !(00) and g~1(f1(c0)) (and
might contain one or zero points if these two points coincide with each other or with c0). If z € Q,
then g(z) = zif (because g(z) # o) and also f(g(z)) = jig (because f(g(z)) # o). It is then
straightforward to compute that 7(g(z)) = h(z) for such z.

We are left with the points co, g71(c0), and g~ (f~*(c0). But h and f o g are continuous in the metric

space of Problem and so if they are equal on a dense set then they must be equal everywhere.

[Definition: Line or circle] Let S C CU {o0}.



If there are real numbers a, b, and r > O such that S={x+iy:x €R, y € R, (x — a)> + (y — b)? = r?},
then we say that S is a circle. (Observe that circles by definition have positive radius.)

If there are real numbers a, b, and ¢, with a and b not both zero, such that S = {0} U{x+iy:x €R, y €
R, ax + by = c}, then we say that S is a line. (Observe that lines include the point at oo and circles do not.)

Theorem 6.3.7. Let f be a fractional linear transformation and let S C CU {oo}. If S is a circle, then f(S) is
either a line or a circle, and if S is a line, then f(S) is either a line or a circle.

(Problem 3390) Suppose that ad — bc # 0. Show that if az+ b =0 then cz+ d # 0.

(Problem 3400) In this problem we begin the proof of Theorem 6.3.7. Specifically, we begin by examining
the preimages of the particular circle 0D under fractional linear transformations. Let f be a fractional linear
transformation. Let S = {z € CU {00} : |f(2)| = 1}. Show that SN C and C\ S both contain infinitely many
points.

(Problem 3410) Let f be a fractional linear transformation and let a, b, ¢, d be such that f(z) = j;tz whenever

cz+d#0. Let S={ze€ CU{oo}: |f(z)] = 1}. Show that there exist real numbers o and B such that
SNC={x+iy:xeR, yeR, (|a* — |c[)(x® + y?) + ax + By = |d|* — |b]*}.

(Problem 3420) If |a| = |c
(Problem 3430) If |a| # |c

(Problem 3440) Let S C CU {00} be either a straight line or a circle of positive radius. Show that there is a
fractional linear transformation such that S = {z € CU {0} : |f(2)| = 1} = f~1(aD).

(Problem 3450) Complete the proof of [Theorem 6.3.7| by showing that if f is any fractional linear transformation
and S is either a line or a circle, then f(S) is also either a line or a circle.

(Problem 3460) Let f(z) = ZL. Show that (D) = H, where H = {x + iy : x € R,y € (0, 00)}.

1z—1

(Problem 3470) Let f(z) = £, Show that f({z € C: |z| <1, Imz > 0}) = {x+iy : x,y € (0, 00)}.

, show that S is a line (recall this means that co € S).

, show that S is a circle (of positive radius).

6. HOLOMORPHIC FUNCTIONS AS GEOMETRIC MAPPINGS
(Problem 3480) Find a holomorphic bijection f from the quarter-plane {x + iy : x,y € (0,00)} to the upper
half-plane H.
(Problem 3490) Find a holomorphic bijection from the strip {x+iy : x € R, y € (0, w)} to the upper half plane.
(Problem 3500) Find a holomorphic bijection from D\ {0} to C \ D.
(Problem 3510) Find a holomorphic bijection from D to the strip {x + iy : x € R, y € (0, 7)}.
(Problem 3520) Find a holomorphic bijection from the quarter-circle {z € C:|z| < 1, Rez > 0, Imz > 0} to
the upper half plane.

6.1. BIHOLOMORPHIC SELF-MAPS OF C

[Definition: Biholomorphic self-map] Let Q C C be open and let f : Q — Q. We say that f is a biholomorphic
self-map if it is holomorphic in Q and is a bijection from Q to Q.

Theorem 6.1.1. Let f : C — C. Then f is a biholomorphic self-map if and only if there are complex numbers
a, b € C with a # 0 such that that f(z) = az+ b for all z € C.

(Problem 3560) In this problem we prove the more straightforward direction of [Theorem 6.1.1] Let a, b € C
with a # 0. Show that f(z) = az + b is a biholomorphic self-map of C.

(Problem 3570) Let f : C — C be a biholomorphic self-map. Show that lim,_, |f(z)| = .

(Problem 3580) Let 7 : C — C be a biholomorphic self-map. Given that f has a pole at 0o and no singularity
at 0, what can you say about the Laurent series for f in C\ {0}7

(Problem 3590) Let f : C — C be a biholomorphic self-map. Show that f(z) = az + b for some b € C and
some a € C\ {0}.



[Chapter 6, Problem 2] Suppose that f : C — C is holomorphic and one-to-one. Then f is linear (and, in
particular, is also surjective).

6.2. REAL ANALYSIS

(Problem 3600) Let X and Z be two topological spaces and let f : X — Z be a continuous bijection with
continuous inverse. Let Y C X. Show that f(8Y) = of(Y).

Recall that

6f(Y):c|f(Y)\intf(Y):< N F)\( U G).
F et To2s

Because f and f~! are continuous, we have that £ C X is open (respectively closed) if and only if f(E) is
open (respectively closed). Thus

orm=( N AN U fe).
¥ lesea’ e

But A C B if and only if f(A) C f(B), and so

of)=( N AN (U o).

YCF Y26

F closed G open
Because f is a bijection it commutes with set theoretic operations, and so
6f(Y):f<( N F) \( U G)) — £(3Y)
YCF Y2G

F closed G open

as desired.

6.2. BIHOLOMORPHIC SELF-MAPS OF DD

(Problem 3610) Let f : D — D be a biholomorphic self-map. Show that f(z) = e’® Z=< for some ¢ € D and
some § € R. Hint: Let g = f~1. Compute |g/(f(0)) f/(0)| and use the Schwarz-Pick lemma.

az+b
cz+d

[Chapter 1, Problem 10] A fractional linear transformation f(z) = is a bijection from H to itself if and

only if a, b, ¢, and d are real numbers and ad — bc > 0.

(Problem 3620) Let  : H — H be a biholomorphic self-map. Show that f is a fractional linear transformation

(and therefore must be as in [Problem 1.10]).

Let g(z) = ZtL and let h(z) = Z=i; then g and h are inverses and by Problem '3460l h(H) = D.

iz—i z+i! L
Thus, the function k(z) = ho f o g is a holomorphic bijection from I to D. By the previous problem,
we must have that k(z) = e’ Z=< for some 6 € R and some c € D. We therefore have that f = g o ko h.

l1-cz
Observe in particular that f is a fractional linear transformation.

(Problem 3621) function. Show that f is a biholomorphic self-map if and only if f(z) = j;tg for some real

numbers a, b, ¢, and d that satisfy ad — bc > 0. Hint: Most of the work consists in showing that f is a fractional
linear transformation.




6.3. BIMEROMORPHIC SELF-MAPS OF C U {00}

(Problem 3630) We have seen that fractional linear transformations are bimeromorphic self-maps of C U {o0}.
Conversely, let f : CU{o0} — CU{o0} be a meromorphic bijection (with f(z) = oo if f has a pole at z; because
f is a bijection it has a single pole). Show that f is a fractional linear transformation. Hint: Does it suffice to
prove this in the case that f(co0) = c0?

First, suppose that f(co) = co. Then f : C — C must be a bijection and so by [Theorem 6.1.1| we have

that f(z) = az + b is a fractional linear transformation.

Now, suppose that f(w) = oo for some w € C. Because f is a bijection there can be at most one
such w. Let g(z) = f(w + 1) = f(*2tL). Because h(z) = “Zt1) is a fractional linear transformation it is
a bimeromorphic self-map of CU {o0}. Thus g = f o h is as well and g(o0) = f(w) = oo, and so by the

above analysis g(z) = az + b for some a, b € C. Then f(z) = g(;1..) is a composition of fractional linear

transformations, and so is a fractional linear transformation by [Theorem 6.3.4

6.4. THE RIEMANN MAPPING THEOREM

(Problem 3640) Let Q C C be open and simply connected. Let f : Q — C be holomorphic. Show that there
exists a holomorphic function F : Q — C such that F' = f.

[Definition: Holomorphically simply connected] A connected open set Q C C is holomorphically simply
connected if, whenever f : Q — C is holomorphic, there exists a holomorphic function F : Q — C with F' = f.

(Bonus Problem 3650) Let Q C C be open and holomorphically simply connected. Show that Q is simply
connected.

Theorem 6.4.2. [The Riemann mapping theorem.] Suppose that Q C C is a holomorphically simply connected
open set; we emphasize Q # C. Then there exists a conformal mapping (holomorphic bijection) f : Q — D.

Furthermore, for any a € €, there exists a unique conformal mapping f : Q — D such that f(a) = 0 and such
that f/(a) is a positive real number.

(Problem 3660) Assume the Riemann mapping theorem is true. Prove that every holomorphically simply con-
nected region is simply connected.

By Problem [3630] if  is simply connected then it is holomorphically simply connected. Conversely, let
Q C C be holomorphically simply connected. If Q = 0 or Q = C then Q is simply connected, so suppose
not.

Then by the Riemann mapping theorem there is a holomorphic (thus continuous) bijection from Q to D.
Because D is simply connected, we must have that € is as well.

(Problem 3670) We now begin the proof of [Theorem 6.4.2] Suppose that ¢ : D — D is a conformal mapping,
that ¢(0) = 0, and that ¢’(0) > 0 (that is, ¢’(0) is a positive real number). Prove that ¢ is the identity.

By Problem [3610] there is a ¢ € D and a 6 € R such that ¢(z) = " Z=<.

But then 0 = ¢(0) = e”c, and so we must have that ¢ = 0 and so ¢(z) = e’®z. But then ¢'(0) = e
is a positive real number, and so we must have that e = 1 and so ¢(z) = z for all z € D.

6

(Problem 3680) Let Q C C be a connected open set and let a € Q. Prove that there is at most one function
f : Q — D that satisfies the conditions of the Riemman mapping theorem.

Suppose that £ : Q2 — D and g : 2 — D both satisfy the conditions of the Riemman mapping theorem.
Then g~ is a bijection from I to © and is holomorphic by [Problem 5.7] Thus h = fog ™! is a holomorphic
bijection from D to D.

We observe that h(0) = f(g~%(0)) = f(a) = 0 and

H(0) = '(g71(0)) - (¢71)'(0) = f'(a) - (g 1)'(0).



Let i(z) = g(g%(2)). Then i(z) = z for all z € C. By the chain rule,

1=17(0)=g'(g"*(0))- (g 1) (0)=g'(a) - (g71)'(0)
and so

is a positive real number.
By the previous problem, we must have that h is the identity and so f = (g71)71 = g.

Lemma 6.6.4. If Q is holomorphically simply connected, f is holomorphic on Q, and f # 0 on €, then there is
some holomorphic function h on Q such that e = f.

(Problem 3690) Prove Lemma 6.6.4.

Because f(z) # 0 for all z € Q, the function g(z) = 2’((22)) is holomorphic in Q. By definition of

holomorphically simply connected, there is a function H : Q — C such that H'(z) = g(z) = ?’((ZZ)).

Choose some zy € Q and let C € C be such that e"(?)+C = f(z). Because f(z) # 0, some such C

must exist. Let h(z) = H(z) + C; we still have that H'(z) = ffl((zz))'

Now, let g(z) = f(z)e ). Then g(z) = 1. We compute g'(z) = f'(z)e"? — f(2)e"@H (z) = 0
because f(z) h'(z) = f'(z). Because Q is connected, we must have that g is a constant, so g(z) = 1 for
all z € Q; thus f(z) = e"?) for all z € Q.

(Problem 3700) Let Q = C\ {x+ 0i : x < 0} be the complex plane minus a slit. Let f(z) = z be holomorphic
on Q.

Find an explicit formula for a function h(z) such that e” = f on Q.

Compute f(i) and f(—i). Are they equal?

Compute h(i) and h(—i). Are they equal?

Is there some branch of log such that h(z) = log f(z)?

If z € Q, then there is a unique positive real number r and a unique real number 6 with —m < 0 < 7
such that z = re’®. Define h(z) = h(re®) = 2Inr + 2i6. It is elementary to check that e = f.

Then f(i) = =1 = f(=1i), but h(i/) = im # —im = h(—i). For any possible branch of log, log f(i)/ogf(—i)
because log (i) = log —1 = log f(—1); thus, we cannot find a branch of log such that h = logof.

Corollary 6.6.5. If Q is holomorphically simply connected, f is holomorphic on €, and f # 0 on 2, then there
is some holomorphic function k on Q such that k> = f.

(Problem 3710) Prove Corollary 6.6.5.
(Problem 3720) Suppose that Q C C is open and that for some @ € C and r > 0, we have that QND(Q, r) = 0.
Find a one-to-one holomorphic function g : Q@ — . (g need not be a bijection.)

Let g(z) = <22

z—Q

Since Q ¢ Q we have that g is well defined on €2, and by inspection g is one-to-one and holomorphic on

C\{@}.
Now, if w € Q then w ¢ D(Q, r), and so |[w — Q| > r. Thus |g(w)| < 1/2 and so g(2) C D, as desired.

(Problem 3730) Suppose that Q is holomorphically simply connected and that P ¢ Q for some P € C. Using the
function h of Problem [3690} show that there exists a one-to-one holomorphic function g : Q2 — D. [This problem
will be assigned as homework. Note that your book does this exercise using the function k of Problem [3710}]

(Problem 3740) Let Q C C be holomorphically simply connected with a € Q. Let F be the set of all functions
f such that

e f is holomorphic on €,

e f is one-to-one,



o [f(z)]<1forallzeQ, sof(Q)CD,

e f(a)=0,

e f'(a) > 0.
To prove the Riemann mapping theorem, what do we need to prove about F7?
(Problem 3750) Show that F is nonempty.

(Problem 3760) Let R = sup{f’(a) : f € F}. Show that 0 < R < 0.

By the previous problem there is a g € F. By definition of F we have that g’(a) > 0, and so R >
g'(a) > 0.
We now turn to the proof that R is finite. Because Q is open, there is a r > 0 such that D(a, r) C Q.

By the Cauchy estimates ((Theorem 3.4.1)), if f € F, then
2
[f'(a) <~ sup [f].
I 8D(a,r/2)
But f(2) CD and so |f(z)| < 1 for all z€ Q D D(a, r); thus |f'(a)] < 2/r forall f € F and so R < 2/r.

Claim 6.7.3. If f € F and f'(a) = R, then f : Q — D is surjective.

(Problem 3770) Let 0 < r < 1. Let W =D\ (=1, —r] = {x + iy : x> + y? < 1 and either y # 0 or x > —r}
be the unit disc with a slit removed; then 0 € W C D. Let

Y(z) = ¢ 7 (Vd-r(2))
where ¢ is as in Lemma 3260/ and where v/rei® = \/re®/? if 0 < r < 0o and —m < 6 < 7. Show that

e Y(W)C
e Yis holomorphic on W,

e 1) is one-to-one on W,

e (0)=0

e /(0) > 1 (in particular is real).
Note: You must prove 9'(0) > 1; this is much harder than proving ¢'(0) > 0!

Recall that ¢_, is a bijection from D to itself. We compute that ¢_,(r) =0, ¢_,(-1) =-1¢_,(1) =1

and ¢_,(0) = r. Thus by [Theorem 6.3.4] and [Theorem 6.3.7} ¢_, is a bijection from R U {co} to itself;
furthermore it is continuous in the metric of Problem 2780} and so we must have that ¢_, maps [—1, —r]

to [~1,0]. Thus Q = ¢_, (W) =D\ (-1,0].

By definition of |/, we have that V/Z exists for aII z E Q and is holomorphic in € by Problem [2660

Observe that /" is also one-to-one. Thus g(z \/¢—-(2) is holomorphic in W. Furthermore, g(w) is the
right half circle and thus is contained in D:

0 P PY(-r)=—r 0
¢ (i)



We compute ¢ _,(0) = r, \/9_,(0) = +/r, and finally ¢ _;(/r =0, so 9(0) = 0.
Finally, by the chain rule, Problem [2660} and Problem 3310}

#(0) = @ (V7) % ¢, (0)

1—-r 1 5
“a-neast )
(1+r)/2

VI

Because r and 1 are unequal positive real numbers, by the arithmetic-geometric mean inequality this quantity
is greater than 1.

(Problem 3780) Let W C D be open and holomorphically simply connected with 0 € W. Show that there exists
a 9 such that

e 1) is holomorphic on W,

e 1 is one-to-one on W,

. Y(W)CD,

e (0) =0,

e 9/(0) > 1 (in particular is real).
Hint: The construction will be similar to the previous problem with in place of the explicit square
root function. Note: You must prove 9'(0) > 1; this is much harder than proving 4'(0) > 0!

Let P € D\ W. By assumption some such P exists. Thus ¢p : W — D is holomorphic, and because
¢p(P) =0, P € D\W, and ¢p is a bijection from D to itself, we have that ¢p 7 0 in W. Thus by [Corollary |
there is a holomorphic function g : W — C such that g(z)?> = ¢p(z) for all z € W. It is left as an
exercise to the student that g(W) C . Let ¥ = e¢,(g(z)) where b = g(0) and where 8 € R. It is left
as an exercise to the student to show that 1 satisfies the desired conditions.

(Problem 3790) Let Q C C be open and holomorphically simply connected and let f : Q — C be a holomorphic
injection. Show that f(2) is also open and holomorphically simply connected.

We begin by showing that () is open. Let z € f(2). Then there is some P € Q such that f(P) = z.
Because Q is open, there is an r > 0 such that D(P,r) C Q and so f(D(P,r)) C f(2). By the Open
Mapping Theorem f(D(P,r)) is either a single point or open; because f is injective we
have that f(D(P, r)) must be open. Thus for every z € () there is an open set U with z € U C f(Q);
thus f(2) must be open.

Now, let g : f(2) — C be a holomorphic function. Then g o f is a holomorphic function from Q to C
and so is f’, so their product h(z) = g(f(z)) - f'(z) is also holomorphic. Because Q is holomorphically
simply connected, we have that there is some H : Q — C holomorphic such that H'(z) = h(z).

Recall from [Problem 5.7]that £~ is a holomorphic function f~* : £(Q) — Q. Let G(z) = H(f~(z)). By
the chain rule, 1 = f/(f~1(2)) - (f 1) (2) and G'(z) = H'(f1(2)) - (f 1) (2) = g(f(F*(2))) - F'(F1(2)) -
m = g(z), as desired.

(While the function gof indeed has a holomorphic antiderivative, it is very difficult to derive a holomorphic
antiderivative for g alone from the holomorphic antiderivative for g o f.)

(Problem 3800) Prove Claim 6.7.3 by showing that if f € F is not surjective, then there is a g € F such that
f'(a) < g'(a).



6.5. REAL ANALYSIS

(Problem 3810) State the Bolzano-WeierstraB theorem in RP. What does this tell you about bounded sequences
in C?

(Problem 3820) Show that every sequence in a compact set has a convergent subsequence.

[Definition: Equicontinuous] Let {f,}%, be a sequence of functions from (X, d) to (Y, g), where (X, d) and
(Y, o) are two metric spaces. Suppose that for each x € X and each £ > 0 there is a § = d. > 0 such that
if y € X with d(x,y) < b« then sup,cy o(fa(x), fa(y)) < € (that is, o(fn(x), fa(y)) < € for all n € N, and &,
cannot depend on n.) Then we say that the sequence {f,}%2 is equicontinuous.

If § = 6. may be taken to be independent of x, then the sequence is uniformly equicontinuous.

(Bonus Problem 3821) Suppose that {f,}3°, is an equicontinuous sequence of functions and that their common
domain (X, d) is compact. Show that {f,}%, is uniformly equicontinuous.

(Problem 3822) Give an example of a bounded sequence in a complete metric space that does not have a
convergent subsequence.

6.5. NORMAL FAMILIES

Definition 6.5.1. If {fj}?2, is a sequence of functions from an open set 2 C C to C, we say that {f;}22;
converges normally to f if {f;}22, converges to f uniformly on compact subsets K of Q.

If F is a family of functions such that f : 2 — C for each f € F, and if every sequence in F has a subsequence
that converges normally, we say that F is a normal family.

Recall [Problem [1900]: If each f; is holomorphic and f; — f normally then f is holomorphic.
Recall [Problem [1920]: If each f; is holomorphic and f; — f normally then £/ — f’ normally.

Theorem 6.5.3. [Montel's theorem, first version.] Suppose that F is a family of functions that are holomorphic
on some open set . Suppose that there is a constant M > 0 such that, if f € F and z € Q, then |f(z)] < M.
Then F is a normal family.

The Arzela-Ascoli Theorem. Let (V, d) and (Y, p) be compact metric spacesE] Let {7,152, be an equicontinuous
sequence of functions from X to Y. Then there is a subsequence {f,, }?°, of {f,}22, that converges uniformly
on V.

(Problem 3830) In this problem we begin the proof of the Arzela-Ascoli theorem. This problem is a strengthening
of the known fact that compact sets are separable. Suppose that W is compact and that for each positive number
€ > 0 and each z € ¥ we are given a positive number §., > 0. Show that there exists a sequence {z,,}5°_; C ¥

such that, for each € > 0, there is a M € N such that W C Uf\nﬂzl B(zm, min(g, d¢,z,.))-

For each k € N, the set {B(z, min(27%,8,-« ;) : z € W} is an open cover of W. Thus it has a finite sub-
cover. Let {z;:1 <j < Ny} be a set of finitely many points such that W = UJN:k1 B(zkj, min(27K, 85« ,)).
We may then define z,, such that z,, = 21, if 1 < m < Ny, zp, = zo ey, if Nt < m < Ny, and in
general z,, = Zj,m—nN,—..—nN,_, for k the unique number such that Ny + -+ Ny <m < Ny + -+ N
If € > 0, there is then a k such that 27 < ¢; choosing M = Ny + - - - + Ny completes the proof.

(Problem 3840) Let VW, Y, and f, be as in the Arzela-Ascoli theorem. Let {z,}5°; C W be a sequence.
Show that there is one subsequence {f,, }?°, of {f,}52, (with ni independent of m) such that {f,, (zm)}?2, is a
convergent sequence for each m € N,

Because {f,(z1) : n € N} is bounded and (closed bounded subsets of) Y are compact, we have that some
subsequence {f,, ,(z1)}?2, is convergent.

Now, suppose that the strictly increasing sequence of natural numbers {n;}%>; has been defined and
that {fy,, (zm)}?2, converges for all m < j. Then the sequence {f,,, (z+1)}?2, is bounded, and so some
subsequence converges. Define {nj;1,,}72; to be a subsequence such that {f, (z1)}32; converges;

3We may weaken the condition that (Y, p) be compact to the condition that closed and bounded subsets of (Y, p) are compact if
we in addition impose the condition that if z € W, then {f,(z) : n € N} is bounded.



because {nj;1,k}32, is a subsequence of {n; x}22,, we have that {f,,, (zm)}?2, converges for all m < j and
thus all m <j + 1.

Define ng by ng = ngg. If m € N, then {n;}g° . is a subsequence of {ny, (}%, and therefore we must
have that {f,,(zm)}72, converges.

(Problem 3850) Suppose in addition that z,, is as in Problem[3830] Show that {f,, }%2; is uniformly convergent
on {z,:meN}

Pick € > 0.

Let M € N be such that W = ngl B(zm, min(e, é¢ 2, )); by Problem such an M exists.

Now, for each m, the sequence {f,, (zm)}7>; converges to some element of Y let us call this element
f(zm). By the definition of convergence, there is a N, such that if k > N, then p(f,, (zm), f(zm)) < €.
Because M is finite, so is N = max{Ny, ..., Ny}

Pick some k > N and some m € N. Then z,, € B(z,, min(g, d -, )) for some u < M by definition of M.
Because {f,(zm)}2>, converges, there is some A € N (possibly much bigger than k) with A > N such that

o(Ffos(zm), f(zm)) < €.
We may then compute that
p(fo (zm), f(zm)) < p(fa, (2m), fo (24))
=+ P(fnk(zu)r f(zu))
+p(f(zu), s (21))
+ P(fnx(zu)v fox (2m))
+ p(fox (2m). f(zm))
< be.
Thus, for any € > 0 there isa N € N (depending on ¢ alone) such that if k > N then p(f,, (zm), f(zm)) < be
for all m € N; thus f,, — f uniformly on {z,, : m € N}.
(This is somewhat simpler if you show that the sequence {f,, }%°, is uniformly Cauchy on {z,, : m € N}

and then invoke the known fact from real analysis that a uniformly Cauchy sequence of functions is uniformly
convergent.)

(Problem 3860) Prove the Arzela-Ascoli theorem by showing that {f,, }2, is uniformly convergent on W.

Let € > 0.
Because {f,, }%°; converges uniformly on {z,, : m € N}, it is uniformly Cauchy. Let K € N be such that
if j, k> K then p(f,,(zm), fn;(zm)) < € for all m € N.
Let M be such that ¥ = U:\n/’:1 B(zm, min(g, d¢,z,.)); by Problem [3830} such an M exists.
If z € U, then z € B(zs, b 2, ) for some m. Then
o(fa (2), fnj(z)) < o(fo(2), fo (2m))
+ P(fnk (Zm)v f”j (Zm))
+ p(fo;(zm), fr;(2))
by the triangle inequality. The first and third terms are less than e because d(z, z,,) < é,2,,, and the third
term is less than € by definition of K thus,
ol (2). o (2)) < 3¢
for all k, j > K and all z € W. Thus {f,, }%°, is uniformly Cauchy, and thus uniformly convergent, on W.

(Problem 3870) In this problem we begin the proof of Montel's theorem. Let {f;}?2; be a sequence of holomorphic
functions defined on an open set Q2 C C. Suppose that there is a M € R such that |f;(z)| < M for all z € Q and
Jj € N. Let W C Q be compact. Show that the functions f; satisfy the conditions of the Arzela-Ascoli theorem
on V.



(Problem 3880) Show that if Q C C is open, then there exist compact sets W3 C W, C W3 C ... such that
UmWm = Q and such that every compact set K C § is contained in W, for some m € N. (This property is called
o-compactness.)

(Problem 3890) Prove Montel's theorem, first version.

6.7. THE PROOF OF THE ANALYTIC FORM OF THE RIEMANN MAPPING THEOREM

Recall [Problem [3740]: Let Q C C be holomorphically simply connected with a € Q. Let F be the set of all
functions f such that

e f is holomorphic on €,

e f is one-to-one,

o |f(z)] <1forall ze€Q,so f(Q2) CD,
e f(a)=0,

e f'(a) > 0.

Recall [Problem [3750]: F is nonempty.

Recall [Problem |3760]: 0 < sup{g’(a) : g € F} < oo.
Recall [Problem |3800]: (Claim 6.7.3.) If f € F and f'(a) = sup{g’(a) : g € F}, then f : Q — D is onto.

(Problem 3900) Prove that there is a function f € F with f'(a) = sup{g’(a) : g € F}. (This proves the
Riemann mapping theorem.)

By definition of supremum, if n € N, then there is a f, € F such that f/(a) > sup{g’(a) : g € F} — L.
Observe that F is a family of holomorphic functions with a common domain Q whose range is contained
in I; thus if £ € F then supq |f| < 1. Thus, by Montel's theorem, F is a normal family. Thus there is
subsequence {f,, }%>; of {f,}°2; which converges normally. Let f = limy_,o0 fs, .

We claim that f € F with '(a) = sup{g’(a) : g € F}.

By [Theorem 3.5.1] f is holomorphic on Q. By definition of limit f(a) = limy_,c fa, (a) = 0. By [Corollary |
3.5.2) f'(a) = im0 f, (a) = sup{g’(a) : g € F}. In particular f'(a) > 0, and so f is not a constant.

If z € Q, then |f(2)] = limksoo | fne(2)| < 1 because £, (©2) C D. By the maximum modulus principle
[Theorem 5.4.2) we must have that |f(z)| < 1 for all z € Q, and thus f(Q2) C D.

It remains to show that f is injective. Let w € Q. Let he(z) = £, (2) — fn, (w). Let h(z) = f(z) — f(w).
We view the domain of hy, h as Q\ {w} rather than all of Q.

Then each hy is holomorphic on Q\ {w}. Furthermore, hy — h, uniformly on compact subsets of Q
(and thus of Q\ {w}). Finally, because f,, is one-to-one, we have that h(z) # 0 for all z € Q\ {w}.

By Hurwitz's theorem ([Theorem 5.3.3|), we have that either h(z) = 0 for all z € Q\ {w} or h(z) # 0
for all z € Q\ {w}. But H(a) = f’(a) > 0, so h cannot be constant and thus we must have that
0 # h(z) = f(z) — f(w) and so f(z) # f(w) for all z € Q\ {w}. Because w was arbitrary, this implies
that f is one-to-one. This completes the proof.

7.1. BAsIC PROPERTIES OF HARMONIC FUNCTIONS

Definition 7.1.1. Harmonic function. We say that u is harmonic in a domain Q C C if v is C? in Q and if
%u %u :
X2 + 67)/2 = 0 n Q



(Problem 3910) Let Q C C be open and let u € C2(Q). Show that u is harmonic if and only if £ (2%) =0 and
also that u is harmonic if and only if 6% (%) =0.

Let Q C C be open and let u € C?(Q).

6 _ 106 , 190 o _1 _
Recall that 57 = 557 + 5:5; and 52 = 55 — 575,

Then
9 (8 \_0 (1ou lou
0z\90z ) 0z \20x 20y

1 0 (10u 1 Ou 10
—zax(zaxz,-ay>+z,-ay<zax 20y
16%u 16%u 1 8%y 1 8%u

40x2 T 28y  zioxay | sioyex

By equality of mixed partials the final two terms cancel and we see that u is harmonic if and only if
a% (%) = 0. Because a% and % commute, we see that u is harmonic if and only if % (%) =0.

10u 16u>

(Problem 3911) Suppose that Q C C is open and that u, v : Q — C are both harmonic. Let a, B € C. Show
that au + Bv is also harmonic.
[Chapter 7, Problem 12] If u is a real-valued harmonic function on a connected open set, and if u? is also
harmonic, then u is a constant.

[Chapter 7, Problem 13] If u is a complex-valued harmonic function on a connected open set , and if u? is

also harmonic, then u is either holomorphic or conjugate-holomorphic (meaning that either u or T is holomorphic,

or, equivalently, either % =0or % =0in Q).

(Problem 3920) Prove that if F is holomorphic in an open set  and u = Re F then u is harmonic.

Because F' = %F is also holomorphic, we have that 0 = %F’ = %(%F = %‘%F. Thus F is harmonic.
So
7827F+027F7 62ReF+82ReF . 62ImF+621mF
Cox2 ay? Ox? Ay? Ox2 Oy? '
Because the two quantities 626'13': + azaF;%F) and (62;)':"2': + 62;}'/“2':) are both real, they must both be zero

and Re F and Im F are both harmonic.

Lemma 7.1.4. If u is real-valued and harmonic in a simply connected open set €, then there is a holomorphic
function f such that Ref = u.

(Problem 3930) Prove Lemma 7.1.4.
Corollary 7.1.3. If Q C C is open and v : Q — R is harmonic, then v is smooth.
(Problem 3940) Prove Corollary 7.1.3.

Let u be harmonic in an open set Q. Let D(P,r) C Q for some P € C and some r > 0. Then by

Problem [3930] there is some function f holomorphic in D(P, r) such that u = Ref in D(P,r).
By [Theorem 3.1.1} we have that f is smooth (infinitely differentiable) in D(P, r). Therefore, u = Ref is

infinitely differentiable in D(P, r). Since this is true in every disc contained in Q, u is smooth throughout €.

[Definition: Harmonic conjugate] Let u and v be two real-valued functions. If F = u + iv is holomorphic,
then we say that v is a harmonic conjugate of u.

[Chapter 7, Problem 4] Suppose that v; and v, are both conjugates of the (real harmonic) function u. What
can you say about v; and v,?

We can say that v; — v is locally constant, that is, constant on any connected component of the domain
of u.



(Problem 3941) Let u be a harmonic function. Suppose that v is a harmonic conjugate of u. Is u also a
harmonic conjugate of v?

No, but —u is a harmonic conjugate of v.

7.2. THE MAXIMUM PRINCIPLE

Theorem 7.2.1. (The maximum principle for harmonic functions.) If Q C C is open and connected, if u: Q — R
is harmonic, and if there is a P € Q such that u(P) > u(z) for all z € Q, then u is constant in Q.

(Problem 3950) Prove the maximum principle for harmonic functions.

Let M = u(P)andlet E = u"}({M}) = {z € Q: u(z) = M}. Then E C Q is not empty because P € E.
The set {M} is closed, so E must also be (relatively) closed in Q because u is continuous. Furthermore,
P € E and so E is nonempty.

Let Q € E. Because Q is open, there is an r > 0 such that D(Q, r) C Q. By Problem there is
a f:D(Q,r) — C that is holomorphic in Q such that u = Ref in D(Q,r). Let h = ef. Then |h| = e¥,
and because the exponential function is strictly increasing on the reals and u(Q) = u(P) > u(z) for all
z € D(Q,r), we have that |h| attains a maximum at Q. Thus h must be constant on D(Q,r). But
u=In1h|, and so u is also constant in D(Q, r). Since Q € E, we have u(Q) = M and so u(z) = M for all
z € D(Q, r); thus D(Q, r) C E. This is true for all Q € E, and so E is open.

Because (2 is connected and E C ) is nonempty, open, and relatively closed, we must have that E = Q
and so u is constant in 2.

(Problem 3960) State and prove the minimum principle and corollaries involving the values of u on 9.

The minimum principle is as follows:

If Q@ C Cis open and connected, if u: Q — R is harmonic, and if there is a P € Q such that u(P) < u(z)
for all z € Q, then u is constant in €.

It may be proven by noting that, if u is harmonic, then so is v = —u, and if u(P) < u(z) then
v(P) > v(z).

Here is the corollary:

Let Q C C be open and bounded. Let u: Q — R be a continuous function such that u is harmonic in Q.
Then there are points zy and z in 8Q such that u(z) < u(z) < u(z) for all z € Q. Furthermore, if Q is
connected then either u(z) = u(z;) = u(z) for all z € Q or u(z) < u(z) < u(z) for all z € Q.

It may be proven by recalling the well known fact that a continuous function on a compact set (in
particular, on any closed and bounded subset of C) attains its maximum and minimum.

7.2. THE MEAN VALUE PROPERTY

Theorem 7.2.5. (The mean value property.) If u is harmonic in a neighborhood of D(P, r), then

1 2 )
P E— P 0 )
u(P) 2ﬂ/0 u(P + re®) do

(Problem 3970) Prove the mean value property.

Let Q zE(P, r) be the indicated neighborhood. By a standard real analysis argument, thereisa R > r
such that D(P,r) C D(P,R) C Q.

Because D(P, R) is simply connected and wu is harmonic in Q O D(P, R), by [Lemma 7.1.4| there is a
holomorphic function f : D(P, R) — C such that u = Ref in D(P, R). By the Cauchy integral formula,

_ 1 BRI
f(P) = 2mi fc;D(P,r) ¢(—P o



We use the standard parameterization y(t) = P + ret and see that, by the definition of line integral,

(P = 5 f L p e = o [ EI v

1 [T f(P+re). 1 [ ;
- "= Jireltdr = — f(P ) dt.
27ri/0 re't re 27r/0 (P+re?)

But by definition of the integral of a complex function over a real interval,

1 27 i
u(P):Ref(P):Re—/ f(P+re't)dt
2 0

1 27 . 1 27 .
:E/o Ref(P—i—re’t)dt:E/0 u(P + re't) dt.

(Problem 3980) Suppose that u is harmonic in D(P, r) and continuous on D(P, r) (without necessarily being
harmonic in any larger set). Is the mean value property still valid?

Yes. Let 0 < p < r. By the previous problem,

1 2 3
P — P 6 )
u(P) zﬂ/o u(P + pe®) db
Thus,
1 27 )
u(P) = — Iim/ u(P + pe™®) dé.
27 p—r= Jo

Because u is continuous on the compact set D(P, r), it is uniformly continuous. Choose £ > 0. There is
a § > 0 such that if z, w € D(P, r) then |u(z) — u(w)| < &.

In particular, if p > r —§ then |re®® — pe’®| = r — p < & and so |u(re®®) — u(pe’®)| < «.

If we let u,(6) = u(P + pe®), then u, — u, uniformly as p — r from the left, and so by Problem

we have that ) )
/ 0 (8) d6 = lim / 4, (0) d8
0 0

p—r—

and so
1 27

— u(P+ reie) dé = lim u(P) = u(P),
2T 0 p—r—

as desired.

7.3. THE PoissoN INTEGRAL FORMULA

Lemma 7.3.2. Let Q, W C C be open sets, let ¢ : Q@ — W be holomorphic, and let u : W — R be harmonic.
Then u o is harmonic.

(Problem 3990) Prove Lemma 7.3.2.

Denote by u,, uz the functions %, %. Then by |Problem 1.49| we have that

0 _ oY . al
§(uo¢)—(uzo¢)§+uz 1/’62-

Because ¢ is holomorphic, by Problem we have that %—? = (%’) =0 and so

O (o) = (o) 2.
Similarly, by the Leibniz rule (Problem [490)) we have that

o 8 oy 8¢y

a7z "0V =) 57 5,

0 3y

+(vzz09) 0z 0z

oy 0y
oz 0z =Y



The first term vanishes because ¥ is holomorphic and so ‘?;f = 0. The second term vanishes because u is

harmonic and so uz, = 0. Finally, the third term vanishes because ¥ and thus 2 az is holomorphic.

[Definition: Poisson integral kernel] Let P(z,¢) = K12 P is called the Poisson kernel.

Theorem 7.3.3. (The Poisson integral formula.) Suppose that v is harmonic in D(0, R) D D for some R > 1.
If ze D, then

27 27 _W2
o) = [ ule) Plu ey dy = o [ u(e) T gy,

(Problem 4000) Prove Theorem 7.3.3.

Recall [Problem m Let Q C C be open and let D(P,r) C Q. Let f be holomorphic in Q. Then

f(z) = 5% §, £ d¢ for all z € D(P,r).

Recall [Problem [1460]: Let f be continuous on OD(P,r). Define F by F(z) = %%D(P’r #d( for all
z€ D(P,r). Then F is C! and holomorphic in D(P, r).
[Chapter 2, Problem 21] It is not necessarily true that lim,,_,, F(w) = f(z) for z € D(P, r).
Theorem 7.3.4. Let f : 0D — R be continuous. If z € D, define
— |2

o 2m
we)= [ P an = [ i) (g 0w

Then u is harmonic in D, and lim,_, e u(z) = f(e’®) for all & € [0,2n]. In particular, if we define u(z) = f(z)
for all z € 8D, then u is continuous on D.

(Problem 4010) Let P(6) = ﬁ% Show that P,(6 — ¢) = P(re', e¥), so that

1

(e =5 [ " () P60 — ) dy

forall0<r<1, al R andall v:D— R continuous and harmonic in D.

2T

By the Poisson integral formula, we have that
2 i0)2
u(re®) = ;ﬂ / u(e™) M .
First observe that |re’®| = r. Next, observe that
e — rel®P2 — (e — rei®)(e ¥ — re= )
=1—re/@=¥) _ rel(¥=0) 4 2
=1—2rcos(8 — ) +r?
where we have used the variant 2 cosn = e/ + e~/ of Euler’s identity e’ = cosn + isinn. Thus

1o 1—r2
r 6 i
u(re”) = 27r/ u(e™) 1 —2rcos(6 — 9) + r? 9.

(Problem 4020) Prove that if 6 is real and 0 < r < 1 then 0 < P,(0) < oo (in particular, the denominator is
never zero).

(Problem 4030) Show that p(z) = P(z,¢) is harmonic on C\ {¢}; in particular, if ¢ = e then p(z) is harmonic
in .
(Problem 4040) Prove that u is harmonic in D.

2

Define F(¥, x,y) = f(e¥)P(x + iy, e¥) = f(e'¥) 1-x*—y

e —x—iy[*"



Observe that F is continuous in ¥ and twice continuously differentiable in both x and y in the region
{(,x,y) : ¥ €R, x>+ y? < 1}. Observe that for fixed 3 and y (or ¥ and x) this region contains a set of
x-values (or y-values) that is open in R.

By Problem this implies that for (1, x, y) in the same region,

02 27 o7 62
ﬁ/o F(l/J.X,y)d?/l:/O 5 Wxy) dv,
62 2 2 62
672/0 F(lllyxy)’)dl//:/o 672F(1,b,x,y) di
and so
) 27 2 62
AU(X+I_y)— ﬁF(’L’),X,y)—‘raiyzF('L/)vx’y)dqu
But F(¢, x,y) = f(e¥)P(x + iy, e¥) and so
02 82 , .
o o (¥ ity —
ale'_(’/"xvy)‘F aygF(¢1X1y) f(e)AP(x + iy, e¥)=0

and so Au(x + iy) = 0, as desired.

(Problem 4050) Prove that if 0 < r < 1 then [2" P,(6) d6 = 1.
The function v(z) = 1 for all z is harmonic in C. Therefore, by |Lemma 7.3.2]and Problem we have

that ) )
1= v(re) :/ v(e’®) P.(0) do :/ P.(6) do
0 0

forall 0 <r<1andalldeR.

(Problem 4060) Prove that lim,_,;- P,(8) = 0 for all 6 # 2n7.

If § # 0 then —1 < cosf < 1. Thus 1 —2(1) cosf + 12 > 0 and so the rational function f(r) = P,(6) =
S argy 1S continuous at r = 1. Thus lim,_,;- P,(6) = P1(0) = 0.
(Problem 4070) Let 0 < § < 7 be a small positive number. Prove that lim,_,;- P,(8) = 0 uniformly for all
6 <0 <2m—4.

Because cos is monontonically decreasing on [0, 7], and because cos(2m — ) = cos6, we have that if
d <0 <2m— 9§ then cosf < cosd < 1. Thus sups_g.onr_s Pr(0) < P (6). Recall P.(6) > 0 forall § € R
and all0 < r < 1.

Because lim,_,;- P,(8) = 0, we have that lim,_,;- sups_gor_s |P-(6)] = 0 and so we must have that
P, — 0 as r — 1~ uniformly for 6 € (8,27 — ).

(Problem 4080) Let 0 < § < . Prove that lim, ;- [°, P.(6) d6 = 1.

(Problem 4090) Let u, f be as in Show that u(re’) converges to f(e®®) as r — 1~ uniformly
in 6.

(Problem 4100) Let u, f be as in [Theorem 7.3.4L Show that u is continuous on D. (This completes the proof
Theorem 7.3.4

of This differs from the previous problem in that the previous problem considers u(z) as z — e®
along a ray through the origin, while this problem considers u(z) as z — e® along arbitrary paths.)

(Problem 4110) Write an analogue to [Theorem 7.3.4|in an arbitrary disc. That is, let P € C, r > 0, and
f : OD(P,r) — R be continuous. Show that there is a function v that is harmonic in D(P, r), continuous on

D(P, r), and satisfies u(z) = f(z) for all z € dD(P, r). Can you write a formula for u in D(P, r)?

If z € D, define
1

27
i 1-
V(Z):g‘/o f(P+ree)|e’97



By [Theorem 7.3.4/ we have that v is continuous on D, harmonic in I and satisfies v(e/®) = f(P + re'®).

If we let u(z) = v(%(z — P)), a straightforward computation shows that v is harmonic in D(P,r) = {z €

C: %(z— P) € D}, continuous on D(P, r), and satisfies u(P + re’®) = v(e®) = f(P+ re®), thatis, u = f
on OD(P, r). We compute that

27 —(z — r 2
u(z) = v(i(Z— P)) 7 A —((z —PP))//lz “

which simplifies to
1 27 ) I’2 _ ‘Z _ P‘2
= — f(P+re®)——— db.
27r/0 (P+re )|P—|—re’9—z\2

(Problem 4111) Show that [Theorem 7.3.3|is valid if u is merely harmonic in D and continuous on D (rather
than being harmonic in an open superset of D). Also, write and prove an analogue in an arbitrary disc. That is,
if u is harmonic in D(P, r) and continuous on D(P, r), write a formula for u in D(P, r) in terms of u on dD(P, r).

u(z)

As in the previous problem, we use and a change of variables to see that
1 27 . r2 _ |z _ P|2
u(z) = — u(P+re®)——= "1 _4f
(2) 27r/0 ( )|P+re’9fz|2

if uis harmonic in D(P, R) for some R > r. Taking the limit as r — R~ completes the proof.

[Chapter 7, Problem 25] If u is harmonic in H = {x + iy : x € R, y > 0} and continuous on H, and if
lim|;| o0 t(z) exists (and is finite), then

for all x € R and all y € (0, 00).
Conversely, if f : R — R is continuous, if lim¢_,o f(t) = lim,—,_oo f(t) € R, and if we define

L1 f(t)=trs dt, 0,
u(x +iy) = w J oo £ )(x—t) +y y >
F(x), y=0,

then v is harmonic in H and continuous on H.

(Problem 4112) Suppose that f : R — R is bounded and continuous. However, we do not require that
lim¢_ oo () or limy_,_o f(t) exist. Show that if

L1 ft)—%—dt, y>0,
u(x+iy) = "ffoo ( )(X*t)2+y2 y,
f(x), y =0,

then we still have that v is harmonic in H = {x + iy : x € R, y > 0} and continuous on H.

(Problem 4113) Suppose that v and v are harmonic in some open set Q, that D(P, r) C §, and that u(z) = v(=2)
for all z € OD(P, r). Show that u(z) = v(z) for all z € D(P,r).

[Chapter 7, Problem 22] If u is harmonic in a connected open set Q and u = 0 in D(P, r) for some D(P,r) C Q
with r > 0, then u = 0 everywhere in Q.

(Problem 4114) Give an example of two harmonic functions that are equal on a set with an accumulation point
but are not equal everywhere.

(Problem 4115) Show that the zeroes of a real harmonic function cannot be isolated. That is, let Q@ C C be
open and let u : Q — R be harmonic. Let P € Q with u(P) = 0 and let r > 0. Show that u(z) = 0 for some
ze D(P,r)\ {P}.

7.4. REAL ANALYSIS

(Problem 4120) Let a < b and let f : [a, b] — R be a nonnegative continuous function that satisfies fab f=0.
Show that f(x) = 0 for all x € [a, b].



7.4. REGULARITY OF HARMONIC FUNCTIONS

Definition 7.4.1. Let Q2 C C be open and let h: Q — R be continuous. We say that h has the small circle mean

value property (SCMV property) if, for every P € €, there is some number ep > 0 such that D(P,ep) C Q and

2m

such that h(P) = 5= [7 h(P + £€™) d6 for all 0 < & < ¢p.

Recall [Theorem 7.2.5]: If u is harmonic in an open set Q, then u has the small circle mean value property,
and if P € Q then gp is the largest number such that D(P, ep) C Q.

Lemma 7.4.4. Let Q C C be open and connected. Let g be continuous on Q and satisfy the “small circle” mean
value property. Suppose furthermore that there is some P € Q such that g(P) > g(z) for all z € Q. Then g is
constant.

(Problem 4130) Prove Lemma 7.4.4.

Let E ={z € Q: g(z) = g(P)} = g '({g(P)}). Then E is relatively closed in Q because g is
continuous.
Let z € E. We then know that

for all 0 < r < £,. Rewriting, we have that

27
0= / g(P) — g(z+re®)dd
0

forall 0 < r <eg,.

Observe that () = g(P) — g(z + re®) is continuous and nonnegative because g(P) > g(w) for all
w € Q. Thus by Problem , we have that f(6) = 0 for all 6 € [0,27] and so g(z + re®) = g(P) for all
0 <r<eg,andall § € R. By assumption g(z) = g(P), so we have that D(z,e,) C E. Thus E is open.
Because E C Q is nonempty, open, and (relatively) closed, and € is connected, we have that E = Q and
so u(z) = u(P) for all z € Q.

in

(Problem 4140) Suppose that g is continuous on D(P, r) and has the “small circle” mean value property
D(P, r). Suppose further that g = 0 on OD(P, r). Show that g =0 in D(P, r).

Because D(P,r) is compact and g is continuous, there are points ¢, w € D(P,r) such that g(¢) >
g(z) > g(w) for all z€ D(P, r).

If ¢ € D(P, r) then g is constant by Lemma 7.4.4. Because g(z) = 0 for some z € D(P, r) (in fact all
z € OD(P,r)), if g is constant then g = 0.

If w € D(P, r), observe that h = —g is also continuous and has the SCMVP; thus, by Lemma 7.4.4, h
and thus g is constant. Again if g is constant then g = 0.

Finally, if ¢, w € @D(P, r) then

0=g(w)<g(z)<g(¢)=0

for all z € D(P,r), and so g = 0.

(Problem 4150) Suppose that g and h are continuous on D(P, r) and that g = h on dD(P, r). Suppose that
h is harmonic in D(P, r) and that g has the “small circle” mean value property in D(P, r). Show that g = h in
D(P, r) as well.

Let f = g — h. Then f is clearly continuous on E(P, r). Because h is harmonic, by [Theorem 7.2.5|it has

the mean value property in D(P, r). Thus, if z € D(P, r) and g, is as in the definition of SCMVP for g, we
have that

27 27

1 27 . 1 ]
f(z)=g(z) — h(z) = E/o g(z + pe®) do — 2/, h(z + pe’®) do

for all 0 < p < €;. Thus f has the SCMVP in D(P, r). Furthermore, f = 0 on dD(P, r), and so by the
previous problem, f =0 in D(P, r) as well.

=— | f ) de
om ), (2 +eet)



Theorem 7.4.2. Let Q C C be open. Suppose that g : £ — R is continuous and has the “small circle” mean
value property in Q. Then g is harmonic in €.

(Problem 4160) Prove Theorem 7.4.2.

Let P € Q. Then there is a r > 0 such that D(P,r) C Q. Observe that h is continuous on dD(P, r).
By Theorem 7.3.4 (or rather, by Problem [4110)) there is a function v : D(P, r) — R that is continuous on
D(P, r), harmonic in D(P,r), and satisfies u = h on dD(P, r). By Problem [4150, we have that h = u in

D(P, r) and so h must be harmonic in D(P, r) as well. This is true for every P € , so h must be harmonic
in all of Q.

Corollary 7.4.3. Let Q C C be open. Suppose that {hj}fil is a sequence of functions, each harmonic on €, and
that h; — h uniformly on compact subsets of 2. Then h is also harmonic.

(Problem 4170) Prove Corollary 7.4.3. Hint: Show that h has the “small circle” mean value property.
7.5. THE SCHWARZ REFLECTION PRINCIPLE

Lemma 7.5.1. Let ¥ C C be open and connected. Suppose that W is symmetric about the real axis; that is,
zeVifandonlyifze V. Let Q ={z € ¥ :Imz > 0}.
Let v : QMW — R be continuous. Suppose that v is harmonic in Q and that v(x) = 0 for all x € QNV = RNV.
Then there is a function v : ¥ — R that is harmonic in W and satisfies v = v in . Furthermore,

v(z), ze€Q,
v(z) =10, z€e NV,
—v(z), zeQ={weC:weQ}.

(Problem 4180) Let W, Q, and v be as in|Lemma 7.5.1

Sketch V. Label Q, ﬁ the set where v is harmonic, and the set where v is equal to zero.

(Problem 4190) Suppose Q C C is open and that v is harmonic on Q. Let w(z) = v(Z). Show that w is
harmonicon Q ={ze€ C:z € Q}.

This is an easy consequence of Problems [600] and 3910

(Problem 4200) Let V¥, Q, ﬁ v, and v be as in|Lemma 7.5.1] Show that V is continuous in V.

Let ® = QN WV and let & = {zeV:zZe d} Then ¢ and ® are relatively closed in W. Furthermore,

v:® — R is continuous by assumption. Let w(z) = —v(Z); then w : ® — R is continuous, and we have
that
, P,
o(z) = v(z), ze€ ¢
w(z), ze®.

If F C Ris closed, then because v and w are continuous we must have that v—1(F) and w™1(F) are relatively
closed in ® and ®, respectively. Because ® and ® are (relatively) closed in W we have that v~1(F) and
w~L1(F) are relatively closed in W. Thus their union is relatively closed. But V-1(F) = v 1(F) Uw~1(F),
and so V"1(F) is relatively closed in W. Recalling that this is equivalent to continuity completes the proof.

(Problem 4210) Suppose that v, ¥, and W are as in[Lemma 7.5.1] Show that V' is harmonic in W. This completes
the proof of [Lemma 7.5.1]

Let z € W. Then either z€ Q, z€ Q, or zE RN V. ~
If z€ Qorze Q, let r > 0 be such that D(z,r) C Q or D(z,r) € Q. By assumption, or by

Problem 4190|, ¥ is harmonic in Q and in Q, and thus in either case is harmonic in D(P, r). By

7.2.5|, we have that for every p with 0 < p < r, it holds V(z) = 5 027r V(z + pe®) db.




Now consider the case where z € R. By assumption W is open and so there is a r > 0 such that
D(z,r) C V. Let 0 < p < r. Because V is continuous on V, it is integrable, and so

1 21 ) 1 U ) 1 2 3 1 ™ ) 1 27 i
g/o V(z+pe®) d = g/o V(z+pe') dGJrg[r V(z+pe™®) do = g/o v(erpe’g)dGJrg/7r —v(z+pe %) d6.

Making the change of variables 9 = 27 — 6 in the second integral, we have that

1 27

. 1 /7 . 1 /[ .
o | V(z + pe®) do = g/o v(z + pe'®) df — > /0 v(z + pe ™)) do = 0 = V(z).

Thus v satisfies the SCMVP in W, and so must be harmonic by [Theorem 7.4.2] This completes the proof
of Lemma 7.5

[Chapter 7, Problem 1] Liouville's theorem is true for harmonic functions: if v : C — C is both bounded and
harmonic, then u is constant.

(Problem 4211) If u is harmonic in H = {x + iy : x € R, y > 0} and continuous on H, and in addition is
bounded, show that

4x+wy:1/w (t)—2L—dt

)
for all x € R and all y € (0, 00).

Theorem 7.5.2. Let ¥ and Q be as in Lemma 7.5.1. That is, let ¥ C C be open, connected, and symmetric

about the real axis. Let Q = {z € ¥ :Imz > 0}.
Let f : QNW¥ — R be continuous. Suppose that f is holomorphic in  and that Im f(x) = 0 for all x € 6QNWV.

Then there is a function f : W — R that is holomorphic in W and satisfies F = fin Q. Furthermore,

]2_\( ) f(Z), Zeﬁﬁw,
z) =< ¢ ~
f(Z), zeQ={weC:weQ}
(Problem 4220) Suppose Q C C is open and that f is holomorphic on Q. Let g(z) = f(Z). Show that g is
holomorphicon Q = {z € C:z € Q}.

Let f = u+ iv, where u and v are real functions. Let z = x + iy. If g(z) = f(Z), then h(x + iy) =
u(x —iy) —iv(x —iy) = U(x + iy) + iV(x + iy). Using the fact that the Cauchy-Riemann equations hold

for f, we have that
ou _ ou _ ov _ ov

O0x Ox 0y 0y

and
ou  Ou ov oV

By " oy ox  ox
Thus g satisfies the Cauchy-Riemann equations and so is holomorphic in Q.

(Problem 4230) Suppose that f is holomorphic in D(xg, r) for some xg € R and some r > 0. Suppose further
that f(x) is real for all x € (xo — r, xo + r) = D(xo, r) NR. Show that f(z) = f(Z) for all z € D(xo, r).

By the previous problem, g(z) = f(z) — f(Z) is holomorphic in D(xp, r). Because f(x) is real for all
x € RN D(xo, r), we have that g(x) =0 on RN D(xo, r), a set with an accumulation point. Thus g =0

in D(xo, r) and so f(z) = f(2).

(Problem 4240) Prove Theorem 7.5.2. Hint: Start with the special case where W is a disc centered at a point
on the real axis.

Let f be as in the statement of Theorem 7.5.2. By assumption fis holomorphic in Q, and by Problem 4220
f is holomorphic in Q = {z € W : Imz < 0}. We need only show that f is holomorphic in a neighborhood
of every x e VN R.



Let f = u+ iv where u and v are real functions; they are then harmonic in Q = {z € ¥ : Imz > 0} and
v=0on RNV. By we have that there is a function ¥ harmonic in W that equals v in Q.
If xo € RNV, thereis a r > 0 with D(xp, r) C W. Then there is a holomorphic function g : D(xg, r) — C

with Img = ¥ in D(xp, r). Then f — g is holomorphic and purely real in {z € D(x,r) : Imz > 0} and
also in {z € D(xo,r) : Imz < 0}, and so must be constant in each of those sets. Because f and g are
continuous on D(xo, r) we must have that f — g is equal to one constant in all of D(xo, r); thus ¥ must be
holomorphic in D(xo, r), as desired.

(Problem 4250) Suppose that f is holomorphic on H = {z € C : Imz > 0} and continuous on H and that
f(x) =0 for all 0 < x < 1. Show that f(z) =0 for all z € H.

7.6. REAL ANALYSIS

(Memory 4260) Let {x;}%°; be an increasing sequence of real numbers, that is, x; € R and x; < x;41 for all
J € N. Show that either x; — 0o or x; — x for some x € R.

Recall [Problem [1590]: If E is a set, (X, d) is a complete metric space, f, : E — X, and {f}22, is uniformly
Cauchy, then {£,}%; converges uniformly to some f : E — X.

7.6. HARNACK'S PRINCIPLE

(Problem 4270) Recall that if u is harmonic in D(P, R) and continuous on D(P, R), then for any 0 < r < R

and any 0 < 6 < 2,
R2 — r2

- 1 [ .
P i9 = — P R i 7(] .
uPret) 2'"/0 u(P+ Re )\Re”l‘—re’e|2 v
Show that
: R? —r? R—r
min - - —
0<6<2m0<y<2r |Re'¥ —re®|2 R+r
and

R2 — r2 R+r

max _ = )
0<6<27,0< <27 |Re”/’ _ re’9|2 R_r

First, if R, r, 6, and 9 are real, then
|Re'¥ — re| = |Re¥=0) — |

= \/(Rcos(lp —0) — r)2 + R2sin*(¢ — 6)
= +/R2 4 r2 — 2Rrcos(y — )

which clearly has a minimum value of v/R? + r2 — 2Rr = R — r (attained if § = ) and a maximum value
of VR?24+r2+2Rr = R+ r. (This is attained if y = 0+ ; if 0 < 6 < 27 then either § < 7 and so
Y=0+me[0,2n]orf > mandsoyp =60 —m € [0,2n]. In either case the maximum value R + r is
attained for some % in the given range.)

Thus,

R—r_,‘?2—r2 R2 — 2 Rz—rz_R+r

= < - < =
R+r (R+r)? = |Re®0 —r2~ (R-r)2 R-r
and the left-hand and right-hand bound, respectively, is attained at 6 = £+ 7 and 6 = .

Corollary 7.6.2. (The Harnack inequality.) Suppose that u is nonnegative and harmonic in D(P, R) and contin-
uous on D(P, R). If z € D(P, R) with r = |z — P|, then

R—r R+r
< <
R+rU(P)_U(Z)_ -

(Problem 4280) Prove Corollary 7.6.2.
(Problem 4290) Did we need the assumption that u was continuous on D(P, R)?

u(P).




No. If u is nonnegative and harmonic in D(P, R), then u is nonnegative and harmonic in D(P, p) and
continuous on D(P, p) for all 0 < p < R. We then have that

Pl u(P) < u(z) <

P
p+r _p—ru( )

for all p with r < p < R, and taking the limit as p — R~ completes the proof.

Theorem 7.6.3. (Harnack’s principle.) Let {uc}?2, be a sequence of real-valued functions harmonic in a
connected open set Q C C such that u1(z) < w(z) < w3(z) < --- for each z € Q. Then either vy — o
uniformly on compact sets or there is a function v : Q — R such that ux — v uniformly on compact sets.

(By|[Corollary 7.4.3] u is harmonic.)

(Problem 4300) In this problem we begin the proof of [Theorem 7.6.3] Let Q and uk be as in Theorem 7.6.3. Let
D(P, R) C Q. Suppose that lim;_,c ux(P) = 00. Show that ux — oo uniformly on D(P, r) for any 0 < r < R.

Define v = ux — u1. Then v, : © — R is harmonic, and v, > 0.
Fix some r € (0, R). Let M € R. By definition of ux(P) — o0, there is some K € N such that, if k > K,
then ug(P) > M.

We have that each vy is harmonic and nonnegative in D(P, R). Then, if z € D(P, r), then by Harnack’s
inequality, if k > K then

R—|z—-P
u(2) = vil(2) + 1(2) 2 e vk(P) + i (2)
R — R —
> M r—l—minulzl\/l r—max|u1\
R+r D R+r D

where the final term is finite because wu; is continuous and E(P, r) is compact, and where we have used that
if |z— P| <r <R then g;\l:;"\ < g;:. Thus ug — oo uniformly on D(P, r).

(Problem 4310) Suppose that limy_,c tux(P) < co. Show that {u}%; converges to some (finite) harmonic
function, uniformly on D(P, r) for any 0 < r < R.

(Problem 4320) Show that either limy_,o ux(z) = 0o for all z € Q or limy_,00 uk(z) < 0o for all z € Q.

(Problem 4330) Prove|Theorem 7.6.3

Suppose that limx_,eo tuk(z) = oo for all z € Q. Then if D(P,R) C Q then ux — oo uniformly on
D(P, R/2).

Let K C Q be compact. Then {D(P,R/2): P € K, R > 0,D(P,R) C Q} is an open cover of K. It
thus has a finite subcover K C UnN:1 D(P,, R,/2). We have that ux — oo uniformly on D(P,, R,/2) for
all 1 < n <N, and thus for all L € R there is a M,, € N such that if k > M, then ux > L in D(P,, R,/2).
Letting M = max{M, ..., M,}, we see that if k > M then u, > L in J\_, D(P,, Rn/2) D K, as desired.

7.7. REAL ANALYSIS

(Problem 4331) Suppose that u and v are both real-valued and continuous in a set Q. Let f(z) = max(u(z), v(z)).
Show that f is continuous in Q.



7.7. SUBHARMONIC FUNCTIONS

[Definition: Subharmonic functions] Let Q2 C C be open and let f : Q — R be continuous. Suppose that for
every D(P, r) C Q, we have that

1 2m .
F(P)< — | f(P+re?)de.
()*277/0 (P+re®)do

Then we say that f is subharmonic in Q.

[Definitioll: Superharmonic functions] Let Q C C be open and let f : Q — R be continuous. Suppose that
for every D(P, r) C Q, we have that

1 2m i
f(P)>— [ f(P+re®)de.
()_27T/0 (P+re®)de

Then we say that f is superharmonic in Q.
(Problem 4340) Show that f is subharmonic if and only if —f is superharmonic.

(Problem 4350) Suppose that f is a continuous, real-valued function in an open set Q C C. Show that f is
harmonic if and only if f is both subharmonic and superharmonic.

(Problem 4360) Suppose that f is subharmonic in an open set Q and that o # 0 is a nonzero real number.
Show that af is subharmonic if & > 0 and that af is superharmonic if a < 0.

(Problem 4370) Suppose that f and g are both subharmonic in an open set Q. Show that f + g is subharmonic
in Q. Is f — g subharmonic in Q7

(Problem 4380) Suppose that f is subharmonic and g is superharmonic in an open set Q C C. Show that f — g
is subharmonic in Q.

(Problem 4390) Suppose that v and v are both subharmonic in an open set Q. Let f(z) = max(u(z), v(z)).
Show that f is subharmonic in Q. (In particular, if u and v are real and harmonic then f is subharmonic.)

Let D(P, r) C Q. Without loss of generality we have that f(P) = u(P). Then

F(P) = u(P) < — /Oh u(P + rei®) df

T 27
because u is subharmonic. But u(P + re®) < max() = f() by definition of maximum, and so
2m 2
/ u(P 4+ re®)do < f(P+ re®®)do.
0 0

Combining the two estimates yields that
27
f(P) g/ fF(P+ re’®)do.
0
This is true for all P € Q and all r > 0 such that E(P, r) C Q, so f is subharmonic in Q.

(Problem 4400) Let Q C C be open and let f : Q@ — C be holomorphic. Show that u(z) = |f(z)| is subharmonic
in Q.

By the Cauchy integral formula (Theorem 2.4.2)), if D(P, r) C Q then
1 f(<)

f(P)=— d¢.
(P) 27i Jappry ¢ — 2
By definition of line integral
1 2T "
f(P)=— f(P ) dé.
(P) =5z [ F(P+re?)

By [Proposition 2.1.7} we have that

1
T on

1

27 27
|f(P)] / f(P+ reie)de‘ < 7/ |f(P + re®)| do
0 21 Jo




and so |f| is subharmonic.

(Problem 4410) Let Q C C be open and let v : Q — C be subharmonic. Let ¢ : R — R be nondecreasing and
convex, sothatif 0 < t < 1and a, b € R then ¢(ta+(1—1t)b) < tp(a)+(1—t)p(b). Show that v(z) = p(u(z))
is subharmonic in Q.

Suppose that D(P, r) C Q. Because ¢ is nondecreasing and u is subharmonic, we have that
1 27 .
v(P) = o(u(P)) < <p</ u(P + re) de).
2m 0
By Jensen's inequality,

27 27
<p<217r/0 u(P+re’6)d9> < % ; o(u(P + re®)) do

1 27 i
=5 ; v(P+ re’e) de.

This completes the proof.

[Chapter 7, Problem 46] If u is harmonic and ¢ is convex, then ¢ o u is subharmonic even if ¢ is not
nondecreasing.

(Problem 4420) Give an example of a function that is subharmonic in a domain Q but is not harmonic in that

domain.

Let f(z) = |z|. Then f is subharmonic in C by Problem [4400] But f is not harmonic in C because f is
not differentiable at 0, and harmonic functions by definition are C2.

(Problem 4430) [Redacted]

Proposition 7.7.7. Subharmonic functions satisfy the maximum principle. That is, suppose that Q2 C C is open
and connected, that f : Q — R is subharmonic, and that there is a P € Q such that f(P) > f(z) for all z € Q.
Then f is constant in .

(Problem 4440) Is there a minimum principle for subharmonic functions?

No; observe that the subharmonic function |z| has a minimum at z = 0 but is not constant.

(Problem 4450) Prove the following generalization of |Proposition 7.7.7 Let Q C C be open and connected.
Suppose that 7 : Q — R is continuous and satisfies the small circle sub-mean-value property: for every P € Q,
there is some €p > 0 such that D(P,ep) C Q and such that

1 27 .
f(P) < 7/ f(P+¢€e®)d forall0<e<ep.
™ Jo

Show that f satisfies the maximum principle in €.

Suppose that there is a P € Q such that f(P) > f(z) for all z € Q. We claim that f is constant.

To prove this, let E ={z € Q: f(z) = f(P)} = fY({f(P)}). Then E is relatively closed in Q because
f is continuous and {f(P)} is closed in R.

Conversely, suppose that z € E. Let 0 < r < g,. By the small circle sub-mean-value property,

1 2m i
f2)= 5 /0 F(z + re®) de.
Because z + re® € Q, we have that f(z + re’®) < f(P) by assumption on P, so

27 27
f(z) = %/O F(z + re'®) do < %/O F(P)d = F(P).



Since f(P) = f(z), we must have that all terms are equal and so in particular

1 27 ” 1 27
L aretydo= L [T rep
3 || fletre?)ao 2ﬂ/0 (P) d6

or
2T

f(P)—f(z+re®)do =0.
0
Let g(8) = f(P)—f(z+re’®). Then g is nonnegative, continuous, and integrates to zero, so by Problem [4120]
we have that g(6) = 0 for all 6.
Thus f(z + re®) = f(P) and so z + re’® € E forall 0 < r < ¢, and all § € R. Because z € E by
assumption, we have that D(z,¢,) C E and so E is open. Thus, E is nonempty, open, and relatively closed,
and so because €2 is connected we must have that Q2 = E.

Proposition 7.7.4. Let Q C C be open and let f : Q — R be continuous. Then f is subharmonic (in the

sense given in these lecture notes) if and only if, whenever D(P, r) C Q, h is harmonic in D(P, r) and continuous
on D(P,r), and h > f on AD(P, r), we have that h > f in D(P,r).

(Problem 4460) [Redacted]

(Problem 4470) Begin the proof of|Proposition 7.7.4|as follows. Suppose that 2 C C is open and that f : 2 — R
is continuous. Suppose further that whenever D(P, r) C , h is harmonic in D(P, r) and continuous on D(P, r),

and h > f on OD(P, r), we have that h > f in D(P, r). Prove that f is subharmonic in the sense that f satisfies
the sub-mean-value property

1 27 i
fF(P)< — | f(P+re®
()727T/0 (P+re®)df

whenever D(P, r) C Q.
(Problem 4480) Complete the proof of [Proposition 7.7.4| and strengthen the result as follows. Let Q C C be
open. Suppose that f : © — R is continuous and satisfies the small circle sub-mean-value property in Q (as

in Problem [4450). Show that whenever D(P,r) C Q, h is harmonic in D(P, r) and continuous on D(P, r), and
h > f on OD(P,r), we have that h > f in D(P, r).

Choose some such P, r, and h. Then f — h satisfies the small circle sub-mean-value property because h
satisfies the full mean value property. Therefore, by Problem we have that f — h satisfies the maximum
principle. Because D(P, r) is compact, this implies that suppp ) (f —h) < maxap(p,)(f —h) < 0, as desired.

7.7. THE DIRICHLET PROBLEM

[Definition: The Dirichlet problem] Let Q C C be a nonempty connected open set. We say that the Dirichlet
problem is well posed on € if, for every function f defined and continuous on 952, there is exactly one function u
that is harmonic in Q, continuous on €, and such that v = f on 09Q.

(Problem 4490) Give an example of an unbounded domain 2 and two distinct functions u and v that are
harmonic in €, continuous on £ and equal zero on 052.

Let Q = {z € C:Rez > 0}, let u(z) =0, and let v(z) = Rez. It is straightforward to verify that u, v,
and (Q satisfy the desired conditions.

(Problem 4500) Prove that we have uniqueness for the Dirichlet problem in any bounded domain; that is, show
that if Q C C is bounded, if u and v are both harmonic in Q and continuous on Q, and if u = v on 89, then
u=v in €. Clearly explain how you used the fact that Q is bounded.

(Problem 4510) Let 0 < r < 1. Let u(z) = = log|z|. Show that u is harmonic in the annulus Q =

log r

D(0,1)\ D(0, r), continuous on Q, and satisfies u(e™®) = 0, u(re®®) =1 for any 0 < § < 2.
(Problem 4520) [Redacted)]




(Problem 4530) Let Q = D(0,1) \ {0}. Suppose that u is harmonic in Q, continuous on €, and that u = 0 on
0D(0,1). Prove that u(0) = 0. Is the Dirichlet problem well posed in Q7

Definition 7.7.8. Let Q C C be open and let P € Q. Suppose that the function b : Q — R has the following
properties.

(i) b is continuous on Q,

(i) b is subharmonic in €,

(iii) b(z) <O forall ze Q,

(iv) {z €0Q: b(z) =0} = {P}. (Thatis, b(P) =0 but b(z) < 0 for all other values of z € 99.)

Then we say that b is a barrier for Q at P.

Theorem 7.8.1. Let Q C C be a nonempty bounded connected open set. The Dirichlet problem is well posed
in Q if and only if, for every P € 012, there is a function bp that is a barrier for Q at P.

(Problem 4540) If b is a barrier for Q at P, show that b(z) < 0 for all z € Q.
Example 7.7.9. The function b(z) = Rez — 1 is a barrier for D at 1.

Example 7.7.10. Let Q C C be a nonempty bounded open set. Let P € 8Q satisfy |P| > |z| for all z € Q. Then
the function b(z) = Re(5z) — 1 is a barrier for Q at P.

Example 7.7.12. Suppose that Q C C is open and P € 02. Suppose that there is an r > 0 such that there
exists a barrier by for QN D(P, r) at P. If £ > 0 is small enough, then the function

e if ze Q\ D(P,r),
#(2) = {max(—s, bi(z)) ifz€QND(Pr)

is a barrier for Q at P.

(Problem 4550) Prove that the function b, in [Example 7.7.12]is indeed a barrier for Q at P.

(Problem 4560) State and prove the converse to Example 7.7.12.

(Problem 4570) Show that there is a barrier for the domain Q = C \ [0,00) = {re®® : r >0, 0 < § < 27} at
the point P = 0.

Example 7.7.11. If Q C C is an open set, P € 09, and C\ £ contains a line segment with one end point at P,
then there exists a barrier for Q at P.

(Problem 4580) Show that the barrier of [Example 7.7.11| exists. You don't have to give an explicit formula for
the barrier.

(Problem 4590) Let Q = D\ {0}. Show that there is no barrier for Q at 0. Hint: Suppose that b satisfies all
of the properties of a barrier except that b(0) < 0 instead of b(0) = 0. Show that b may be bounded above by a
suitable modification of the harmonic function in Problem [4510| and see what you can conclude about b.

7.8. REAL ANALYSIS

(Memory 4600) Let (X, d) and (Y, ) be metric spaces. Suppose that X = FUD, where F and D are (relatively)
closed. Let f: X — Y be a function. Suppose that f}F and f’D are both continuous. Then f is continuous.

7.8. THE PERRON METHOD AND THE SOLUTION OF THE DIRICHLET PROBLEM

Recall [Theorem 7.8.1]: Let Q C C be a nonempty bounded connected open set. The Dirichlet problem is
well posed in € if and only if, for every P € 0%, there is a function bp that is a barrier for Q at P.

(Problem 4610) Prove the “only if” direction of [Theorem 7.8.1f Suppose that the Dirichlet problem is well
posed in Q and P € 09 and construct a barrier for Q2 at P.

Let f(z) = —|z— P|. Then f : 0Q — R is continuous, f <0 on 9, and f(z) =0 if and only if z = P.
Let bp be the solution to the Dirichlet problem with boundary data f; by assumption the Dirichlet problem
is well posed and so such a solution must exist. By definition of the Dirichlet problem, bp is continuous on

Q, harmonic (therefore subharmonic) in Q, and satisfies bp = f on 9 and therefore bp(P) = 0, bp(z) < 0



for all z € 0\ {P}. Since Q is bounded, by the maximum principle we have that bp < 0 in Q as well as
on the boundary. Thus bp is a barrier for Q at P.

(Problem 4620) Let Q C C be a nonempty bounded connected open set and let f : Q — R be continuous.
Let M = maxagq |f|. Let

S ={y¥ € C°(Q) : ¥ is subharmonic in Q and satisfies ) < f on 8Q}

where C°(Q) is the set of all continuous functions on Q. Then:

e The constant function —M is in S. -
e Y(z) < Mforallyp € Sandall z€ Q.

(Problem 4630) Let S, f, Q be as in Problem and define

u(z) = sup{y(z) : ¥ € S}
Then —M < u(z) < M (and u(z) exists) for all z € Q. Show that u(P) < f(P) for all P € Q.

(Problem 4640) Let P € 002 and let bp be a barrier for Q at P. Let £ > 0. Show that there exists a C > 0
large enough that

f(P)—¢g/24+ Cbp(z) < f(z) < f(P)+¢&/2 — Cbp(z)
for all z € 092.

Because f is continuous, there is a § > 0 such that if z € 0Q and |z — P| < §, then |f(z) — f(P)| < g/2.
The set 0Q\ D(P, §) is closed and bounded, thus compact; because bp is continuous, it attains its maximum
on this set. Let u = —maxaq\p(p,s) bp; because P ¢ Q2 \ D(P,d), we have that bp is negative on this set
and so u > 0.

Let C > %

If z € 82 N D(P, ), then

[f(z) — f(P)| <e/2<¢g/2—Cbp(z2)
by definition of § and because C > 0 and bp(z) < 0.
If z€ 0Q\ D(P,9), then

f(z) — F(P)| < |f(2)| + |F(P)| < 2M < 2M_”Z(Z) < —Cbp(z) < £/2 — Chp(2)

by definition of w.
In either case |f(z) — f(P)| < €/2 — Cbp(z), as desired.

(Problem 4650) Let P € 89 and let € > 0. Show that there is a § > 0 such that if |z — P| < § and z € Q then
u(z) > f(P) — . (This implies in particular that u(P) = f(P) but also implies that u is lower semicontinuous
at P.)

(Problem 4660) Show that u is continuous at P for all P € 9.
(Problem 4670) Let ¢ € S and let D(P, r) C Q. Define

(W)_ 'llJ(W), i . W¢ D(P, r)y
o(w) = L 02w¢(P+rei9)% do, w e D(P,r).

Show that ¢ is also in S and that ¢(¢) > ¥(¢) for all ¢ € Q.

(Problem 4680) Let D(P,r) C  for some r > 0. For each w € D(P,r), show that there is a sequence of
functions {p,,,}52,, all of which are in S, harmonic in D(P, r), and nondecreasing on €, such that u(w) =

limy_ o0 ‘Pw,n(W)-

By definition of supremum, for each n € N there is a 6,,,, € S such that u(w) — 1 < 8, o(w) < u(w).
Define ¥,,,(¢) = max{f,k(¢) : 1 < k < n}. Then ¥, , is continuous on Q by Problem and is
subharmonic in Q by Problem Furthermore, v, ,(¢) < £(¢) for all ¢ € 8Q because 6, x(¢) < ()
for all { € 0. Thus ¥, , € S.



Construct @, from ¥y, as in Problem 4670 with % = ., ,. Then each ¢, , is harmonic in D(P, r)
by construction, ¢, , € S by Problem

Because ¢, , € S, we have that u(w) = supycs¥(w) > @un(w). But un(w) > Py n(w) by
Problem and P, n(w) > O,n(w) by definition of %y, . Thus u(w) — 1 < @ 4(w) < u(w) for all n,
and so @y, n(w) = u(w).

Finally, ©u »n < @uw.ne1 on Q\ D(P, r) because ¢y n = Puw.n on that set. But ¢, , and @, ,+1 are
both harmonic in D(P, r) and continuous on D(P, r), and 0w, n < @w.nr1 on OD(P, r), so by the maximum
principle @u.n < @w.ni1 in D(P,r) as well, and thus on all of Q, as desired.

(Problem 4690) For each w, z € D(P,r), show that there is a sequence of functions {¢u -0}, all of
which are in S, harmonic in D(P, r), and nondecreasing on €, such that u(w) = lim,_e0 Qw zn(w), u(z) =
limn—sc0 Pw,z,n(2), and if ¢ € Q then ¢4 () = @2(¢) and @-,u (<) = ow(Q).

Recall [Theorem 7.6.3]: (Harnack’s principle.) Let {ux}$2; be a sequence of real-valued functions harmonic
in a connected open set Q C C such that u;(z) < wp(z) < w3(z) < --- for each z € Q. Then either vy —
uniformly on compact sets or there is a harmonic function v : Q — R such that u, — u uniformly on compact
sets.

(Problem 4700) If w, z € D(P, r), let
“W(C) = nll—>ngo (PW,H(C)' uz,W(C) = lim (pz,w,n(C)-

n—oo

Then u,, and u,,, are both harmonic in D(P, r). Show that u,({) = uz,w(¢) for all { € D(P, r).
(Problem 4710) Complete the proof of [Theorem 7.8.1

We have uniqueness of solutions to the Dirichlet problem by Problem We need only establish
existence. Let f : Q2 — R be continuous and let u be as in Problem Then u = f on 99 by
Problem and v is continuous at P for every P € 9§ by Problem

Thus, we need only show that u is harmonic (thus continuous) in Q. Let D(P,r) C Q. Because
harmonicity is a local property, it suffices to show that v is harmonic in D(P, r) for all such D(P, r).

For any z, w € D(P, r), let u, and u;,, be as in Problem 4700} Then u(w) = u,,(w) by Problem
and definition of u,. But u,(w) = uy p(w) = up(w) by Problem Thus u = up in D(P,r). But
up is harmonic in D(P, r) by Harnack’s principle (as observed in Problem [4700), and so u is harmonic in
D(P, r), as desired.

7.9. REAL ANALYSIS

Memory 4720) (The Bolzano-WeierstraB theorem.) Suppose that {z,}%°, C R is bounded. Then there is a
( n=1
subsequence {z,, }92; that converges as k — oo.

7.9. CONFORMAL MAPPINGS OF ANNULI

Theorem 7.9.1. Let0<nn <Ry <ooand0<n<Ry<oo. Let L eCand R, eC. Let Ay ={z€C:n <
|lz—Pi| < Ri}and A ={z€C:rn <|z— P < Ry} Then A; and A, are conformally equivalent (meaning
that there is a holomorphic bijection ¢ : A; — A) if and only if R1/r = Ra/r.

[Chapter 7, Problem 37] Let A= {z < C:1/R < |z| < R} be an annulus for some R > 1. Find all conformal
self-maps of A.

(Problem 4730) Prove the straightforward direction of Theorem 7.9.1; that is, assume Ry/r = Ry/r, and prove
that A; and A; are conformally equivalent.

Define ¢(z) = P> + %(Z — P1). pis clearly a holomorphic bijection from C to C, so we need only show
that lp(Al) = A2.
Because R,/R; is a positive real number, we have that n < |z — Pi| < Ry if and only if g—frl <

g—ﬂzf Pi| < R2. But |p(z) — P3| = g—ﬂzf Pi], and because Z- = 2, we have that r; <[z — P| < Ry if

and only if r» < |p(z) — P2| < Ry, thatis, z € A; if and only if ¢(z) € Ay, as desired.



(Problem 4740) Suppose that Theorem 7.9.1 is true in the special case where and P, = P, = 0. Show that
Theorem 7.9.1 is true for any P, P, € C.

(Problem 4750) Suppose that there exists some ¢ : A; — A, that is a holomorphic bijection. Let z,, € 0A;.
Let {z,}52, C Aq with z, — z,. Then {p(2,)}52; C A is bounded, so by the Bolzano-WeierstraB theorem
there is a subsequence {z,, }%2; such that ¢(z,,) converges. Show that ¢(z,, ) converges to a point in 8A,. Hint:
You only need that ¢ and ¢~ are continuous, not that they are holomorphic.

Let ¢(2n,) — Woo. By definition of A;, because {¢(z,)} C Az, we must have that we, € Ay.

Suppose Weo & OAs. Then wy € Az, and so there is a v € A; with ¢(v) = we. We have that =1 :
Ay — Ay is continuous. Therefore, 0~ (¢(z,)) — @} (Wwo) because ¢(z,) = Weo. But 0~ (¢(z,)) = z,
and so z, — v. But z, — zo and so v = z,,. This is a contradiction because v € A; and z,, € 0A; and
Aj is open.

(Lemma 4760) Let
A1:{Z€(C2r1<|2‘<R1}, AQZ{ZEC:I‘2<|Z|<R2}

forsome 0 < n < Ry <00, 0< rn < R, <oo. Suppose that ¢ : A; — A, is a holomorphic bijection.
Let {z,}%; C A1 and {{m}_; C A; with

z, — R1, Cm — 1.
By passing to subsequences, we may assume that {¢(z,)}%; and {p({m)}5>_; also converge. By Problem
either |¢(z,)| — Ra or |¢(z,)| — r2,
either [p(¢m)| — R2 or [@(¢m)| — r2.
We then have that

(a) If |¢o(z,)] — R>, then ZILmyy[(p(Z)| = R, for all w € 8D(0, Ry).
(b) If |¢(zn)| = ro, then lim |p(z)| = r, for all w € 8D(0, Ry).
(€) TF |@(¢m)| — Ra, then lim [o(2)] = R, for all w € 3D(0, ).
(d) If |@o(¢m)| — 12, then leﬁww\tp(zﬂ =n, for all w € 8D(0, r1).

(Problem 4770) We now begin the proof of Lemma |4760p. Let r» < p < Ry. Let s, = sup{|p~(pe®®)| : 0 <
6 <27}. Show that 1 <'s, < Rjy.

(Problem 4780) Let r; < p < Ry. Let Q) = {z € Ay : [p(2)| < p} and let QF = {z € A, : |p(2)| > p}. Show
that QF and Q are disjoint connected open sets.

(Problem 4790) Suppose that |p(z,)] — R2. Show that |¢(z)| > p for all z € A; with |z| > s,.
(Problem 4800) Suppose that |p(z,)] — R2. Show that lim,_., |¢(z)| = Rz for all w € 8D(0, R1).

Let w € 8D(0, Ry). Choose £ > 0; we may assume without loss of generality that € < Ry — rp. Let
p= Rx—¢; then n < p < Ry. Let s, be as in Problem then p <s, < Ry. Let 6 = Ry —s,, 506 > 0.

If z€ Ay and |w — z| < §, then |z]| > |w| —§ = Ry — (R1 — s5,) = s, by the triangle inequality, and so
lp(z)| > p = Ra—¢ by the previous problem. Because ¢ : A; — Ay, we have that |p(z)| < supsca, [¢| = Rz,
and so Ry — & < |p(z)] < Ry for all z € Ay with |z — w| < é. This completes the proof.

(Fact 4810) We can similarly prove the other three cases of Lemma [4760

(Problem 4820) Let Q C C be open and let f : Q — C\ {0} be holomorphic. Show that u(z) = log|f(z)| is
harmonic in Q. (Note that Q may not be simply connected, and so cannot be applied in Q.)

Suppose that D(P,r) C Q. Then D(P,r) is simply connected, and so we can apply [Lemma 6.6.4] in
D(P, r). Thus there is an h: D(P, r) — C holomorphic such that f(z) = e"®) for all z € D(P, r). Taking

the modulus and then the logarithm, we have that log |f(z)| = log|e/?)| = log eRe"(?) = Re h(z) for all
z € D(P, r). Because h is holomorphic we have that Re h(z) is harmonic in D(P, r). Thus u is harmonic in



D(P, r) for all D(P, r) C Q. Because harmonicity is a local property, this implies that v is harmonic in Q,
as desired.

(Problem 4830) Let A;, A, and ¢ be as in Lemma Let u(z) = log|p(z)| for all z € Ay, u(z) =
lime— [@(¢)| for all z € OA;. Then u is continuous on A; and harmonic in A;. Show that there exist constants
a and B such that

log |¢(2)| = u(2) = & + Blog 2|
for all z € A;.

(Problem 4840) Let Q = A; \ (—o0, 0) be the annulus with the negative real numbers deleted. Then the function
log can be defined such that it is holomorphic on Q. Show that there is a w € C such that ¢(z) = wef'*eZ for
all z € Q, where B is as in the previous problem.

(Problem 4850) Given that ¢ is continuous on A; (and so continuous up to the negative reals), what must be
true about the number B? Given that ¢ is injective on A; (and in particular on {e’® : —w < 8 < 7}), what must
be true about the number 87

[Chapter 6, Problem 31] If f is a fractional linear transformation, ¢ and C are concentric circles, and f(c) and
f(C) are also concentric circles, then the ratio of the radii of ¢ and C is equal to the ratio of the radii of f(c)
and f(C).

(Problem 4860) Prove [Theorem 7.9.1

8.1. Basic CONCEPTS CONCERNING INFINITE SUMS AND PRODUCTS
[Chapter 8, Problem 2] Let {A,}%2, be a sequence of complex numbers. Suppose Ax # 0 for all k and that
limpy_ oo ]_[sz1 Ay exists and is a finite nonzero complex number. Show that limy_.o, Ax = 1.

(Problem 4870) Do we still have that limy_,o Ax = 1 if we allow limpy_ e ]_[,’(V:l Ay to equal zero? Do we still
have that limg_,o Ax = 1 if we allow Ay to equal zero for some k?

No. For example, if we take Ay = 1/2 for all k then limy_ ]_[kN:1 Ak =0 but limg_y00 Ak = 1/2 £ 1.
If A, = 0 for some n then limy_o ﬂtl Ay = 0 regardless of the values of Ay for k # n.

Definition 8.1.1. Let {a,}%; C C be a sequence of complex numbers. We say that the infinite product

[Ta+an)
n=1
converges if there is a Ny € N such that
N
lim (1+a,) € C\ {0}
N— oo =Ny

(Problem 4880) Show that if [T, (1+ a,) converges, then (14 a,) # 0 for all but finitely many n, and a, — 0.
Lemma 8.1.2. If 0 < x <1, then 1+ x < e&* <1+ 2x.
(Problem 4890) Prove Lemma 8.1.2.

Let f(x) =1+x, g(x) =

We compute that f'(x)
exp’(x) > f'(x) for all x >
all x > 1.

We compute that exp(0) = 1 = g(0), exp(1) = e < 3 = g(1), and exp(2) = €* > 5 = g(2). Because g
and exp are continuous, by the intermediate value theorem there is an xo € (1,2) with exp(xp) = g(x0)-

Now, exp”(x) — g"(x) = exp(x) > 0 for all x. This implies that exp’(x) — g’(x) has at most one zero.
If exp(y) = g(y) and exp(z) = g(z), then by Rolle’s theorem there is an x between y and z such that
exp’(x) = g’(x). Thus, we can have exp(z) = g(z) for at most two values of z. In particular, exp —g # 0 on
(0, xp). Again by the intermediate value theorem we must have either that exp(x) > g(x) or exp(x) < g(x)

=1 + 2x. Observe that f(0) = exp(0) = g(0).
=1, g'(x) = 2, and exp’(x) = exp x. Because exp is increasing, we have that
0, and so by the mean value theorem, exp(x) — f(x) > 0 or exp(x) > 1+ x for



for all x € (0, xp); since exp(1) < g(1) we must have that exp(x) < g(x) for all x € (0,x) D (0,1]. Since
exp(0) < g(0) we have exp(x) < g(x) =1+ 2x on [0, 1], as desired.

Corollary 8.1.3. If {ax}]_; C C with |ax| < 1 for each 1 < k < n, then exp(% Y |ak|) < TTez (1 +ak]) <
oo (i )
(Problem 4900) Prove Corollary 8.1.3.

By Lemma 8.1.2, and by monotonicity of products of positive real numbers,

n

TTexe (51 ) =TT+ laul) < T expllo.

k=1
Applying properties of exponents completes the proof.

(Problem 4910) Suppose that {ac}$2; C C. Show that either []y—,(1 + |ak|) converges to a positive real
number or limy_,eo ]—[2/:1(1 + |ak|) = o0.
Corollary 8.1.4. If {a,}°, C C with Y 7, |ak| < oo, then JTi>,(1 + |ak|) converges.
(Problem 4920) Prove Corollary 8.1.4.
Recall from real analysis that, if 3 ;2 |ak| < oo, then limy_o0 ax = 0. In particular there is a Ny € N

such that if k > Ng then |ax| = |ax — 0] < 1.
By [Corollary 8.3 if N > No then

ﬁ (1+]ak]) < exp(i |3k|> < eXp<§|ak|) < o0

k=N k=Ny

and so the partial products are uniformly bounded by a finite number. This means that they cannot converge
to 0o, and so must converge to a finite positive number.

Corollary 8.1.5. If {a,}$°, C C and [T (1 + |ak|) converges, then Y 72 | |ak| < o0.
(Problem 4930) Prove Corollary 8.1.5.

Let L = limp_oo [[4—1(1 + |ak|). By assumption L is finite; because the sequence of partial products is
nondecreasing, we must have that L > [],_,(1 + |ax|) for any n € N.

We claim that [T,_;(1+ |ak|]) > 1+ Y /_;|ak|. This is clearly true if n = 1. If it is true for some n,
then

n+1 n n
TTCL+ Jakl) = (4 Jansal) T + o) = (1 + [anial) (1 + D faxl)
k=1 k=1 k=1
=14 (X lal) + lansal + lansal D Jax
k=1 k=1

n+1

n
>1+ (Z \ak|> Flanal =1+ fa
pas pa

and so the claim is true by induction. Thus Y ] |ax| < L —1 for all n € N, and so the series Y 77, |ax|
converges.

Theorem 8.1.7. If []7~ (1 + |ak|) converges, then []r— (1 + ax) converges.
(Problem 4940) (This is the first step in the proof of Theorem 8.1.7.) Let {ax}?>; C C. Show that if

N>M >1, then \ \
‘(ﬂ(l-ﬁ—ak)) - 1‘ < <kUM(1+ |ak|)> —1.

k=M



Hint: Use induction.

Fix some M > 1.

If N = M, then
M M
(TTa+a) —1':(1+aM)—1|:aM:(1+|aM|)—1: (TTa+isn) -1
k=M k=M
Now, suppose that N > M and the inequality is true for N — 1. Then
N N—-1
‘(]‘[(Hak)) _1’ = ‘(1—|—aN)(ﬂ(1—|—ak)> _1’
k=M k=M
N—-1
< ‘(1+aN)(ﬂ(1+ak)> —1—an|+ |an|
k=M
N—1
=1+ ap| <ﬂ(1+ak)> 1‘+|3N|
k=M

<+ aN|)](ﬁ(1+ak)) S

k=M
By the induction hypothesis,

‘(]_N[(“Fak)) - 1’ <(1+ 3N|)’<I\ﬁ(l+ak)> — 1' + |an]

7 <+ aNI)<<i:£(1+ ) ~1) +law
_ <(INL(1+ |ak|)> 1o |aN|> +|an|
_ <k]__NL(1+ ak|)> 1

as desired; thus, by induction the inequality is true for all N > M.

(Problem 4950) Show that if T];2; (14 |ax|) converges, then there is a Ny such that if n > Ng then 1+ a, # 0.
(Problem 4960) Show that if [y, (1 + |ak|) converges and Nj is as in the previous problem, then

(TMa+a)s,
k=N

is a Cauchy sequence and so converges.

Choose some € > 0.
If TT%o,(1 + |ak|) converges, then the sequence of partial products is Cauchy and so there is some N

such that if N > M > Nj then
M

N
T+ o) =TT+ lah| <&
k=1 k=1
Now, if N > M > Ny then

N M N M
TTa+a0-TTa+ad| = |( TT @+a0) - 1|[TTC+a0)
k=1 k=1

k=1 k=M+1



by the above remarks. By Problem

< ((k ]jﬂ(u al)) 1 )(ﬁ 1+ Ja]))
- ((]j L+ |ak])) - ﬁ(1+|ak|)>

as desired.

(Problem 4970) Show that if [];>,(1 + |ak|) converges and Ny is as in the previous problem, then

N
,\)21,‘\10 ﬂ (1—|—ak)’ >0
k=Nq

and so ]_[f:,\,o(l + ax) does not converge to zero. This completes the proof of [Theorem 8.1.7

By |Corollary 8.1.5| we have that 3 32, |ax| < co. Let K be such that 3 32 ., [ax| < In3.
Let m = min g:No(l + ak)‘ cNg < N < K}; because 1 + ax # 0 for all k > Ny we have that
0 < m< o and

“_N[(l—i-ak)‘Zm

k=N
forall Np < N < K.
Suppose that N > K. Then by Problem

“_[ 1+ak'—’” 14 ax) H ﬂ (1+ ax) —1+1'

k=No k=K+1

By [Corollary 3.1.3)

k=Ny k “+1
> m
> m(27exp( Z \ak|)> > >
k=K+1
Thus,
N m
inf 1 | >0
ngNo ”( +ak) Z5 >0
=No
as desired.

Corollary 8.1.8. If 3 [, |ak| converges, then [],;2,(1+ ax) converges. (This follows immediately from [Corollary,
8.1.5| and [Theorem 8.1.7] so you may use the result at once.)

[Definition: Notation for multiplicity] If Q C C is open, f : Q — C is holomorphic, z € Q, and f is not
identically zero in the connected component of Q containing z, then we let mults(z) be the multiplicity of the
zero of f at z. For convenience, if f(z) # 0 we take multf(z) = 0.




Theorem 8.1.9. Let Q2 C C be open. Let f, : Q — C be holomorphic. Suppose that

oo
> |l
n=1

converges uniformly on compact sets.
Then:
]_[,':1:1(1 + f4(z)) converges to some function F : Q — C, uniformly on all compact sets.
The limit function F is holomorphic in §.
If zy € Q then F(z) =0 if and only if 1 + f,(z) = 0 for some n € N.
If zp € Q then 1 + f,(20) = 0 for at most finitely many n € N.
If F=0then 1+ f, =0 for some n € N.
If F #£ 0 and F(z) = 0 then the multiplicity of the zero at z of F is the sum of the multiplicities of the
zeroes of the functions 1 + £, at z.

(Problem 4980) Let f, and Q be as in [Theorem 8.1.9] Show that if K C Q is compact then sup{|f,(z)| : n €
N, z € K} is finite (that is, that the functions {f, : n € N} are uniformly bounded on K).

(Problem 4990) (This is the first step of the proof ofw Let f, and Q be as in [Theorem 8.1.9
and let K C Q be compact. By |Corollary 8.1.8} if z € K then ]2 ;(1 + f,(z)) converges. Show that there is a

L € R such that

N

T+ fu2)| <L

n=1
for all z € K and all N € N.
(Problem 5000) Let 7, and K be as in Problem Show that the sequence {ﬂnN:1(1+f,,(z))}TV°:1 is uniformly

Cauchy, and thus converges uniformly.

Fix € > 0. Let P be such that 3 °° . |f,(z)| < € for all z € K; by uniform convergence of Y 7, |f,(z)],
we have that P exists and does not depend on z.
Suppose M > N > P. If z € K then

H_Il—i—fz) ﬂ(1+f())’ “_[1+f )H]‘[ 1+ fo(z _1‘

<1 ﬁ (1+h(2)) 1)
< 1 (e f f(2)]) — 1)

< Lew(Y 16E)) ~1) < L(e - 1)
n=P

by [Corollary 8.1.3]and Problems[4990] and [A940] Because exp is continuous at 0 and exp0 = 1, we may make
the right hand side arbitrarily small by choosing € appropriately; thus, we have that {]_[n 1+ 1(z }N 1
is uniformly Cauchy.

(Problem 5010) Let f, and Q be as in [Theorem 8.1.9 What do |Corollary 8.1.8| and Definition 8.1.1 tell you
about f,(2)?

By |Corollary 8.1.8) we have that for each z € Q, the limit limy_co ﬂ,’:’zl(l + f2(2)) exists. Furthermore,

thereis a Np = No(z) € N such that 1+17,(z) # 0 for all n > Ny(z), and that limy_,c ]_[HNZNO(Z)(1+fn(z)) €
C\ {0}. In particular, limy_e0 ]_[val(l + fo(z)) = 0 if and only if 1 4 f,(z) = 0 for at least one n € N.



(Problem 5020) Let Q C C be open and connected and let S C Q be a set with no accumulation points in €.
Show that S is a countable set. Conclude that if f : Q — C is holomorphic and not identically zero, then f has
at most countably many zeroes.

Because S C Q, we have in particular that no z € S is an accumulation point for S. Thus for each z € S
there is a r, > 0 such that D(z, r;) \ {z} contains no points of S.

By density of points with rational coordinates, there is some w, such that Rew, and Im w, are both
rational and such that |z — w,| < ir..

Ifz,{ €S thenz ¢ D(¢{, re) and ¢ & D(z,r;), and so |z—¢| > max(re, 1) > 2re + 2r,. By the triangle
inequality |w, — we| > |z —¢| — |z — w;| — |¢ — w¢| > 0 and so w, # wg.

Thus there is an injective function ¢ from S to Q + iQ = {x + iy : x,y € Q} given by p(z) = w,.
Because Q + iQ is countable, S must be countable as well.

By [Theorem 3.6.1} if f is holomorphic in Q and not identically zero, then S = {z € Q : f(z) = 0} has

no accumulation points in Q; thus S contains countably many points, as desired.

(Problem 5030) Let f, and Q be as in [Theorem 8.1.9, Let F(z) = []oo,(1 + f,(z)). Suppose that f, # 0 for

any n € N. Show that F has at most countably many zeroes, and so cannot be identically zero.

By Problem |5010} F(z) = 0 if and only if 1+ f,(z) = 0 for some n € N. Thus

{zGQ:F(z):O}:G{ZGQ:l—i—fn(z):O}.

By the previous problem, each of the sets on the right hand side is countable, and so their union is countable.

(Memory 5040) Let Q, f, and F be as in [Theorem 8.1.9 Then F(z) = 0 if and only if 1+ f,(z) = 0 for

some n > 1. Furthermore 1 + £,(z) = 0 for at most finitely many values of n.

(Problem 5050) Let Q, 7, and F be as in [Theorem 8.1.90 Suppose that F is not identically equal to zero. Let
79 € Q and suppose that F(z) = 0. Show that the multiplicity of the zero of F at z is equal to the sum of the
multiplicities of the zeros of 1 + £, at z.

Because F is holomorphic and F # 0, there is an open set U with zg € U C Q such that F # 0 on
U\{z}. Thisimplies that 1+ f, # 0 on U\ {z}. Let Np be such that 1 + f,(z) # 0 for all n > Np; such
an Ny exists by the previous problem.

Thus, we have that in U, h(z) = TT;2,(1 + fs(2)) is holomorphic and nonzero. For each n with
1 < n < Ny, let m, be the multiplicity of the zero of 1 + f, at zp (with m, = 0 if 1+ f,(z) # 0); by
definition of multiplicity 1 + f,(z) = (z — 20)™"h,(z) in U where h, is holomorphic and nonzero in U.

Then, if z € U, then

F(z) = ﬁ (1+£(2) [] (1+f(2) = (]‘[ (z— zo)'"") (]‘[ h,,(z)) h(z) = (z—z0)Era ™ (]‘[ h,,(z)) h(z).

n=1 n=Np n=1

But the function H(z) = (]_[No_l hn(z)) h(z) is holomorphic and nonzero in U (as it is the product of Ny

n=1
nonzero holomorphic functions), and so the multiplicty of the zero of F at zy must be Z,’:Iizl my,.

8.2. THE WEIERSTRASS FACTORIZATION THEOREM

(Problem 5060) Let Q C C be open, let S C Q be a set with no accumulation points in Q, and let m: S - N
be a function.

Show that there is a list {a,}_; or sequence {a,}%; such that S = {a, : n € N} and such that m(n) =
#{k : ax = ap}. Show furthermore that no subsequence of {a,}%, converges to a point in €.

In particular, if £ : Q — C is holomorphic and not identically zero on any connected component of 2, show
that there is a list {a,}N_; or sequence {a,}%, such that {z € Q : f(z) = 0} = {a, : n € N} and such that
the multiplicity mults(a,) of the zero of f at a, is equal to #{k : ax = a,}, and furthermore no subsequence of
{an}2, converges to a point in €.



Corollary 8.2.3. Let {a,}%, be a sequence of points in C such that no subsequence converges to a point in C.
Then there exists a holomorphic function f : C — C such that {z € C: f(z) =0} = {a, : n € N} and such that
the multiplicity m(a,,) of the zero of f at a, is equal to #{k : ax = a,}.

(Problem 5061) Show that this is equivalent to the following. Let S C C be a set with no accumulation
points and let m : S — N be a function. Then there exists a holomorphic function f : C — C such that
{z € C: f(z) = 0} = S and such that the multiplicity mult¢(z) of the zero of f at z is equal to m(z) for
allze S,

Problem 5070) Compute the power series (centered at zero) for the function f(z) = log —2=. Simplify your
( p p g1 plify y
answer as much as possible.
[Definition: Elementary factors] If p > 0 is an integer, we let
72 zP
Ey(z) = (1z)exp<z+ > +- 4 p).

Theorem 8.2.2. A function that satisfies the conditions of [Corollary 8.2.3]is

0T 11 &(2)

where a, # 0 for all n > Np, and where {p,}52 is an appropriate sequence of natural numbers.

(Problem 5080) We now begin the proof of |[Theorem 8.2.2| (and thus of |Corollary 8.2.3]). Show that E, is an

entire function, that E,(z) = 0 if and only if z =1, that the multiplicity of the zero of E,(z) at 1 is 1, and that
E, —1inD.

(Problem 5090) Show that E',(z) = —zP exp(3_0_, £ ) for all z € C.

(Problem 5100) Let b, be the coefficients of the power series for E,, centered at zero, so

Ey(z) = Z b, z"
n=0

for all z € C. Observe that by = 1. Show that b, = 0if 1 < n < p. Hint: What is the order of the zero of E;,
at 07

We have that E,(z) = —zPexp(3_}_, %) But h(z) = exp(3_}_; %) is holomorphic and never zero.
Thus E}, has a zero of multiplicity p at 0. Because E}(z) = Y °, nb,z"!, this means that nb, = 0 and
so b, = 0 whenever 1 < n < p.

Recall [Problem[1820]): Suppose that Y > a,z" and 3 2, b,z" are two power series with radius of convergence
at least r. Show that

n

i (Z EP b,,_k)z"

n=0 k=0
has radius of convergence at least r and that

Gt (Foe) (o)

for all |z| < r.



(Problem 5110) Show that b, < 0 and is real for all n > p+1. Hint: Write E, as a product of functions whose
power series you know.

Observe that

(o)
E (z) = Z nb,z""1
n=1
P _m
z
— _ P i
=—z exp(z m>
m=1
P m
= —zF ﬂ exp(—)
m=1
p o0 ka
— _ P
-7 ”Z k! mk
m=1 k=0

. mk . : . . -

The quantity TT? _, Z‘Z‘;O “i% Is a product of finitely many power series all with nonnegative coefficients all

of which converge everywhere. By Problem [1820} the product is a power series which converges everywhere;

we may see from Problem and induction that the coefficients of the power series representation of
mk . - M .

P12 peo 7 must also be real and nonnegative. Thus the coefficients of the power series representation

for —zP exp(zp 1 %) must be real and nonpositive.

(Problem 5120) Show that 3" ° . |b,| = 1. Hint: Start by computing E,(1).

n=p+1
Because b, <1 for all n > 0 we have that 3 7%, |b| = =372 ., by
But
) (o) P oo )
0=FEp(1)=) bol"=> by=bo+» byt > by=1— > b
n=0 n=0 n=1 n=p+1 n=p+1

by the above results concerning b,,.

(Problem 5130) Show that if |z| <1 then |Ey(z) — 1| < |z|PTL.

(Problem 5140) Let {a,}%, C C be a sequence of nonzero complex numbers. Suppose that the a,s have no
accumulation point in the sense that no subsequence converges. (We do not require that the a,s be distinct.)
Show that lim,_ . |an| = 0.

Recall that lim, ;00 |an| = 0o means that, for all R > 0, there is a N € N such that for all n > N we
have that |a,| > R.

Suppose not. Then there exists a R > 0 such that, for all N € N, there is a n > N such that |a,| < R.

Define the subsequence a,, by letting n; > 1 be such that |a,, | < R and letting nx1 > nx + 1 be such
that |an,,| < R.

By the Bolzano-WeierstraB theorem, there is then a subsequence {a,,kj} which converges to a point
in C. Since a sub-subsequence is a subsequence, this contradicts the assumption that the a,s have no
accumulation point. Thus |a,| — oo.

(Problem 5150) Let {a,}%2; C C be a sequence of nonzero complex numbers. Suppose that the a,s have no
accumulation point. B
Fix an r > 0. Show that Y 7 |E,(z/a,) — 1| converges uniformly on D(0, r).

Let k be such that, if n > k, then |a,| > 2r; by Problem [5140} some such k must exist. If m > k and

|z| < r, then by Problem [5130}
Z ‘En(z/an) - 1| < Z |Z/an|n+1 < Z 27"71 =2"m.
n=m n=m n=m



This converges to zero as m — oo, uniformly for z € D(0, r).

(Problem 5160) Prove [Theorem 8.2.2| (and thus [Corollary 8.2.3).

Theorem 8.2.4. [The WeierstraB factorization theorem.] Let f : C — C be an entire function that is not
identically equal to zero.

If f has finitely many zeros, then there is an entire function g(z), an integer Ny > 0, and complex numbers
ap € C such that

f(z) = e5@) [](z - an).

Otherwise, there is an entire function g(z), an integer m > 0, and complex numbers a, € C such that

f(z) = es@ " TT E, z
(z) = €8z ;!_[ (an

where the infinite product converges uniformly on compact sets.

(Problem 5170) Prove [Theorem 8.2.4

Let m be the multiplicity of the zero of f at z =0 (or m = 0 if £(0) # 0; in this case we take z° = 1
for all z € C, including z = 1).

Then -Lf(z) has a removable singularity at z = 0. Let k(z) = f(z) for all z # 0 and k(z) =
lim,_,0 2 (2); by [Theorem 4.1.1| k is also entire.

Let {a,}2, or {a,}"_, be the zeroes of k, counted with multiplicity; by Problem there is such a
sequence, and furthermore no subsequence converges. In particular the a,s are isolated.

If £ (and therefore k) has finitely many zeroes, define

N

Otherwise, let

ad z
h(z) =z™ ]1 E, <an>.
In either case h is entire (either by being a polynomial or by |Theorem 8.2.2|

Furthermore, % has a removable singularity at a, for each n. By the Riemann removable singularities

theorem, there is an entire function £ with £(z) = Zg; foreachz € C\{a, : n < N}oreachzec C\{a,:n¢c
N}. Finally, £(a,) # 0 because k and h have the same multiplicity at a,, and 4(z) # 0 if z ¢ {a, : n € N}
or z ¢ {a, : n < N} because that is the zero set of k and h.

Thus by [Lemma 6.6.4] there is an entire function g with e = £.

Thus

No
f(z) = e5@) [](z - an).
n=1
or

f(z) = €8 zm ﬂ E,,(;)
n=1

n

as desired.



8.3. WEIERSTRASS'S THEOREM IN ARBITRARY DOMAINS

Theorem 8.3.1. (WeierstraB) Let Q C C be open and let {a,}52; be a sequence of points in Q such that
no subsequence converges to a point in €. Then there exists a holomorphic function f : Q — C such that
{z € Q:f(z) =0} ={a, : n € N} and such that the multiplicity multf(a,) of the zero of f at a, is equal to
#{k :ax = an}.

(Problem 5180) (This is the first step in the proof of [Theorem 8.3.1]) Let Q C C be an open set and let
{an}; C Q be a sequence with no accumulation points in Q. Show that for each n € N there is a point
an € C\ Q such that |a, — 3,| = dist(a,, 09).

If a, € Q then Q # 0, and by assumption Q # C. Because C is connected, we must have that 8Q # 0.

Let w € 8Q. Consider the set K = D(ay, |a, — w|) \ Q. K is closed (because D(a,, |a, — w|) is closed
and Q is open) and bounded (because K C D(a,, |a, — w/|)). Thus K is compact. Therefore the continuous
function f(z) = |a, — z| attains its minimum on K. Let 3, € K be the minimizer.

Then |a,—3,| = f(3,) < f(2) = |a,—z| for all z € D(a,, |a,—w|\Q. Observe that 3, € D(a,, |a,—w|)
and so |a, — a,| < |a, — w]|.

If z € C\ Q, then either z € D(ap, |a, — w|) or z € C\ D(an, |a, — wl|). If z € D(a,
lan — 3n) = f(3,) < f(2) = |a, — z| because 3, is the minimizer for f.

If z€ C\ D(an, |a, — w|), then |a, — z| > |a, — w| > |a, — 3| because 3, € D(a,, |a, — w|).

In either case |a, — z| > |a, — @,]|, as desired.

an — wl), then

(Problem 5190) We will begin with the case where the sequence {a,}%2; is bounded. Under the conditions of
the previous problem, if in addition we have that there is an R > 0 such that a, € D(0, R) for all n € N, show
that lim,_e0 |an — 35| = limp_ 00 dist(a,, Q) = 0.

Suppose for the sake of contradiction that this is false. Then there exists a € > 0 such that, if N € N,
then there is some n > N such that |a, — 3,| > ¢.

Let n; > 1 be such that |a,, — 3,,| > €. If ng has been given, let nky1 > nk + 1 be such that
|an, .1 — @ne.s| > €. This gives a subsequence {a,, }%°; of {a,}52,; that satisfies |a,, — a,, | > €.

Because {a,, }$, is a bounded subsequence in C = R?, by the Bolzano-WeierstraB theorem it has a
sub-subsequence {a,,kj }224 which converges to some point a € C.

Because each an, isin Q, we must have that their limit aisin Q. By assumption {a,} has no subsequences
that converge to points in £, and so a € 010.

But then \a,,kj —al > dist(a,,kj,GQ) = |ankj - Enkj| > ¢ forall j, and so a,, 7+ a. This is a contradiction;
thus we must have that lim, o |a, — a,| = 0.

(Problem 5200) Let Q, {a,}%2; and {3,}52; be as in Problem [5190, Observe that E, (a" an") is holomorphic

on Q. Show that
ad anp — a,
> -6(3=5))]
- zZ—ap

converges uniformly on K5 = {z € Q : dist(z {3,, :n€eN}) > 6}

Fix € > 0. By Problem[5190] there is a N € N such that if n > N, then |a, — 3,| < §/2. We may further
assume that 5 < &.

We have that if z € Ks then |z — 3, > 6 for all n € N and so |"z”_—_§"| < % for all n > N. Thus by

Problem [5130] .
Z‘l_ ( —an>‘ —gznlﬂ :2LN<€

as desired.

(Problem 5201) Let F(z) = Tne En(2= a") Show that F satisfies the conditions of [Theorem 8.3.1




(Problem 5202) Show that there is an M > 0 such that sup|,j-. |F(2)| < 0o and inf|,~um |F(2)] > 0.

Because lim,_, |an—an| = 0, we have that sup,cy |a,—an| < co. By the triangle inequality, and because
lan| < R, we have that |3,| < |a,| + (35 — an| < sup,en|an—an| +R. Let M =1+ 4R +4sup,cy |an — anl.
If |z] > M, then |z — 3,| > |z| — |an| > 3M/4. Also |a, — @] < M/4. Thus by Problem [5130

an — a, 1
1—E,,(” A”)‘< .
‘ z—a, /| = 3+l

Therefore by Problem (4940)),

(Me(2=2)) o] cen(3

n=1

Taking the limit as N — oo, we see that
IF(z)—1] <e?—-1<1.
In particular 0 < 2 — /2 < |F(z)| < e'/? for all such z, as desired.

(Problem 5210) Prove [Theorem 8.3.1|in the case where {a,}%°, is unbounded.

Let zp € 2\ {a, : n € N}; because Q is uncountable some such zy must exist. Because zy € Q, z is not
an accumulation point of {a, : n € N}, so there is a r > 0 such that D(zp, r) C 2\ {a,: n € N}.

Let W = {2 : z € Q}. Let b, = ;1. Then {b,}32; C W and has no accumulation points in W;
furthermore, |b,| < 1/r for all n and so we are in the situation of Problem

Let F be the function given by Problem defined on W with zeroes at the points b,; let f(z) =
F(Z%ZO) Then f is holomorphic in 2\ {z}. By Problem @ f and is bounded in a neighborhood of z;
by the Riemann removable singularities theorem, we may extend f to a function holomorphic on Q. Observe
further that f(z) # 0.

We compute f(a,) = F(===) = F(b,) = 0 for all n. Furthermore, if F has a zero at b, of multiplicity k,

an—20
then FU(b,) = 0 for all j < k and F((b,) # 0; a straightforward induction argument shows that
fU)(a,) = 0 for all j < k and f(¥)(a,) # 0.

Corollary 8.3.4. Let Q2 C C be open. Let m: Q — C be meromorphic on 2. Then there exist two holomorphic

functions f, g : Q — C such that m = é.

(Problem 5220) Prove [Corollary 8.3.4

8.3. THE MITTAG-LEFFLER THEOREM

(Lemma 5221) Let {8,}52; C C and {7,}%2,; C C be two sequences of complex numbers and let {a,}32, be
a sequence of distinct complex numbers such that no subsequence has an accumulation point in C. Then there
exists an entire function f such that f(a,) = B, and f'(a,) =, for all n > 1.

Recall [Problem [5140]: We have that lim,_,« |a,| = co.

(Problem 5230) In this problem we begin the proof of Lemma [6221] For each n € N, show that there is an
entire function g, such that

[2€C g(2) = 0} = {ax - ke N\ {n}},
gn(an) = Bn, and such that |g,(z)| < 35 for all z with |z| < 3|a,|.



Let 4, be the entire function given by with {ax : k e N\ {n}} = {z € C: ¢,(z) = 0}.
Observe that ¥,(a,) # 0 because ax # a, if k # n.
Then let
Bn

onle) = 3 (V)

If a, = 0 we let g, = p,. Otherwise, @, is entire and therefore continuous, so M,, = SUPD(0,]an|/2) is finite.
Let m, € N satisfy 2™ > M,,. Letting

al) = o (2) i)

we see that g, satisfies all the desired conditions.

Problem 5240) Show that g = S °° . g, converges normally on C.
n=1

Let K C C be compact. Then K is bounded. By Problem [5140] there is an N such that if n > N, then
lan|/2 > |z| for all z € K. Thus

[e9) N—1 o) 1
D> suplenl <3 suplenl + 3 o
n=1 n=1 n=N
Because g, is continuous and K is compact, supy |gn| < oo for any fixed n. Thus

[e9)
Zsup|g,,\ < 0o
n=1 K

and so by the WeierstraB M-test, Y > g, converges uniformly on K.

(Problem 5250) For each n € N, show that there is an entire function h, such that
{z€C: hy(z) =0} ={ax: k e N},

h(ak) = 0 if k # n, h,(an) = ¥n — &'(an), and such that |h,(z)| < 2 for all z with |z| < }|a,|. Then show that
f(z) = g(z) + X2, hn(z) converges normally on C and satisfies the conditions of Lemma [5221

Let 9, be the entire function given by |Corollary 8.2.3| with {ax : k € N} = {z € C: §(z) = 0}, with

the zero at a, being of multiplicity 1, and with the zero at ax for k % n being of order 2. In particular

9,(an) # 0.
Define
Yo —8'(an) [ 2 r
ho(z) = —F———| — ) ¥»
(@) =15 E) (2)7,2)
where m, € N. Because A\(z) = %‘;55;")19:1(2) is entire (hence continuous), as before we may choose m,

large enough that |h,(z)| < 5 for all z with |z < 1a,|.
By the Leibniz rule
m,—1 m
¥ — 8&'(an) z\ Yn—&'(@n) (2 \ "
h = ———"my| — Y, | — 9 .
n(Z) ﬂl(an) " <3n> (Z) * 19'(3,,) an ,,(Z)
Recalling that ¥,(a,) = 0, we have that

ho(an) = vn — &'(an)
as desired.
As in the previous problem, normal convergence of Y 2, h,, follows by the WeierstraB M-test. Thus f is

entire by [Theorem 3.5.1} f(a,) = g(an) = Bn, and f'(a,) = g'(an) + h,(an) = y» by [Corollary 3.5.2

Theorem 8.3.6. (Mittag-Leffler) Let Q C C be open. Let {a,}%2; C Q be a sequence of distinct elements with
no accumulation points in Q. For each n, let p, € N and suppose that a;, € C is defined for each n € N and
each £ € N with —p, < /£ < —1.



Then there is a function f that is meromorphic in €, whose singular set is {a, : n € N}, and such that
-1

f(z)— Z agn(z — an)t

{=—pn
has a removable singularity at o,,.

Lemma 8.3.5. [Pole-pushing lemma]. Let o, B € C. Suppose that
-1

Az)= Y a(z—ay

j=—M
for some M € N and some a; € C. Then for all r > |o — ] and all € > 0 we have that there isa N € N and
numbers b; € C such that

for all z € C\ D(B, r).
(Problem 5260) Prove |Lemma 8.3.5

A(z) is holomorphic in the set C \ D(B,|ec — B[) and so by [Theorem 4.3.2] has a Laurent series
2720 bi(z = BY in C\ D(B, o — |B]).
We have that |A(z)| — 0 as |z| — co. By Problem [2230]

1 A(¢)
b = —— ALYy
KT 2mi op(8.R) (¢ — B)F+1 ¢

for all R > |a — B]; if k > 0 then we may take the limit as R — oo to see by = 0.
Thus, for all z € C\ D(B, |a — B|), we have that

Az)= S bz BY.

j=—00

Furthermore, by|Proposition 3.2.9|, if r > |B—co then Z._:l_oo bj(z—BY converges uniformly on C\ D(0, r).
Thus, for every € > 0, there is an N such that

(A(z) - Zl bi(z — ﬁ)f‘ <e

j=—N

for all z € C\ D(B, r), as desired.

(Problem 5270) Prove [Theorem 8.3.6|in the case where {a,}52 is bounded.
[Chapter 8, Problem 23] [Theorem 8.3.6|is still true even if {o&,}32, is unbounded.

Theorem 8.3.8. Let Q C C be open. Let {a,}52; C Q be a sequence of distinct elements with no accumulation
points in . For each n, let p,, g, € N and suppose that a;, € C is defined for each n € N and each £ € N with
—Pn S L S dn-

Then there is a function f that is meromorphic in Q, whose singular set is (a subset of) {a, : n € N}, and
such that

an
f(z)— Z agn(z — an)t
{=—pn
has a removable singularity at o, and whose Laurent series expansion about «, may be written as
o0
f(z) = Z con(z — an)t
{=—pn

satisfies ¢;, = ag,p for all £ < g,.



We may equivalently say that, for each a,, there is an r, > 0 such that D(a,, r,) C Q contains no other ays

and such that
qn
f(z) = Zag,,zfoz,, Z cz,,zfoz,,
L=—pn {=qgn+1
in D(an, rn) \ {@n} for some ¢, € C.
Lemma 8.3.7. Suppose that the numbers p, g, and a; for —p < £ < q are given. Let Q C C be open, let o € Q,

and let g : Q — C be holomorphic. Suppose further that p, g > 0 and that g has a zero of multiplicity g + 1
at a. Then there exist numbers by, ¢, € C such that

62) S hlz-af=3 az-af+ Y alz-a)
t=—1-p—q t=—p {=q+1

for all z in a suitable punctured neighborhood of a.
(Problem 5280) (This is the first step in the proof of [Lemma 8.3.7}) Suppose that quﬂ dy(z — @)® and
Zz_p_q_l by(z — ) are two Laurent series that converge in D(a, r) \ {a}. Show that

&) n+p+q+1

S (3 bewd)z-a)

n=—p  k=q+1
also converges in D(a, r) \ {a} and that
oo ntptqg+l o

Z( Z by kdk)z—oz (Z di(z — )( Z bg(Z—Ot)£>

n=—p k=q+1 {=q+1 {=—p—qg-—1
for all z € D(a, r) \ {a}.

If z € D(a,r) \ {a}, then by [Theorem 432 3 ,° ., dy(z — @)t and 37° | by(z — )t con-
verge absolutely. Reindexing and factoring out powers of z — «, we have that Y 72 ) dkig+1(z — a)k and
Y 220 bk—p—q—1(z — @) also converge absolutely and

> diz—a) =(z-a)" Y diign(z - @),

{=q+1 k=0
o0 o0
Z by(z —a)f = (z—a) P! Z bi—p—q-1(z — )"
f=—p—qg—1 k=0

By [Theorem 3.3.T] the power series on the right hand side of the above formulas have radius of convergence
at least r. Thus by Problem [I820]

(o)

Z (i bn—k—p—q—ldk+q+1> (Z _ a)n

n=0 k=0
has radius of convergence at least r and converges to

(i dirqia(z — @)¥) (i bipq-1(z — @))

and so if z € D(a, r) \ {a}, then

( i du(z — a)*) ( i bz —a)t) = i(z bn-k-pq-1dkigi1 ) (z = @) "

{=q+1 {=—p—q-—1 n=0 k=0

and the right hand side converges absolutely.
Reindexing, we see that

e o) n+p+q+1

<i de(z—a)l>( S bzfoz) Z( > ba kdk)z—a)

{=q+1 {=—p—q—1 n=—p k=q+1



as desired.

(Problem 5290) Prove [Lemma 8.3.7

Let D(e, r) C Q. Because g has a zero of multiplicity g + 1 at «, there are constants d; such that
dg+1 # 0 and such that

gz)= Y  difz-a)

{=qg+1
for all z € D(a, r).
Define the by as follows.
3 2 n+p+q+1
b—p—q—l =—_—F ’ bn—q—l =— - Z bn—kdk
d d
q+1 q+1 k=q+2

for each —p < n < q. Observe that if k > g+ 2 then n— k < n— g — 1 and so the sum on the right hand
side involves only values of by for £ < n—q—1.

Let by = by if £ < —1 and by = 0 otherwise. By induction and |Lemma 8.3.7} if z € D(a, r) \ {a} we
have that

€0 Y ble-af=(Y ae-o)( L Bie-af)
{=—1-p—q {=q+1 {=—1-p—q

co  ntpt+qg+l

=3 (Y Bsd)z-a)”

n=—p  k=q+1

q n+p+q+1 oo n+p+q+1
_ Z( S b,,_kdk)(z—a)”Jr S ( S bn_kdk)(z—oz)".
n=—p  k=q+1 n=q+1  k=n+1

A straightforward induction argument establishes that

n+p+q+1
Z bn—kdk) = an
k=q+1
if —p < n < gq. Choosing ¢, = ( Ziﬁi‘f“ bn—kdx) completes the proof.

(Problem 5300) Prove [Theorem 8.3.8

Let g be the holomorphic function given by [Theorem 8.3.1] with a zero of multiplicity g, at each «,,. Let
D(apn, rn) € Q contain no other ays. Let by, be given by [Lemma 8.3.7|such that

-1 q o0
g(z) Z byn(z — an)t = Z agn(z — o)t + Z con(z — a,)
{=—1—p—q {=—p {=q+1

in D(ap, ) \ {@n}. Let f be the function given by [Theorem 8.3.6| with
-1

f(2)=ho(2)+ D bua(z—an)t

t=—1-p—q

in D(an, rn) \ {an} for some h, holomorphic in D(a,, rp).
Then
—1 qn %)
g(2)f(z) = g(z)hn(2) + &(2) Z byn(z — an)t = g(2)ha(2) + Z agn(z — an)t + Z ctn(z — an)t

{=—1-p—q {=—pn f=qn+1



in D(ap, 1) \ {@n}. But hy, is holomorphic in D(a,, r,) and g has a zero of order g, + 1 at a, so

(e 9]
g2)h(2)= Y en(z —an)’
{=qn+1
for some ¢, € C. Thus
qn o0
g()f(2)= D apn(z—an)+ D (ctn+ewn)(z—an)
{=—pn {=qn+1

is the desired function meromorphic in © with the desired Laurent series at the poles ay,.

8.3. MAXIMAL DOMAINS OF EXISTENCE OF HOLOMORPHIC FUNCTIONS

Corollary 8.3.3. (Special case) There is a function f : D — C that is holomorphic in D such that, if D C W, W
is open and connected, F : W — C is holomorphic, and F = f in D, then W = D. (That is, there is a function f
holomorphic in I that cannot be extended to a function holomorphic in any larger open set.)

(Problem 5310) Let g(e®®) =372, 2—: cos(7"0). (This is a special case of the WeijerstraB function.) Show that

g is well-defined (the sum converges) for all 0 < 6 < 27 and that g is continuous on 9D.

The terms g—: cos(7"0) are well defined functions of e’® because, if e’ = ¢/, then 9 = 0 + 27k for some
k € Z and so cos(7"6) = cos(7"9).

Because \g—: cos(7"9)| < 2—: for all 6 and 3 7, 2—: < 00, by the WeierstraB M-test (Memory [1611)) we
have that the sum converges uniformly. Because the uniform limit of continuous functions is continuous

(see Memory ([1600])), we must have that g is continuous.

(Problem 5311) Plot the first few partial sums for the WeierstraB function.

A plot may be found at the following link:
https://www.desmos.com/calculator/kywnvjzjg?

(Problem 5320) Let u be the function that is harmonic in D, continuous on D and with u(e®®) = g(e’®) for
0 < 6 < 2. Let f be the function that is holomorphic in D with real part u. (v and f exist by
and [Cemna 71.4)

Show that f satisfies the conditions of [Corollary 8.3.3] Hint: Use the fact (proven by WeierstraB in 1872) that
g(0) is nowhere differentiable.

Suppose that D C W, that W is open and connected, and that F : W — C is holomorphic.

Because W D D is connected, W contains a point e/® € 8D. Because W is open, there is some small
o > 0 such that if |8 — 6g| < o, then ¥ € W.

Then
% Re(F(e)) = Re(F'(e) ie™®)
by Problem and the definition of %. In particular this derivative exists.

But we must have that Re f(e®) = g(6) and therefore 2 Re(f(e’®)) does not exist for any § € R. Thus
we cannot have that Re F(e’®) = Re f(e®) for all § with |§ — 6y| < . Since f is continuous on D and F is
continuous in W, this means that F and f cannot be equal everywhere in .

Conversely, if F is holomorphicin W 2 D, F = f in D, and W is open and connected, then W = D.

Corollary 8.3.3. Let Q C C be any nonempty open set that is not all of C. Then there is a function f : Q — C
that is holomorphic in Q such that, if @ C W, W is open and connected, F : W — C is holomorphic, and F = f
in Q, then Q = W. (That is, there is a function f holomorphic in © that cannot be extended to a function
holomorphic in any larger open set.)

(Problem 5321) Let
Q; = {[k¥, (k + 1)) x [, (£ + 1)) : k, L € Z}


https://www.desmos.com/calculator/kywnvjzjg7

be the grid of squares in C with side-length 2/ aligned with the axes. Show that if z€ C and j € Z then x € S
for exactly one S € Q;. Here is a sketch of (the cubes in) Q;.

2
+

DL

=
=

Here is a sketch of (the cubes in) Q;_;.

S
+
2
I

Y

(Problem 5322) Suppose that S € Q;. Let P(S) be the "dyadic parent” of S, s0 S C P(S) € Qj11. Let 25 be
the square concentric to S of side-length 2/+1.
Here is a sketch of S, 25 and the four possibilities for P(S).

2S

5

P(S) (option 1) P(S) (option 2) P(S) (option 3) P(S) (option 4)

S S

S S

(Problem 5330) If S € Qj, let £(S) = 2/ be the side-length of S. Show that if S € Q; and z € S, then
D(z,£(S)/2) C 25 and 2P(S) C D(z,3v24(S)).

There are xg, ¥o € R such that

S = o — 5US) %0+ 58(S)) x bo — 3S).y0+ 3(S),

2 2
It is easy to see that
25 =[x — £(S), x +4(S)) x [yo — £(S),y +£(S)).
If z=(x,y) € S, then xo — 2£(S5) < x < xo + 34(S) and yo — 34(S) <y < yo + 24(5), and so
1

D(z, 54(s)) C (x~ %Z(S), x+ %4(5)) x(y— %e(s‘), v+ %Z(S)) C [x0—(S), x+4(S)) x [yo—(S), y +4(S)) = 25.



Observe that 2P(S) C [xo — 2£(S), x0 + 2£(5)) % [vo — 2£(S). yo + 24(S)). Thus, if (x,y) € S and
(&,m) € 2P(S) then |x — &| < 3¢4(S) and |y — n| < 34(S), and so the result follows by the Pythagorean
theorem.

(Problem 5340) Let Q = U Q;. Let Q@ C C be open. Let G ={S€ Q:25CQ, 2P(S) ¢ Q}. We call G

j=—00
a dyadic Whitney decomposition of . Show that UscgS = Q.
Here is a sketch of (the cubes in) G in the case where Q is a disc:

P %ﬂw’: t i tH [ T[T H i i T?#Pk
A T [T Hiem,

A HH
Ai“r | | “rix
AT RN
i -
iR B
i e
%“r I [ H5
G 7
g ] "

w% T 1 e 1 T wy

ST >

(Problem 5341) If k < j and j, k € Z, and if S € Qy, show that there is exactly one T € Q; with S C T and
that SN R = 0 for every other R € Q;.

(Problem 5350) Show that if S € G and T € G, then either S =T or SNT = 0. If z € Q, then how many
cubes S € G can satisfy z € §7

Exactly one.

(Problem 5360) Show that G is a countable set.



(Problem 5370) Suppose that S, T € G and that dist(S, T) = 0; that is, the closures of S and T intersect.
Show that £(S) < 44(T) and that £(T) < 44(S).

Without loss of generality £(S) < £(T); thus we need only show that £(T) < 44(S).

Suppose for the sake of contradiction that £(T) > 4£(S), that is, £(S) < 4(T). Because {(S) = 2/ and
£(T) = 2k for some j, k € Z, we have that £(S) < $4(T).

Thus £(P(S)) = 2£(S) < 14(T). Furthermore, S C P(S), so S C P(S) and so dist(T, P(S)) = 0.

Then 2P(S) C 2T:

2T

3¢(S) < 34(T)

But by definition of G, 2T C Q and so 2P(S) C 2T C Q. Shus S ¢ G. Shis is a contradiction; therefore
we must have £(T) < 44(S).

(Problem 5380) If S € G, let zs be the midpoint of S. Let A= {zs: S € G}.
Let z € Q. Show that z is not an accumulation point for A. Hint: if z € T € G, then how many midpoints zs
can appear in D(z,4(T)/8)?

Let z€ Q. Then z € T forsome T € G. Let e = {(T)/8.

If dist(S, T) = 0, then £(S) > £(T)/4 and so |z —zs| > £(T)/8. If dist(S, T) > 0, then there must be at
least one square Q between S and T with dist(S, Q) = 0 and so 4(Q) > 4(T )/4 and so dist(T, Q) > £4(T)/4.

In any case, if S # T then zs ¢ D(z,4(T)/8), and so AN D(z,4(T)/8) C {zr}. Thus z cannot be an
accumulation point for A.

(Problem 5390) Let z € Q. Show that z is an accumulation point for A.

(Problem 5400) Prove [Corollary 8.3.3] Hint: Let f be the function holomorphic in Q and such that f(z) =0
(with multiplicity one) if and only if z € A given by [Theorem 8.3.1] Show that the domain of existence of f is Q;
that is, if f = f in Q and f is holomorphic on some open set W D Q, then ¥ = Q.

Let f be as in the hint, let ¥ D € be open and connected, and let f be holomorphic in W. By connectivity
W N 0N contains at least one point. Let w € W N ON.

Then w is an accumulation point of the zeroes of f. If f(z) = f(z) = 0 whenever z € A, then the zeroes
of f have an accumulation point in W, and so by [Theorem 3.6.1| (or Problem [2041]) we have that f = 0

inW. But Q C Wandsof=0in <. Because f # 0 in €, we cannot have f = f in Q.



9.1. JENSEN'S FORMULA AND AN INTRODUCTION TO BLASCHKE PRODUCTS

Recall w If {a,}52; C D and no subsequence converges to a point in D, then there is a
holomorphic function f : D — C such that {z € Q : f(z) = 0} = {a, : n € N} and such that the multiplicity
mults(a,) of the zero of f at a, is equal to #{k : ax = a,}.

(Question 5401) When can we also require that f be bounded?

Theorem 9.1.4. Suppose that f : D — C is a bounded nonconstant holomorphic function. Let {a }$°; be the
zeroes of f (with multiplicity). Then

2 (1—fa) <

k=1

(Problem 5410) Give an example of a sequence {ax}%2; C D such that no subsequence converges to a point
in D and such that 3 72 (1 — |ak]) = oo. Give an example of a function holomorphic in D that satisfies
{zeD: f(z) =0} ={ax: k € N}.

Let f(z) = sin 7. Then f is holomorphic on C\ {1} D ID. Furthermore, if a, = 1— 1 then sin(ax) = 0.
Also,
S a-l=) ;-
—lah=y =
k=1 k=1 ko

Recall [Problem [3260]: If a € D and we define
$a(2) =

then ¢, is a holomorphic bijection from D to itself, a continuous bijection from 0D to itself, and a continuous
bijection from D to itself.

Z—a

1—az

Proposition 9.1.1. ¢, is holomorphic on an open neighborhood of D. ¢,(z) = 0 if and only if z = a and the
zero at a is simple. Finally, |¢.(z)| =1 if |z| = 1.

Theorem 9.1.2. (Jensen's formula.) Let f be holomorphic in a neighborhood of D(0, r) and suppose f(0) # 0.
Let a1, a, ..., ap be the zeros of f in D(0, r) counted with multiplicity. Assume that f has no zeroes on 8D(0, r).
Then

-1 /2" log |£(re™®)| d6
o 2 0 J ’
(Problem 5420) Show that|[Theorem 9.1.2|is valid in the following two special cases:

e f has no zeroes in D(0, r).
o f=¢,/(z/r) for some ac D(0,r).

. r
log [£(0)] +_ log|
k=1 k

If £ has no zeroes in D(0, r), then log |f| is harmonic in D(0, r) by Problem and clearly is continuous
on D(0, r). Thus the result follows from the mean value property (Theorem 7.2.5/and Problem .

If f = ¢./,(z/r), then f(0) = —a/r, f has one zero at z = a/r, and |f(re’®)] = 1 for all § € R by
[Proposition 9.1.1] The result is a simple computation.

(Problem 5430) Justify the (implicit) claim in|Theorem 9.1.2that f has at most finitely many zeroes in D(0, r).
Then prove

(Problem 5440) Suppose that f has a zero of multiplicity m > 1 at 0. What does Jensen’s formula tell you
about log | I|mz_>0 \7

It tells us that

. f(2) ‘ r
log | lim ~22| - m1 log| -
og| lim —= |+mogr+; og| -

1 27 .
= —/ log |f(re)| dé.
0

27




(Problem 5450) Prove [Theorem 9.1.4]in the case where f(0) # 0.
(Problem 5451) Prove [Theorem 9.1.4]in the case where f(0) = 0.

If f has finitely many zeroes the result is obvious. Recall from Problem [5020]that f has countably many
zeroes. Thus there is an increasing sequence {r;}g°,; with limy_,o rp = sup,cy 1z = 1 and such that |a,| # 1,
for all n, £ € N. We may further require that r, > 1/2 for all £.

Order the zeroes such that |a;| < |az| < |a3] < ...; because the zeroes have no accumulation points in
D, at most finitely many aj can satisfy |aj| < |ax| and so this may be done without omitting any as.

For any such rg, let ny be the number of zeroes a, with |ax| < r,. By Jensen's formula

ng

> log| i
a

k=1

|
where m > 0 is the multiplicity of the zero of f at 0.
The right hand side is bounded by

1 [ . 1
:E/O Iog|f(re’6)|d9+mlogr—e—Iog|ZIiLn0

f(z)

sup |f| + mlog2 — log]| I|m —|.

zeD zm
o0
1
E log| —| < o0
ak
k=1

It is elementary to show that 1 —a — Iog% has a maximum at a =1 and so Iog% >1—aforalla>0,and
S0

Taking the limit as £ — oo, we see that

Z(l — lak|) < oo.
k=

1

Theorem 9.1.5. Suppose that m € N, {ax}2, C D\ {0}, and that 3 ;> (1 — |ak|]) < co. Then there is a
bounded holomorphic function f : D — D such that f has a zero of multiplicity m at zero (or f(0) # 0 if m = 0),
{z €D\ {0}: f(z) =0} = {a, : n € N}, and such that the multiplicity multf(a,) of the zero of  at a, is equal
to #{k : ax = a,}. Furthermore, one such f is given by Problem below.

(Problem 5452) Show that ¢,(0) = —a for all a € D and thus, if w € 8D, then Iimaazﬁv ¢.(0) = —

(Problem 5460) Let w € 0D and let a € D. Show that

Ba(2) + w| _ 1+ 12
w—al “1-[]

for all z € D. Conclude that if w € 0D then
lim ¢a(2) = ~w

a—w
ach

for any z € D, and that the convergence is uniform for z in any compact subset of D.

Observe 1 = ww. We compute

|pa(z) +w| 1 |z—a+w-—wza
w—al  |w-—a 1-az

1
w24

w-a  w-a 1+ 2]
z
1-3z 1-3z|~ 1—|7|

because |a] < 1.
(Problem 5470) Prove [Theorem 9.1.5| by showing that the infinite product
m —ak
)=z ﬂ B |¢3k

converges normally in D and satisfies the given condltlons.



[Definition: Blaschke product] A Blaschke product is an expression of the form

” o P

where m > 0 is an integer (written m € Ng) and where a, € D\ {0} for all k. (If 332, (1 — |ak|) < oo, then the
Blaschke product converges to a holomorphic function on ID.)

Corollary 9.1.6. If f : D — C is a bounded holomorphic function with a zero of multiplicity m € Ny at 0
(including the case m = 0 where f(0) # 0), and if {ax}_;, N € No U {0}, is the list of the other zeroes of f
counted with multiplicity, then there is a holomorphic function g : D — DD such that Reg is bounded above
(meaning e# is bounded in modulus) and such that

f(z) = zme8® ﬂ| g (2

for all z € D.
Furthermore,
sup |f| = sup |e®].
D D

(Problem 5480) Prove that

for some g : D — D holomorphic.

By [Theorem 9.1.4) Zle(l — |ak|]) < oo. Thus by [Theorem 9.1.5|, h(z) = z™ ]_[LV 1 ‘aklcpak( z) is

holomorphic and has the same zeroes with the same multiplicity as f. Thus by [Theorem 4.1.1| (the Riemann
removable singularities theorem) there is a holomorphic function F : D — C with F(z) = f(z)/h(z) for all

z such that f(z) # 0. Furthermore, F(z) = lim¢,, % # 0 if f(z) = 0 because f and h have zeroes of the

same multiplicity at z.
Thus F : D — C is holomorphic and never zero, and so F = e€ for a holomorphic function g : D — C

by [Lemma 6.6.4]

(Problem 5490) Prove that supy, |f| = supp |€€|. This completes the proof of |Corollary 9.1.6
By Lemma [3260} we have that

‘ m” ¢ak z)’ < 1
for any z € D and any n € N (with n < N if N is flnlte) Thus

#(z)| = ||z '"ﬂ| 2 4,.(2)| < e8]

for any z € D, and so supy |f| < supp |€].
We now turn to the converse.
If ne Nand n < N, define

_ak
= Zm” |a ‘¢ak

Then every zero of h, is a zero of f, and multhn(ak) < mults(ak), Thus f/h, extends to a holomorphic
function on D (with zeroes {ax : k > n}). Furthermore, h, — h normally in D (if N = o0) or hy = f (if f
has finitely many zeroes and so N < o0). Thus f/h, — e& pointwise (or equals e€), and so it suffices to
show that supy, |f/h,| <1 for all n € N with n < N.

Choose some such n. h,, is continuous on D (as a product of continuous functions) and satifies |h,(z)| = 1
if |zl =1 by Lemma Because D is compact, h, is uniformly continuous. Thus if € > 0 there is a
ro € (0,1) such that |1 — h,(z)| < € for all z with ry < |z] < 1.



By the maximum modulus principle, if 0 < r < 1 then

SUP| 5| —max f(z 1
wo [f/hl < sup i/l = s [f@)/h(e)| < 2Pzt TEN L L
D(0,r) D(0,max(r,rp)) |z|=max(r,r) — & — € D

Since this is true for all € > 0 we must have that

sup |/ha| < sup|f|
D(0,r) D

for all r € (0,1), and so
sup |[f/hn| < sup|f]
D D

as desired.

9.2. THE HADAMARD GAP THEOREM

Please see Professor Barton's video lecture (posted to Blackboard) for material concerning the Hadamard gap
theorem.

9.3. ENTIRE FUNCTIONS OF FINITE ORDER

Lemma 9.3.1. Let f be an entire function with f(0) =1. If r > 0 and b > 1, then

log max|,|—p, |f(2)|

n(r) < log, lgnjgrlf(Z)\ = log b

where n(r) denotes the number of zeroes of f (with multiplicity) in D(0, r).

(Problem 5500) Prove [Lemma 9.3.1

Recall [Theorem 3.4.4|: If f is entire and there is a constant C € R and a k € Ny such that |f(z)| < C+C|z|
for all z € C, then f is a polynomial of degree at most k, and so by f has exactly k zeroes counted

with multiplicity.

[Definition: Order of an entire function] If f : C — C is entire and there are positive real constants a and r
such that

|f(z)| < exp(|z|?) forall |z| > r
then we say that f is of finite order. The order of f is

inf{a > 0 : there is a r > 0 such that |f(z)| < exp(|z|?) for all |z| > r}.

(Exercise 5501) Show that the order of f is also

inf{a > 0 : there is a C > 0 such that |f(z)| < Cexp(|z|?) for all z € C}.
(Exercise 5502) Let f be a function of finite order and let p be a polynomial. Show that f + p is a function of
finite order and that its order is equal to that of f.

(Exercise 5503) Let f be a function of finite order and let p be a polynomial. Show that fp is a function of
finite order and that its order is equal to that of f.

Theorem 9.3.2. Suppose that f is an entire function of finite order A > 0, with f(0) = 1 and with infinitely
many zeroes. If the zeroes of f (with multiplicity) are {ax}32;, and if € > 0, then

oo
Z |an| 757 < 0.
n=1



(Problem 5510) Prove [Theorem 9.3.2

There are countably many zeroes. If 0 < r < oo then there are at most finitely many zeroes of modulus
at most r, and so we have that

Zlanl = im 3 lal DD MM

% Janl<2 k=1 2k<|a,|<2k+1

Let n(r) be as in|Lemma 9.3.1] Because A + & > 0, we have that
Z |an|—s—>\ < n(2k+1)(2k)—s—>\'

2k<|a,| <2k
By [ERmE 93]
Z lan| 757 < (2F)* M log, max |f(2)).

k+2
2K < |an| <2k lz1=2

By definition of order, there is a K such that if kK > K then
max |f(z)| < exp(2(k+2)a)

| ‘ —Dk+2

for some a with A < a< X+¢. Thus

0o N
2 lanl = 3 el fim 3 D el
n=1

|an|<2K k=K 2k<|ap|<2k+1
N
< Z lan| 757> + I:nooz (2K)75 > log, exp(2(k+2)2
|an|<2K
—£—X . 2% = k(a—X—¢)
< 2 lal +N"_rflunzk;(2 '

|an|<2K

Because a — A — ¢ < 0, the geometric series converges and so

Z|a ‘—s A < Z |an|—s >\ 2% izk(a—)\—s) < 0.
k:K

|an|<2K

(Problem 5520) Rewrite and prove Theorem 9.3.2 without the assumption f(0) =

Statement: Suppose that f is an entire function of finite order A > 0 with infinitely many zeroes. Let m
be the multiplicity of the zero of f at 0 (with m = 0 if £(0) # 0) and let {a,}°, be the other zeroes of f
(with multiplicity). If € > 0, then 37 |a,|™* ¢ < 0.

Proof: Let g(z) = az~™f(z) for all z # 0, with g(0) defined by continuity, and with a € C\ {0} such
that g(0) = 1; by definition of order of a zero, such an a exists and g is also entire.

By Exercise 5503} g is also of finite order and its order is equal to A. Furthermore, the zeroes of g consist

of {a,}%2; (with multiplicity). By [Theorem 9.3.2| applied to g, ¥ °°, |a,| ™~ < o0, as desired.

Theorem 9.3.7. (Simplified.) Suppose that f is an entire function of finite order and that f has finitely many
zeroes.
Then f(z) = p(z)eq(z), where p is a polynomial and q is a polynomial whose degree is equal to the order of f.
In particular, the order of f must be an integer.

Theorem 9.3.9. If ¢ € C and f is an entire function of finite order A ¢ Z, then the equation f(z) = ¢ has
infinitely many solutions.

Theorem 9.3.10. If f is an entire function of finite order, then C\ f(C) can contain at most one point.



Lemma 9.3.4. Suppose that f is an entire function of finite order A and that f(0) = 1. Suppose that z € C and
that p € Z with p > XA — 1. Then

27

oL 00,0 _ _\—p—2 i0 _
rli)rgo o7 /. 2re’(re” — z) log |f(re’)| d6 = 0.

(Problem 5530) Prove

Let o(w) = W Observe that ¢ is holomorphic in C\ {z}. Furthermore, p > X —1>0—1 so

p+2> 2. Thus Res,(z) = 0.
Therefore, if r > 2|z| then

1
0 = Res,(z) = —% ©
ol 270 Jap(o,r)

l 27 . )
— o(re)ire”® do

~2mi Jy
1 27 0 1
=— P db.
21 Jo re (ref® — z)p+2
Thus
1 27 . ) . 1 27 . . :
— 2re®(re®® — 2)"P 2 log|f(re’®)| df = — / 2re®(re® — z)=P~2 (log [f(re’)| — C) do
27 0 27 0
for any C € C.

We choose C = logsupspyq,r) |f|- (Observe that supyp o,y [f| > 0, and if supsp(o ) |f| = 0 then f =0
on 0D(0, r), a set with an accumulation point. Thus f = 0 in C, contradicting our assumption f(0) = 1.

Thus C € R))
Then
1 27T2 i i0 —p—2| f i0 del = 1 27\'2 i0 i —p—2 I f 0 I 1) dé
7 re'(re'" — z) og|f(re)] = |5 re'’(re" — z) (log|f(re®)| —log sup |f])
0 0 aD(0,r)
op+3 1 2m )
< _ - | f| — log|f(re™®)|) dé.
< iz [, Uog s Ifl—logF(r<"))
But by [Theorem 9.1.2| (Jensen's formula)
27
| toglf(re®)ids = tog|(0)| = 0
0
and so
L[ re®(re® — 20 tog | f(re®) o] < 20 L [ f|do
o /. re'’(re' — z) og|f(re")] S otian /) ogagL(Jop?r)\ | dé.
By definition of order and because p +1 > A, if r is large enough then
| —p—2 i0 L Y a 2r+3
E/o 2re'®(re’” —z)7P " log |f(re')| db| < x| log exp(r )dezm

for some a with A < a < p+ 1. The right hand side approaches zero as r — oo, as desired.

[Chapter 9, Problem 1] If f is holomorphic in a neighborhood of D(0, r) and z € D(0, r), and if f has no

zeroes in D(0, r), then
1 [ ref® + z 0

Proposition 9.3.5. (Simplified.) Suppose that g is a nonconstant entire function and that h = e€ is a function
of finite order A. If p > A — 1 is an integer, then

or+1



(Problem 5540) Prove [Proposition 9.3.5]

By [Problem 9.1} if z € C and r > 2|z| then

Reg(z) = log |h(2)| = % /027r Re (

Now, if f is a holomorphic function then

re'® +z
ref® — z

) log |h(re'®)| d6.

of _of of _g+67f_6f+f_26Ref
0z 0z 0z) 0z 0z 0z 0oz
by definition of holomorphic and by Problem
Thus

0 10 [* rel® +z ;
/ — — 0
g'(z) = 202 Reg(z) = 227‘_ Ep /0 Re (reie — z) log |h(re')| dé.

By Problem [730]

g'(z) = — 2—Re

T or o Oz

1 (™ 8 re® + z
ref® — z

) log |h(re')| d6

1 [0 [(ref®+z ;
= = —= log |h(re’®)| db.
2w Jo Oz (re’9—2> og|h(re™)]
Similarly
ortt 1 [2™ 9Pt [rel® 4 2 0
But

ref® + z 2re'®
3 = 3 -1
re'Y —z re' —z

and p is an integer with p>XA—1> —1landso p+12>1, and so
or+t 1 [ 2ref® :
= — 1= = i0
6zP+1g(Z) (p+ 1) . /0 (re — 772 log |h(re')| dé.

By [Cemma 9:3.4] the right hand side converges to zero as r — 0o, while the left hand side is independent
of r and so we must have that the left hand side is zero, as desired.

(Problem 5550) Prove [Theorem 9.3.7

Let f be an entire function of finite order with finitely many zeroes. Then there is a nowhere zero
holomorphic function h and a polynomial p such that f = hp. By h = e& for some
holomorphic function g.

Recall that polynomials have poles at oo and so if |z| is large enough then |p(z)| > 1 and so |h(z)| <
|f(2)|. Thus h is a function of finite order. By Exercise 5503} the order of h must equal the order of f.

Let A be the order of f (and h) and let p be the unique integer with A — 1 < p < A By
[ 935

gp+1
Wg(z) =0
and so g is a polynomial of order at most p. Let m be the order of g; then m < p < A.
Conversely, there are constants C and r such that |g(z)| < C|z|™ for all z with |z| > r, and so |h(z)| <
exp(Clz|™) for all |z| > r. If £ > 0, then there is a r. such that (r.)¢ > C and so |h(z)| < exp(|z|™"¢) for
all |z| > max(r, re). Thus the order X of h is at most m, and so A = m.

(Problem 5560) Prove [Theorem 9.3.9

Let h(z) = f(z) — c. By Exercise 5502} h is a function of finite order and in fact is of order equal to f.

If f(z) = c has finitely many solutions, then h has finitely many zeroes and so by [Theorem 9.3.7| the order
of his an integer. But the order of h equals the order of f and the order of f is not an integer. This is a

contradiction, and so f(z) = ¢ must have infinitely many solutions.



(Problem 5570) Prove [Theorem 9.3.10

10.1. DEFINITION OF AN ANALYTIC FUNCTION ELEMENT

(Problem 5571) Let W C Q C C, where W is open and nonempty and Q is open and connected. Suppose that
f is holomorphic in W. Show that there is at most one function F that is holomorphic in £ and such that F = f
in V.
(Problem 5580) Suppose that Q, W are connected open sets with D(1,1) € Q ¢ C and D(1,1) C W C C.
k

Suppose that F : Q — C and G : W — C are holomorphic and that G(z) = F(z) =Inz=Inz=3}° (_,3) (z—
1)« for all z € D(1,1).

If U is a connected component of Q N W, show that there is a n € Z such that F(z) = G(z) + 2min for all
z € U. Give an example to show that n may not equal zero.
(Problem 5590) Suppose that Q, W are connected open sets with D(1,1) € Q C C and D(1,1)
Suppose that F : Q@ — C and G : W — C are holomorphic and that G(z) = F(z) = /z for all z
(Here 4/z is the unique function continuous on D(1,1) such that JVZ' =zand V1= 1)

If U is a connected component of Q NW, show that either F(z) = G(z) for all z € U or F(z) = —G(z) for all
z € U. Give an example to show that the case F(z) = —G(z) can occur.

cwcc
€ D(1

(1,1).

Definition 10.1.4. A function element is an ordered pair (f, D(P, r)) where P € C, r > 0 and f is a holomorphic
function defined on D(P, r).

Definition 10.1.5. If (f, D(P, r)) and (g, D(Q, s)) are function elements, if D(P,r)ND(Q,s) #0, and if f = g
on D(P,r)N D(Q, s), we say that (g, D(Q, s)) is a direct analytic continuation of (f, D(P, r)).

[Definition: Analytic continuation] Suppose that we have a finite sequence of function elements {(f;, D(P;, r;)) J’-‘Zl
such that (f;, D(P;, r;)) is a direct analytic continuation of (fi_1, D(Pj_1,rj—1)) for all 1 < j < k. Then
(fx, D(Px, r¢)) is an analytic continuation of (f, D(Py, r1)).

(Problem 5600) Find a function element (f, D(P, r)) and two distinct function elements (g, D(Q,s)) and

(& D(Q,s)), with the same disc D(Q,s), such that (g, D(Q,s)) and (&, D(Q,s)) are both analytic continu-
ations of (f, D(P, r)). Can you do this for a direct analytic continuation?

10.2. ANALYTIC CONTINUATION ALONG A CURVE

Definition 10.2.1. Let v : [0,1] — C be a continuous function (we will call ¥ a curve). Let r > 0, let
D = D(«(0), r) and let (f, D) be a function element. An analytic continuation of (f, D) along - is a collection
of function elements {(f;, D¢)}o<¢<1 such that:

e If t €0, 1], then Dy = D(+(t), r:) for some r; > 0,

e (fo, D(%(0), r0)) = (f, D(7(0). r)),
e If t € [0, 1], then there is an € = g; > 0 such that, if s € [0, 1] and |t — s| < &, then (f, Ds) is a direct
analytic continuation of (f;, D;).

Proposition 10.2.2. Let y: [0,1] — C be a curve and let (f, D) be a funcion element with D = D(~y(0), r) for
some r > 0. Let {(g¢, D¢)}o<t<1 and {(he, Bt)}o<t<1 be two analytic continuations of (f, D) along 7.

Then for all t € [0, 1], we have that g = h; in D N Bs.
(Problem 5601) Let S = {t € [0,1] : gt = h: in D; N B;}. Begin the proof of [Proposition 10.2.2| by showing
that S is relatively open in [0, 1].
(Problem 5610) Complete the proof of [Proposition 10.2.2| by showing that S is closed.

(Problem 5620) Suppose that «y : [0, 1] — C is a closed curve (so (1) = «(0)). Let {(f;, D
an analytic continuation of (f, D(y(0), r)) along «y. Is it necessarily true that f; = fy on D(vy

¥(t), rt))}o<e<1 be
0

(t),
), min(rg, r1))?

No. For example, let y(t) = exp(27it), let r, = 1/2 for all t, and let f(z) = logz (with the branch
cut along the negative real numbers). It is easy to see that fi(z) = logz + 2mi = fy(z) + 27 for all
VS DQ = Dl.

(
(
(
(



(Exercise 5621) Let y(t) = e't, 0 < t < 6m. Let (f, D(P,r)) = (logz, D(1,1/2)) be a function element. Let
{(ft, D(y(t)., rt)) Yo<t<er be an analytic continuation of (logz, D(1,1/2)) along 1.
Find f5(1), (1), fax(1) and for(1).

(Exercise 5622) Let y(t) = e't, 0 < t < 6m. Let (g, D(P,r)) = (v/z, D(1,1/2)) be a function element. Let
{(gt, D(¥(t), re)) }o<t<er be an analytic continuation of (1/z, D(1,1/2)) along 7.
Find go(1), g2x(1), garx(1) and gex(1).

10.3. THE MONODROMY THEOREM

Definition 10.3.1. Let a < b, ¢ < d. Let Q C C be open and connected. Let 7., v4 : [a, b] — Q be two
continuousﬁ] curves with the same endpoints (so yc(a) = v4(a), vc(b) = va(b)).

We say that <. and y4 are homotopic in Q if there is a function I such that:
I:[a b] x[c,d] — Q,
M(t,c) =v(t), T(t, d) =vq4(t) for all t € [a, b],
M(a,s) =v:(a) = v4(a), T(b,s) =vyc(b) =vyq4(b) for all s € [c,d],

e [ is continuous on [a, b] x [c, d],

We often let y5(t) = I'(t, s).

Definition 10.3.2. Let Q C C be open and connected, D = D(P,r) C Q, and let (f, D) be a function element.
We say that (f, D) admits unrestricted continuation in Q if, for every continuous curve 7 : [0,1] — Q with
v(0) = P, there is an analytic continuation of (f, D) along +.

(Exercise 5623) Prove directly (without [Theorem 10.3.3| or[Corollary 10.3.4)) that (In, D(1,1/2)) does not admit
unrestricted continuation in C.

Theorem 10.3.3. [The monodromy theorem|. Let Q C C be open and connected, D = D(P,r) C Q, and let
(f, D) be a function element. Assume that (f, D) admits unrestricted continuation in .

Let v, 11 : [0, 1] — Q be homotopic curves in Q with 40(0) = 1(0) = P. If s € [0, 1], let {(f;s, D¢.s)}o<e<1
be an analytic continuation of (f, D(P, r)) along «s.

Then fis = fio in D1 sN Dyg. forall s, o €]0,1]. In particular, fig = f1,1 in D1oN Dy 1.

(Problem 5630) Suppose that (f, D) is a function element, D = D(P, r), v : [0, 1] — C is a curve with y(0) = P,
and that there exists an analytic continuation {(f;, D(y(t), rt))}tcpo,1] of (f, D) along 7.
Show that there is also an analytic continuation along «y such that the radius r; is a constant. Can you do this

in such a way that the € = g; in [Definition 10.2.1]is also a constant?

(Proposition 5631) Let v : [0,1] — C be a curve. Let D = D((0), r), let (f, D) be a function element, and
let {(ge, D(¥(t), r))}ecpo,1) be an analytic continuation of (f, D) along <y such that the discs in the definition of
analytic continuation all have the same radii.

Let :[0,1] — C be a curve. Suppose that |n(t) —y(t)| < r for all ¢t € [0,1]. Suppose that n(0) = «(0) and
that {(he, D(n(t), €))}tejo,1) is an analytic continuation of (f, D) along n (possibly with a different radius for the
discs in the definition of analytic continuation).

Then (hy, D(n(t), @)) is a direct analytic continuation of (g¢, D(y(t), r)) for all t. In particular, if y(t) = n(t)
then g; = h; in D(n(t), min(r, g)).

(Problem 5640) Begin the proof of Proposition [5631] as follows. Let S = {t € [0,1] : gt = h: in D(y(t),r) N
D(n(t), o)}. Show that S is relatively open in [0, 1].

Let t € S. By definition of analytic continuation, there is a €, > 0 such that if [t —s| < &y and s € [0, 1],
then g = gs in D(y(t), r)) N D(v(s), r)). Define &, similarly.

Because 7 is continuous, there is a 8, > 0 such that if [t — s| < §,, and s € [0, 1] then |n(t) — n(s)| < e.
Furthermore, there is a é., > 0 such that if [t —s| < §, and s € [0, 1] then |y(t) —y(s)| < r — |y(t) — n(t)|
and so |y(s) —n(t)| < r.

Let & = min(e,, €5, 9, 0n).

Suppose s € [0,1] and |t — 5| < §. We then have that

n(t) € D(v(s), r) N D(v(t), r) 0 D(n(s). e) N D(n(t), e)-

4In Section 2.6 we required ¢, 74, and I to be ctl.



In particular, the right hand intersection is nonempty.

Because |s — t| < &4, we have that gs = g in D(y(t), r) N D(«(s), r).

Because t € S, we have that g = h; in D(«y(t), r) N D(n(t), ).

Because |s — t| < &, we have that hs = h; in D(n(t), o) N D(n(s), o).

Thus, gs = hs in D(7(s), r) N D(v(t), r) N D(n(s), ) N D(n(t), o)-

The given set is nonempty (it contains n(t)) and also open, and so has accumulation points. Furthermore,
D(«(s), r) N D(n(s), p) is connected, and so we must have that g5 = hs in D(v(s), r) N D(n(s), ). Thus
s € S by definition of S, and so S is relatively open in [0, 1].

(Problem 5650) Complete the proof of Proposition [5631| by showing that S is closed.
(Problem 5660) Use Proposition [5631| to prove [Theorem 10.3.3

Corollary 10.3.4. Let Q C C be open and simply connected and let (f, D(P, r)) be a function element with
D(P, r) C Q. Assume that (f, D(P, r)) admits unrestricted continuation in . Then there exists a unique function
F : Q — C that is holomorphic in Q and satisfies F = f in D(P, r).

10.4. TopPoLOGY

[Definition: Covering space] Let W, Q be two topological spaces. Suppose that there is a continuous function
7 : W — Q such that, if z € Q, then there is a connected open set U with x € U C  and such that, if V is a
connected component of 7~1(U), then 7 : V — U is a homeomorphism. Then we say that W is a covering space
for Q.

(Problem 5661) R is a covering space for S' = {(x,y) € R? : |(x,y)| = 1} under the mapping m(t) =
(cos t,sin t).

(Bonus Problem 5662) If Q is path connected and also simply connected, show that m must be a homeomorphism
from W to Q.

(Problem 5663) Lety : [0,1] — C be a C! curve. Show that £(vy) > |y(1)—~(0)| and that, if £(y) = |[y(1)—v(0)],
then 4 must be a parameterization of the straight line segment from «(0) to «(1).

If 7 is closed (if 4(0) = y(1)) then this is clearly true if by the “straight line segment” from a point to
itself we mean the corresponding constant path.

Let w = (1) — y(0) and assume w # 0. Then oy = e’ for some 9 € R.

1
- [ Wi
0

v (8)] = [ (t)e™"| > Re(y'(t)e™)

= [ W@l [ Rt ©e ) ar=re(e [ y(e)or)

—Re(e(2(1) = 2(0)) ) = Re( D=1 (00) < 2(0)) = (1) =20}

We compute that

Observe that

and so

Furthermore both |y nd Re(vy'(t)e ie) are continuous functions of t because 7 is, and so by Prob-

(1) a
lem if £(v) = |y(1) — (0)| then fo Iv'(t)| dt = fo Re(v'(t)e %) dt and so we must have that
)

v ()| = Re(’y’( Ye~®) for all t. In particular, 4/(t)e~"® must be a nonnegative real number. Thus
t t
Y(t) =7(0) + / v'(s)ds =(0) + / ely'(s)| ds = y(0) + e"¢(v] 0, t])
0 0
and so vy is a line segment, as desired.

(Problem 5664) Let Q C C be open and connected. If we define d(z,w) = inf{l(y) | v : [0,1] — Q is
C1,74(0) = z,9(1) = w}, show that (£, d) is a metric space.



(Problem 5670) Let d and Q be as in the previous problem. Show that if D(z, r) C Q, then |z — w| < r if and
only if d(z, w) < r, and d(w1, wa) = |wy — ws| for all wy, wy, € D(z, r).

By Problem we have that d(z, w) > |z — w| for all z, w € Q.

Thus, if d(z, w) < r then |z—w| < r and so w € D(z,r).

Conversely, suppose that wy, wo € D(z,r). Let y(t) = wi+t(wa—wy). If 0 < t < 1 then (t) € D(z,r)
because D(z,r) is convex, and therefore «y : [0,1] — Q. Furthermore, 4(0) = wy and y(1) = wy. It is
elementary to show that £(y) = |w, (wi, wa) < () < |wa — wa|. Applying the converse
inequality, we see that for such wy and wy we have that d(wy, wa) = |wy — wa|. In particular, z € D(z, r),
soif we D(z,r) then |w —z| < randso d(w,z) = |w —z| <r.

(Problem 5671) Let Q C C be open and connected and let d be as in Problem
Let zp € Q and let
W={y|y:[0,1] = Qis C',4(0) = z}/ ~
where v ~ 7 if 4(1) = n(1) and 7 and 1 are homotopic.
Iftyieq,neneW, let
(41, M) = inf{l(y2) : ¥2(0) = y1(1), ¥2(1) = n(1), 1 * 2 is homotopic to n},

where 41 * 7o = 3 is given from ; and 4> by Problem
Show that (W, §) is a metric space.

(Problem 5672) Define m: W — Q by 7(y) = (1) for some (hence any v € 4. Show that if 7, ¥ € W, then
(1) — m(¥)] < 8(7.9).

This follows immediately from Problem and the definition of §.

(Problem 5690) Suppose that D(z,r) C Q. Show that if m(§) € D(z,r) and w(7) € D(z,r), then either
6(¥.m) = Im(7) = w(M)] or 8(3,7) = 2r — [z = 7(Y)| — |z — =(M)].

Let <y, m be representatives of 4 and 7, respectively.
Then

(7, 7) — inf{e() : $(0) = (1), %(1) = n(1), 7 * % is homotopic to 7}.

Suppose that §(%,7) < 2r — |z — ©(§)| — |z — 7(7)|. Then

8(7,7) = infe($) : $(0) = (1), $(1) = n(1), % is homotopic to 1,&(%) < 2r — |z — n(F)| — |z — m(F)}.
It is elementary to show that if ¥(0) = (1) = m() and ¥(1) = n(1) = (%), and if ¢ contains any point
not in D(z, r), then £(¢) > dist(m(7), C\ D(z, r)) +dist(7w(n), C\ D(z,r)) = 2r — |z — 7(7)| — |z — 7(7)|.
Thus

6(7,m) = inf{£(¢) : $(0) = (1), ¥(1) = (1), * ¢ is homotopic to n, %([0, 1]) € D(z, r)[}.

In particular, there exists such a 3. But it must be homotopic to the straight line segment g from
(1) to n(1), with £(¢o) = |7 (§) — w(N)|, since D(z, r) is convex. Thus 4y must lie in this set, and so
8(7. M) < 4L(o) = |m(7) — 7(7)|. We have the converse inequality by the previous problem, and so we are
done.

(Problem 5680) Suppose v € ¥ € W and that D(7(¥),r) C €. Show that m is an isomorphism of metric
spaces from B(7, r) to D(m(y), r), that is, that w(B(Y, r)) = D(m(7), r) and that 6(¢, 1) = [m(¢) — m(7)| for all
¢, neB.r).

It is clear from Problem that 7(B(,r)) € D(m(7),r). Conversely, if z € D(n(5),r), let ¢ be
the straight line path from (%) to z. Then £(¢) < r, and so 5('7,m) < {(¢) < r. Observing that
7(y* ¥) = %(1) = z, we see that D(n(7), r) C n(B(F,r)).

Suppose that 77 € B(7, r). Let ¥ be the straight line segment from 7 (%) to 7(¥). Let n”’ =y * 4. Then
w(n) = w(7) and 6(7,7) < r < 2r — |7(¥) — 7(7M)|, and so by the previous problem 77 = 7.



Using the convexity of D(m (%), r), it is straightforward to establish that if 7, (€ B(#, r) then 6(77, E’) =
[m(¢) — m(@)-

(Bonus Problem 5681) Show that (W, ) is simply connected.

10.4. THE IDEA OF A RIEMANN SURFACE

(Problem 5700) Let Q C C be open. Let D C Q and let (f, D) be a function element that admits unrestricted
continuation in Q.
Let zp € Q and let
V={y[v:[0.1] = Qis C",4(0) = 20}/ ~

where v ~ 7 if n(1) = (1) and the analytic continuations {g¢, D(7y(t), ) }tejo,1) and {he, D(n(t), g¢)}ecpoq) of
(f, D) along <y and n, respectively, satisfy g = h; in D(y(1), n) N D(n(1), g1).
Show that if vy and n are homotopic then v ~ 7. Give an example to show that the reverse may not be true.

The fact that v ~ n is simply [Definition 10.3.1] Let Q = C\ {0}, let y(t) = e*™'t, and let n(t) = 1 for

all t. Then «y and 71 are not homotopic in €, but if we take D = D(1,1/2) and f(z) = 1/z, it is clear that
v~

(Problem 5710) What metric would you like to impose on W?
We let (7, 7) = inf{&() 7 * % ~ 7},
(Problem 5711) Show that W is a covering of W and that W is a covering of Q.

10.5. PicARD'S THEOREM

(Problem 5720) Let f : C — C be entire and not constant. Show that f(C) is dense in C.
Theorem 10.5.5. Let f : C — C be entire and not constant. Then C\ f(C) contains at most one point.
Recall [Problem [3620]: Let f : H — H be a function. Then f is a biholomorphic self-map if and only if

f(z) = iiig for some real numbers a, b, ¢, and d that satisfy ad — bc > 0.

(Problem 5730) Let G be the set of all fractional linear transformations that may be written f(z) = % where

a, b, ¢, and d are integers that satisfy ad — bc = 1. Show that if f, g € G then fog € G and f~1 € G. (Thus
G is a group under function composition.)

Let f(z) = jjif’, and g(z) = ‘f‘yif be two elements of G. We may require that a, b, ¢, d, o, B8, 7y, and §
be integers with ad — bc = ad — fy = 1.

By Problem 3380} f o g = h, where {, n, 6, k are the complex numbers that satisfy
¢ n\ _ (a b\ (a B
0 k) \c d)\y ¢

h(z) = gji: if 2€C, 6z +K#0.

Because the determinant of the product is the product of determinants, we have that ¢k — nf = (ad —
bc)(ad — By) = 1, while by the properties of matrix multiplication ¢, 1, 8, and k are integers. Thus h € G.

Furthermore, recall that
a b\ ' 1 d —b
c d " ad—bc\-c a )’

Then f~1 is the associated fractional linear transformation, and if ad — bc = 1, then this matrix has integer
coefficients and determinant one, and so f~1 € G.

and where

Theorem 10.5.4. There is a function A : H — C (called the modular function) and a nontrivial subgroup ' of G
with the following properties.



(a) If z € H then {h(z) : h € T} has no accumulation points in H. Moreover, there is an r = r, > 0 such
that if hy, ho € T with hy 7& hy, then hl(D(Z, I’)) N hQ(D(Z, r)) =0

(b) Xoh=Xforall her.

(c) If A(z) = AM(w) then z = h(w) for some f €T.

(d) X is holomorphic in H.

(e) N(z) #0 for all z € H.

(f) A(H) = C\{0,1}.

(Problem 5740) Assume [Theorem 10.5.4|is correct. Let f : C — C be entire and suppose that 0, 1 ¢ f(C).
Suppose that z € C and w € H satisfy f(z) = A(w). Show that there is a ¢ = g, > 0 and a holomorphic

function k = k, ., : D(z,r) — H such that k(z) = w and f(¢) = A(k(¢)) for all z € D(z, p).

Let r, as in [Theorem 10.5.4) part Then X\, = )\]D(Wr ) is one-to-one, and f(z) = Mw) €

AD(w, ry)).

By [Theorem 52.] A(D(w, r,,))) is open. Furthermore, f is continuous at z. Thus, there is a g, > 0 such
that f(D(z, 0.)) € A(D(w, ry,)).

By [Problem 5.7] \;,! is holomorphic in A(D(w, 1)), s0 kzw = A} o f satisfies the desired conditions.

(Problem 5750) Let z, { € C, and let f(z) = A(w), f(¢) = A({). Suppose that D(z, p,) N D(¢, o¢) # 0. Show
that there is a h € ' such that ho k,, = k¢, in D(z,0,) N D(¢, o¢)-

Let & € D(z,0.) N D(¢, e¢)-
By definition of k and o, A(k.,w(§)) = (&) = A kew(£). So by [Theorem 10.5.4] part there is a
he € T such that k; (&) = he(kew(£)).

Let r = r, ,(¢) be as in [Theorem 10.5.4} part [(a)l Then hi(D(kzw(£),r)) N ha(D(kzw(£). 1)) = 0 if
hy % hy, by €T

Now, D(z, p,) N D(¢, o¢) is open and contains &, and both k,,, and he o k;,, are continuous at &, so
there is a § > 0 such that if w € D(§,6), then w € D(z,0,) N D(¢, 0¢), kzow(w) € D(kzw(£), r), and

he(ke.w(w)) € D(he(kew(€)), r) = D(ke,w(£). 7).
But k,w (@) = hg (k¢ w(w)) for some hg €T, and so

D(kzw(£),r) 3 keyw(@) = heg 0 b 0 he (ke (@) € heg 0 b *(D(kzw(£), 7))-
Thus D(kzw(£),r) N hg o hgl(D(kZ w(&),r)) # 0. By definition of r, hg h_ is the identity, and so

ke, (@) = heo (ke (@) = he (ke ().
Thus k. = hg o ke, in D(&,r). Because k., and hg o k¢, are holomorphic in D(z, p,) N D(¢, g¢), and
are equal in a disc, we have by [Corollary 3.6.2|that k., = h¢ o h¢,, everywhere in D(z, p,) N D({, o¢).

(Problem 5760) Let D = D(0, go). Let w € A71(f(0)). Show that (ko w, D) admits unrestricted continuation
in C, and that every function element (k, D) in the analytic continuation satisfies k(D) C H.

Let v : [0,1] — C be a curve. If t € [0,1], then f((t)) € C\ {0,1} and so there is a wy € H with
A(we) = f(v(t)). Let oy, and ky(z),w, be as in Problem

Because «y is continuous, the set Uy = v~ *(D(¥(t), 0(¢))) is relatively open in [0,1]. We may see that
U:U(—1,0)U(1,2) is open in R. We let I, be a connected open set (that is, an open interval) that satisfies
tel, CU,U(-1,0)U(1,2).

Because [0, 1] is compact, {I; : t € [0, 1]} has a finite subcover {I, : 0 < n < m}. We may moreover
assume, first, that 0 = tp < t; < --- < t, = 1 (by reordering the t,s), second, that t, ¢ I, if n # £ and n,
£€{0,1,..., m}, and finally that I, NI, = 0 for all 0 < n < m — 2 (by shrinking the I; s as needed).

Now, let k, = ky(t,),w,, and let Dy, = D(¥(tn), @y(t,))- By connectedness we must have that Dy NDy, ., #
0, and so by Problem there is a hpy1 €y such that k, = hpp1 0 kpg1 in Dy, N Dy, .

Let kt =hiohyo---oh,ok,. Then, if1 <n<m, then (},,, D,) is a direct analytic continuation of
(Kn—1, Dp_1). Furthermore, k, has range in H.



We may then construct an analytic continuation by letting D; be any disc centered at «y(t) and contained
in Dy, for all n with t € I, (observe that there are at most two such n; by construction of I, we may take

D: to be nonempty) and letting k; = k, for one (hence both) such n.

(Problem 5770) Show that f is a constant.

Since C is simply connected, by [Corollary T0.3.4]there is a unique entire function F : C — H that satisfies
F = ko,w, in D(0, go). Because F(z) = k(z) for some (k, D) a function element in an analytic continuation,
we have that F(z) € H for all z € C.

But then F(C) C H is not dense in C, and so by Problem [5720] F is constant.

But Ao F =Xokou, = f in D(0, rp), and so f must be constant in this disc, hence everywhere.

(Problem 5771) Prove [Theorem 10.5.5

10.5. THE ELLIPTIC MODULAR GROUP

Recall [Problem [5730]: The modular group G is the set of all fractional linear transformations that may be

written f(z) = where a, b, ¢, and d are integers that satisfy ad — bc = 1.

Recall [Theorem 10.5.4]: There is a nontrivial subgroup I of G with the following property.

(a) If z € H then {h(z) : h € T} has no accumulation points in H. Moreover, there is an r = r, > 0 such
that if hy, hy € T with hy # hy, then hy(D(z, r)) N ho(D(z, r)) = 0.

[Chapter 10, Problem 16] Let p(z) = 525, w(z) = z+ 2. Let

2z+1"
az+b
r={h:H—->C|h(z)=——,a,bc,d€Z, ad—bc=1, a,dodd, b, c even}.
cz+d
Then w, w €T, Iis a group, and p and w are a set of generators for I', that is, every h € v may be written as a

composition of finitely many copies of p, w, ™!, w™!, in some order.

(Problem 5780) We now begin the proof of [Theorem 10.5.4 If k € Z, let Ly = {k+it: 0 < t < 0o} be the
vertical line segment with one end at k.

Suppose h € I'. Show the following:

e Either h(Ly) = Lyy2, for some n € Z, or h(Ly) is a semicircle.

e If h(Ly) is a semicircle, then its radius is 1/m for some m € N and its center is j/m for some j € Z; in

particular its center is a real number.

o If h(Lx)NLm # 0, then h(Lx) = L, and h(z) = z+(m—k) for all z € H. In particular, if h(L )N Lk # 0

then h is the identity function.

By definition of I', we may write h(z) = zis for some odd integers a and d and even integers b and ¢
with ad — bc = 1. Because d is odd, we have that d # 0. If d < 0, we may replace a, b, ¢, and d by —a,
—b, —c, and —d without changing the parity of a, b, ¢, or d or the value of ad — bc, and so without loss
of generality we may require that d > 0.

Suppose first that ¢ = 0.

In this case 1 = ad — bc = ad; because a and d are integers and d > 0, this is only possible if a =1 = d.
Hence h(z) = z+ b for all z € C. But b is even and so h(z) = z+2n for some n € Z. Thus h(Lyx) = Lyi2n.

h(L) is not a semicircle.

If (L) N Ly # 0, then Lo N Ly # 0. Hence Lyyon = L, k+2n = mand so h(z) = z+2n =
z+ (m— k) for all z € H.

We now consider the case ¢ # 0.

We may compute that

ak+b a
= h — —
( ) Ck + d’ (OO) c
by [Definition 6.3.1] Because k is an integer, c is even, and d is odd, we have that ck + d is an odd integer

and in particular is not zero. Thus h(k) and h(oco) are both finite real numbers. The pole of h is located at



—d/c. Observe that d is odd and c is even, so the pole of h is real but is not an integer. In particular, if
we let £ = {k + it : t € R} U {00}, then —d/c ¢ £ and so h({) is a circle by [Theorem 6.3.7]

By Problem [3620| and |Problem 1.10, h(R U c0o) = R U oo. Because conformal mappings preserve
isomorphisms, we must have that h(£x) and R meet at right angles because £, and R meet at right angles.
But they meet at the real numbers a/c and (ak + b)/(ck + d), and so h(£) is a circle centered on the real
axis. Because Ly = £, NH and h is a bijection from H to itself, we must have that h(Lx) = h(£x) NH is a
semicircle.

Thus the diameter of h(£x) must be

ad — bc 1
h — h(k)| = =
[h(o0) = (k)| cck+cd| |c?k + cd|
and so its radius is )
2|c?k + cd|’

Its center is
_ 2ack + ad + bc

1
p(Moo) + hk)) = =5kt ca)

The numerator is an integer, and so the center is an integer multiple of the radius (albeit not of the

diameter).
Finally, we must show that in this case L, N h(Lx) # 0. Recall that all are subsets of H and thus do not
include their real endpoints. Thus, if h(Lx) N Ly, # 0, we must have that either

h(o0) < m < h(k) or h(k) < m < h(c0)
. Also recall that ¢ # 0 and ck + d is odd and thus not equal to zero, and so c(ck + d) is either positive
or negative. Thus, we have that either
c(ck + d)h(oo0) < m < c(ck+ d)h(k) or c(ck+ d)h(k) < m < c(ck + d)h(c0)
. Applying the values of h(k) and h(o0), we have that
(ck+d)a<m<c(ak+b) or c(ak+b)<m<(ck+d)a
. Expanding and rearranging, we have that either
ad <m—ack <bc or bc<m-—ack< ad

. Because ad, bc, and m — ack are integers, we must have that either bc —ad > 2 or ad — bc > 2, and in
any case ad — bc # 1. This contradicts the assumption h € ', and so L,y N h(Lx) = 0 for all m, k € Z and
all h € T with ¢ # 0.

(Problem 5790) Show that if hy, hy € T, then either hl(Lo @] Ll) n h2(L0 @] Ll) =0 or hy = h.

Observe that

h1(L0 U L1) N h2(L0 U Ll) = [hl(l_o) U hl(Ll)] n [hz(Lo) U hz(Ll)]
= [h1(Lo) N h2(Lo)] U [h1(L1) M ho(Lo)] U [A1(L1) M ho(L1)] U [hi(Lo) N ho(L1)]-

Suppose that one of the four listed intersections on the right hand side is nonempty. We wish to show that
hy = ho.

Because hy : H — Hi is a bijection, if hy(Lx) N ho(Ly) # O then Ly N hy (ha(Lm)) # 0. But then by the
previous problem hi' o hy(z) = z + (k — m) for all z € C, and furthermore k — m must be even. But if k,
m € {0,1}, then kK — m even implies k = m, and so h1_1 o h, is the identity, as desired.

(Problem 5800) Show that [J, . h(Lo U L) is relatively closed in H.
Let z € H\Uper h(LoUL1). We seek to show that there is an r > 0 such that D(z, r)NJ,cr h(LoUL1) =

Let m € N satisfy 1/m < %Im z; such an m exists by the Archimedean property of the integers and

because z € H and so Imz > 0.
If h(Lk) is a semicircle of radius less than 1/m, then h(Lx) N D(z,1/2m) = 0.



Now, for each n with 1 < n < m, observe that there are at most two semicircles of radius 1/n with center
at j/n for some j with j € Z and with |Rez — j/n| < 1/m. Thus there are at most finitely many elements
of {h(LoULy): h €T} that intersect D(z,1/2m). Because the semicircles h(Ly) are relatively closed in H,
we may find an r € (0,1/2m) such that D(z, r) intersects none of these semicircles, as desired.

(Problem 5810) Suppose that U is a connected component of H \ U,cr h(Lo U L1). If g € T, show that g(U)
is also a connected component of H \ [J,cr h(Lo U L1).

Because I is a group, we have that if g € I then
g(UhLou L)) = Jh(Lou L),
her her
Because g is a bijection from H to H, we have that
g(H\ L h(Lou Ll)) =H\ | h(LoU Ly).
her her

Because g is continuous and U is connected, we have that g(U) is connected and so is contained in some
connected component Q of H \ J,cr h(Lo U L1). But g~ is also continuous, and so g~(€2) is contained
in a connected component of H \ J,cr h(Lo U L1); because U C g~*(2) and U is a connected component,
we must have that U = g71(Q2) and so g(U) = Q is a connected component of H \ J,cr h(Lo U L1).

(Problem 5820) Let W be the indicated blue region with the indicated rays and semicircles as its boundary.
Show that W is a connected component of H \ |J,r h(Lo U L1).

First, we claim that HNOW C [, h(LoUL1). First, the left and right boundaries are L and L1, which
lie in Uper (Lo U L1) because the identity is an element of T

Second, u(z) = 557 is an element of ', and p(0) = 0, p(o0) = 1/2, and p(—1) =1 and so p(LoUL_1)
must be the two semicircles in OW. Because translation to the left by two elements is an element of [ and
[ is a group, we have that u(L_1) C U,cr h(L1). This completes the proof of the first claim.

Next, we claim that W NJ,cr h(LoU L1) = 0. Clearly if h(z) = z+2n then h(Lo) and h(Ly) are vertical
line segments with bases as integers and so do not intersect W. Otherwise, h(Lo) and h(L;) are semicircles
which cannot intersect OW except at R (or by being those two semicircles). The only semicircle which
intersects W but not OW is the semicircle with endpoints at 0 and 1.

But if h €T, then h(co) = a/c is a rational number with odd numerator and even denominator, and so
cannot be zero or one; thus h(Ly) cannot be the semicircle with endpoints at 0 and 1. This completes the
proof of the second claim.

Thus W C H\ Uper h(Lo U L1) is open and connected (and so contained in a connected component),
and OW C RUU,cr h(Lo U L1) and so W has no boundary points in H\ J,cr h(Lo U Ly); this means that
W is a connected component, as desired.

(Problem 5830) Let V be the translation of W leftward by one unit. Show that V' = h(W) for some h € T.

Let h(z) = z/(—2z+1). Then h(0) =0, h(1) = —1, h(co) = —1/2 and h(1/2) = co. Recalling that h
maps lines and circles to lines and circles, we easily complete the proof.



(Problem 5840) Let U be a connected component of H\ J, . h(LoUL1). Show that U = h(W) for some h € T.
(Problem 5850) Suppose that h € I and that h(W) = W. Show that h must be the identity.

(Problem 5860) Prove part [(a) of [Theorem 10.5.4

10.5. THE ELLIPTIC MODULAR FUNCTION

Recall [Theorem 10.5.4]: There is a function X : H — C (called the modular function) and a nontrivial
subgroup I of G with the following properties.

(a) If z € H then {h(z) : h € T} has no accumulation points in H. Moreover, there is an r = r, > 0 such
that if hy, hy € T with hy # hy, then hi(D(z,r)) N hao(D(z, r)) = 0.

(b) Xoh=MXforall heT.

(c) If AM(z) = M(w) then z = h(w) for some f €T.

(d) X is holomorphic in H.

(e) N(z) #0 for all z € HL.

(f) M(H) =C\ {0,1}.

Theorem 13.2.3. (Carthéodory). Let v : [0, 1] — C be a simple closed curves. Let Q be the bounded component
of C\ ¥([0,1]); by the Jordan curve theorem, there is exactly one such connected component. Clearly Q is a
simply connected nonempty open proper subset of C.

Then any Riemann map ® : Q — I extends continuously to a bijection from Q to D.

(Problem 5870) Let Q be the open right half of W. Show that there is a continuous bijection ¢ : Q — H such
that <p|Q is a holomorphic bijection ¢ : Q — H. Show that we may furthermore require that ¢(1/2) = 0 and

(1) =1.

b

c
d

(Problem 5880) Show that there is a continuous function ¥ : W — C, holomorphic in W, such that 1(z) = ¢(z)
for all z € Q. Show that 9 is a holomorphic bijection from W to C \ [0, c0) and that $(HNW) = C\ {0, 1}.

(Problem 5890) Let z, w € W. Show that ¥(z) = ¥(w) if and only if h(z) = w for some h € T.

(Problem 5900) Define \(z) = (h(z)), where h € T satisfies h(z) € W. Show that X is well defined and
continuous on H and prove partsand of Theorem 10.5.4
[Chapter 3, Problem 6] If f is continuous on D(P, r) and is holomorphic in D(P, r) \ S, where S is a line or

circle passing through P, then f is holomorphic on all of S.
(Problem 5910) Prove part [(d)] of [Theorem 10.5.4} that is, show that X is holomorphic on H.

(Problem 5911) Prove part [(c)] of [Theorem 10.5.4} that is, show that if A(z) = A(w) then z = h(w) for some
ferl.
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