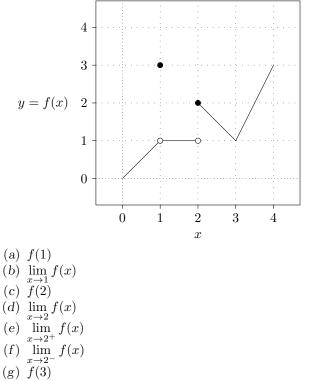
Math 2554H, Fall 2018

Throughout, if you are asked to find a limit, you are to either find a real number equal to the limit, state that the limit is ∞ , state that the limit is $-\infty$, or state that the limit does not exist.

(Problem 1) Here is the graph of y = f(x). Find the following values and limits.



(h) $\lim_{x \to 3} f(x)$

(Problem 2) Here is a table of values of x and of f(x). Approximately how much is $\lim_{x\to 0} f(x)$?

х	f(x)
1	1
0.1	0.7177346254
0.01	0.6955550057
0.001	0.6933874626
0.0001	0.6931712038
0.00001	0.6931495828
-0.00001	0.6931447783
-0.0001	0.6931231585
-0.001	0.6929070095
-0.01	0.6907504563
-0.1	0.6696700846
-1	0.5

(
x	f(x)
1	
0.1	
0.01	
0.001	
-0.001	
-0.01	
-0.1	
-1	

(Problem 3) Let $f(x) = \frac{|x|}{x}$. Complete the following table. What is $\lim_{x \to 0^+} f(x)$? What is $\lim_{x \to 0^-} f(x)$?

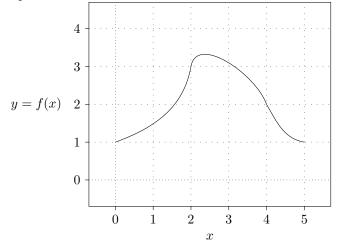
(Problem 4) What is $\lim_{x\to 3} \frac{x^3 - 9x^2 + 9x - 27}{x - 3}$?

(Problem 5) Suppose that my position at time t is $x(t) = \sqrt{3t + 10}$ meters from some fixed base point. Find my average velocity over the interval [2, 5].

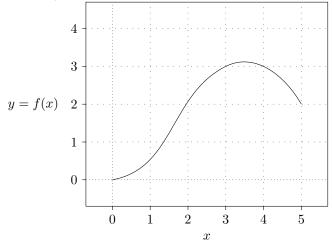
(Problem 6) Suppose that my position at time t is $x(t) = \sqrt{3t+10}$ meters from some fixed base point. Find my instantaneous velocity at time t = 2.

(Problem 7) Suppose that my position at time t is $x(t) = \sqrt[3]{t}$ meters from some fixed base point. Find my instantaneous velocity at time t = 8.

(Problem 8) Here is the graph of y = f(x). Draw the secant line through (2, f(2)) and (4, f(4)). What is the slope of this line?



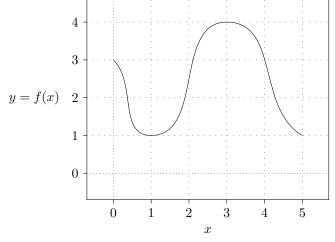
(Problem 9) Here is the graph of y = f(x). Draw the tangent line at the point (3, f(3)). What is the (approximate) slope of this line?



(Problem 10) Find the equation for the tangent line to the graph of $y = x^2 - 3x$ at the point (2, -2).

(Problem 11) Find the equation for the tangent line to the graph of $y = \frac{18}{x^2}$ at the point (3,2).

(Problem 12) Here is the graph of y = f(x). Find all the points on this graph at which the tangent line is horizontal.



(Problem 13) Use the squeeze theorem to find $\lim_{x\to 3} x^2 + (x-3)^2 \sin(1/(x-3))$.

(Problem 14) Use the squeeze theorem to find $\lim_{x \to \pi/2} \frac{\cos x}{x - \pi/2}$.

(Problem 15) Use the squeeze theorem to find $\lim_{x \to \pi/2} \frac{1 - \sin x}{x - \pi/2}$.

(Problem 16) Use the squeeze theorem to find $\lim_{x \to \pi} \frac{\cos x + 1}{x - \pi}$.

(Problem 17) Use the squeeze theorem to find $\lim_{x \to \pi} \frac{\sin x}{x - \pi}$

(Problem 18) Use the squeeze theorem to find $\lim_{x\to 3\pi/2} \frac{\sin x}{x-3\pi/2}$.

(Problem 19) Use the squeeze theorem to find $\lim_{x\to 3\pi/2} \frac{1+\cos x}{x-3\pi/2}$.

- (Problem 20) Let $f(x) = \frac{2}{(x-2)(x-3)^2(x-4)}$. (a) Find all numbers a such that $\lim_{x \to a^+} f(x) = \infty$. (a) Find all numbers a such that $\lim_{x \to a^+} f(x) = -\infty$. (c) Find all numbers a such that $\lim_{x \to \infty} f(x) = \infty$. (d) Find all numbers a such that $\lim_{x \to a^{-1}} f(x) = -\infty$. (e) Find all numbers a such that $\lim_{x \to a} f(x) = \infty$. (f) Find all numbers a such that $\lim_{x \to a} f(x) = -\infty$. (Problem 21) Find $\lim_{x\to\pi^+} \frac{x^2}{\cos x+1}$. (Problem 22) Find $\lim_{x \to 4^+} 3 \log_{10}(x-4)$. (Problem 23) Find $\lim_{x\to\infty} \frac{5x^2 + 4x + 2}{3 + 2x + 6x^2}$. (Problem 24) Find $\lim_{x\to\infty} \frac{3+2x+x^2}{2x^3+6x+5}$ (Problem 25) Find $\lim_{x\to\infty} \sqrt{3+\frac{2}{x^2}}$. (Problem 26) Find $\lim_{x\to\infty} \arctan x$. (Problem 27) Find $\lim_{x \to \infty} \operatorname{arccot} x$. (Problem 28) Find $\lim_{x\to\infty} \operatorname{arcsec} x$. (Problem 29) Find $\lim_{x \to -\infty} \arctan x$.
- (Problem 30) Find $\lim_{x \to -\infty} \operatorname{arccot} x$.
- (Problem 31) Find $\lim_{x \to -\infty} \operatorname{arcsec} x$.

(Problem 32) Find all the vertical asymptotes of $f(x) = \frac{x+3}{(x+3)(x-3)(x+4)^2}$.

(Problem 33) Find all the horizontal asymptotes of $f(x) = \frac{x^3 + 3x^2 + 5}{2 - x + 4x^3}$.

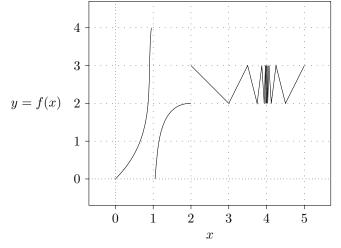
(Problem 34) Find all the horizontal asymptotes of $f(x) = 3 \operatorname{arcsec} x$.

(Problem 35) Find all the slant asymptotes of $f(x) = \frac{x^3 + 3x^2 + 2x + 1}{2x^2 + 3x + 5}$.

(Problem 36) Is $f(x) = x^2 \sin(1/x)$ continuous at x = 0? Why or why not?

(Problem 37) Is $f(x) = \arcsin x$ continuous at x = 1? Why or why not?

(Problem 38) Here is the graph of y = f(x). Find all the points of discontinuity between x = 0 and x = 5.



(Problem 39) Sketch a function f that is left continuous at 1 but not continuous at 1.

(Problem 40) Give the intervals of continuity of $y = \arcsin x$, $y = \sqrt{5x - x^2 - 6}$, $y = \sqrt{x^2 - 5x + 4}$, $y = \frac{1}{3x^2 + 7x + 2}, \ y = \lfloor x \rfloor.$

(Problem 41) Let $f(x) = \frac{x^2 - 2x + 1}{x - 1}$. Let $g(x) = \begin{cases} 1 + x \sin(1/x), & x \neq 0, \\ 1, & x = 0. \end{cases}$

- (a) Find lim g(x).
 (b) Find lim f(x).
 (c) Find lim f(g(x)) or state that it does not exist.
- (d) Find $\lim_{x\to 0} g(f(x))$ or state that it does not exist.

(Problem 42) Use the intermediate value theorem to show that the equation $x^3 + x = 3$ has a solution. Find an interval of length at most 0.125 containing a solution.

(Problem 43) Use the intermediate value theorem to show that the equation $\cos x - x = 0$ has a solution. Find an interval of length at most $\pi/6$ containing a solution.

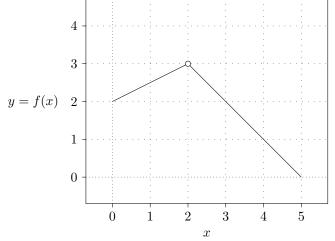
(Problem 44) Using ε s and δ s, write the precise definition of $\lim_{x \to a^+} f(x) = L$.

(Problem 45) Using ε s and δ s, write the precise definition of $\lim_{x \to a^-} f(x) = L$.

(Problem 46) Using Ms and δs , write the precise definition of $\lim_{x \to \infty} f(x) = \infty$.

(Problem 47) Using Ms and δ s, write the precise definition of $\lim_{x \to a^+} f(x) = \infty$. (Problem 48) Using Ms and δ s, write the precise definition of $\lim_{x \to a^-} f(x) = \infty$. (Problem 49) Using Ms and δ s, write the precise definition of $\lim_{x \to a^+} f(x) = -\infty$. (Problem 50) Using Ms and δ s, write the precise definition of $\lim_{x \to a^+} f(x) = -\infty$. (Problem 51) Using Ms and δ s, write the precise definition of $\lim_{x \to a^-} f(x) = -\infty$. (Problem 52) Using ε s and Ns, write the precise definition of $\lim_{x \to \infty} f(x) = L$. (Problem 53) Using ε s and Ns, write the precise definition of $\lim_{x \to \infty} f(x) = L$. (Problem 54) Using Ms and Ns, write the precise definition of $\lim_{x \to \infty} f(x) = \infty$. (Problem 55) Using Ms and Ns, write the precise definition of $\lim_{x \to \infty} f(x) = \infty$. (Problem 56) Using Ms and Ns, write the precise definition of $\lim_{x \to \infty} f(x) = \infty$. (Problem 56) Using Ms and Ns, write the precise definition of $\lim_{x \to \infty} f(x) = -\infty$. (Problem 56) Using Ms and Ns, write the precise definition of $\lim_{x \to \infty} f(x) = -\infty$. (Problem 56) Using Ms and Ns, write the precise definition of $\lim_{x \to \infty} f(x) = -\infty$. (Problem 57) Using Ms and Ns, write the precise definition of $\lim_{x \to \infty} f(x) = -\infty$. (Problem 57) Using Ms and Ns, write the precise definition of $\lim_{x \to \infty} f(x) = -\infty$.

(Problem 60) Here is the graph of y = f(x). Find a δ such that, if $0 < |x - 2| < \delta$, then |f(x) - 3| < 0.5. Sketch a box of width 2δ , height 2(0.5) = 1, and centered at (2,3).



(Problem 61) Let $f(x) = \cos(1/x)$. Show that 0 is not $\lim_{x\to 0} f(x)$ by choosing an $\varepsilon > 0$ and showing that, for every $\delta > 0$, there is some x with $0 < |x - 0| < \delta$ and with $|f(x) - 0| \ge \varepsilon$.

(Problem 62) Let $f(x) = \arctan(1/x)$. Show that $\pi/2$ is not $\lim_{x\to 0} f(x)$ by choosing an $\varepsilon > 0$ and showing that, for every $\delta > 0$, there is some x with $0 < |x - 0| < \delta$ and with $|f(x) - \pi/2| \ge \varepsilon$.

(Problem 63) Let $f(x) = \frac{1}{1+2^{1/x}}$. Show that 1 is not $\lim_{x\to 0} f(x)$ by choosing an $\varepsilon > 0$ and showing that, for every $\delta > 0$, there is some x with $0 < |x-0| < \delta$ and with $|f(x)-1| \ge \varepsilon$.

Answer key

(Answer 1) (a) f(1) = 3. (b) $\lim_{x \to 1} f(x) = 1$. (c) f(2) = 2. (d) $\lim_{x \to 2^{-}} f(x)$ does not exist. (e) $\lim_{x \to 2^{+}} f(x) = 2$. (f) $\lim_{x \to 2^{-}} f(x) = 1$. (g) f(3) = 1. (h) $\lim_{x \to 1^{-}} f(x) = 1$.

(h) $\lim_{x \to 3} f(x) = 1.$

(Answer 2) $\lim_{x\to 0} f(x) \approx 0.69315.$

(Answer 3) $\lim_{x\to 0^+} f(x) = 1$; $\lim_{x\to 0^-} f(x) = -1$.

(Answer 4) $\lim_{x \to 3} \frac{x^3 - 9x^2 + 9x - 27}{x - 3} = -18.$

(Answer 13) Because $-1 \le \sin(1/(x-3)) \le 1$ for all $x \ne 0$, and $(x-3)^2 \ge 0$ for we have that

$$x^{2} - (x - 3)^{2} \le x^{2} + (x - 3)^{2} \sin(1/(x - 3)) \le x^{2} + (x - 3)^{2}$$

for all $x \neq 0$. Because $\lim_{x \to 3} x^2 - (x-3)^2 = \lim_{x \to 3} x^2 + (x-3)^2 = 9$, we have by the squeeze theorem that $\lim_{x \to 3} x^2 + (x-3)^2 \sin(1/(x-3)) = 9$.

(Answer 20)

- (a) $\lim_{x \to a^+} f(x) = \infty$ for a = 4.
- (b) $\lim_{x \to \infty} f(x) = -\infty$ for a = 2 and a = 3.
- (c) $\lim_{x \to \infty} f(x) = \infty$ for a = 2.
- (d) $\lim_{x \to a^{-}} f(x) = -\infty$ for a = 3 and a = 4.
- (e) There are no numbers a such that $\lim_{x \to a} f(x) = \infty$.
- (f) $\lim_{x \to a^{-}} f(x) = -\infty$ for a = 3.

(Answer 41)

- (a) $\lim_{x \to 0} g(x) = 1.$
- (b) $\lim_{x \to 0} f(x) = 0.$
- (c) The limit does not exist.
- (d) $\lim_{x \to 0} g(f(x)) = 1.$

(Answer 44) Suppose that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that, if $a < x < a + \delta$, then f(x) exists and $|f(x) - L| < \varepsilon$. Then we say that $\lim_{x \to a^+} f(x) = L$.

(Answer 45) Suppose that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that, if $a - \delta < x < a$, then f(x) exists and $|f(x) - L| < \varepsilon$. Then we say that $\lim_{x \to a} f(x) = L$.

(Answer 46) Suppose that for every M > 0 there exists a $\delta > 0$ such that, if $0 < |x - a| < \delta$, then f(x) exists and f(x) > M. Then we say that $\lim_{x \to a} f(x) = \infty$.

(Answer 47) Suppose that for every M > 0 there exists a $\delta > 0$ such that, if $a < x < a + \delta$, then f(x) exists and f(x) > M. Then we say that $\lim_{x \to a^+} f(x) = \infty$.

(Answer 48) Suppose that for every M > 0 there exists a $\delta > 0$ such that, if $a - \delta < x < a$, then f(x) exists and f(x) > M. Then we say that $\lim_{x \to \infty} f(x) = \infty$.

(Answer 49) Suppose that for every M > 0 there exists a $\delta > 0$ such that, if $0 < |x - a| < \delta$, then f(x) exists and f(x) < -M. Then we say that $\lim_{x \to 0} f(x) = -\infty$.

(Answer 50) Suppose that for every M > 0 there exists a $\delta > 0$ such that, if $a < x < a + \delta$, then f(x) exists and f(x) < -M. Then we say that $\lim_{x \to a^+} f(x) = -\infty$.

(Answer 51) Suppose that for every M > 0 there exists a $\delta > 0$ such that, if $a - \delta < x < a$, then f(x) exists and f(x) < -M. Then we say that $\lim_{x \to a^-} f(x) = -\infty$.

(Answer 52) Suppose that for every $\varepsilon > 0$ there exists a N > 0 such that, if x > N, then f(x) exists and $|f(x) - L| < \varepsilon$. Then we say that $\lim_{x \to \infty} f(x) = L$.

(Answer 53) Suppose that for every $\varepsilon > 0$ there exists a N > 0 such that, if x < -N, then f(x) exists and $|f(x) - L| < \varepsilon$. Then we say that $\lim_{x \to -\infty} f(x) = L$.

(Answer 54) Suppose that for every M > 0 there exists a N > 0 such that, if x > N, then f(x) exists and f(x) > M. Then we say that $\lim_{x \to \infty} f(x) = \infty$.

(Answer 55) Suppose that for every M > 0 there exists a N > 0 such that, if x > N, then f(x) exists and f(x) < -M. Then we say that $\lim_{x \to \infty} f(x) = -\infty$.

(Answer 56) Suppose that for every M > 0 there exists a N > 0 such that, if x < -N, then f(x) exists and f(x) > M. Then we say that $\lim_{x \to -\infty} f(x) = \infty$.

(Answer 57) Suppose that for every M > 0 there exists a N > 0 such that, if x < -N, then f(x) exists and f(x) < -M. Then we say that $\lim_{x \to \infty} f(x) = -\infty$.

(Answer 58) We want to find a δ such that, if $|x-3| < \delta$, then $|x^2 - 9| < 1$. We know that if $-1 < x^2 - 9 < 1$, then $|x^2 - 9| < 1$. Adding 9 to all sides, we see that if $8 < x^2 < 10$, then $|x^2 - 9| < 1$. The function $f(x) = x^2$ is increasing when x > 0. Thus, if $\sqrt{8} < x < \sqrt{10}$, then $8 < x^2 < 10$. Subtracting 3, we see that if $\sqrt{8} - 3 < x - 3 < \sqrt{10} - 3$, then $|x^2 - 9| < 1$. If $|x-3| < \min(\sqrt{10} - 3, 3 - \sqrt{8})$, then $\sqrt{8} - 3 < x - 3 < \sqrt{10} - 3$ and so $|x^2 - 9| < 1$. Thus, $\delta = \min(\sqrt{10} - 3, 3 - \sqrt{8})$ is a solution.

(If you have a calculator, you can compute $\sqrt{10} - 3 = 0.16228$ and $3 - \sqrt{8} = 0.17157$, so $\delta = \sqrt{10} - 3 = 0.16228$.)

(Answer 59) We want to find a δ such that, if $|x-2| < \delta$, then $|x^2 + 4x - 8| < 5$. We know that if $-5 < x^2 + 4x - 8 < 5$, then $|x^2 + 4x - 8| < 5$. Thus, we need both that $x^2 + 4x - 13 < 0$ and $x^2 + 4x - 3 > 0$. Factoring (and using the quadratic formula), we see that we need $(x + 2 - \sqrt{13})(x + 2 + \sqrt{17}) < 0$ and

$$(x+2-\sqrt{11})(x+2+\sqrt{7}) > 0.$$
Thus, we need $-2 - \sqrt{17} < \pi < -2 + \sqrt{17}$ and either $\pi > -2 + \sqrt{7}$ or $\pi < -2 - \sqrt{7}$

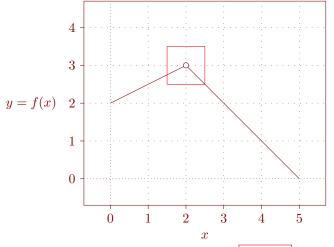
$$\xrightarrow{-2 - \sqrt{17}} \xrightarrow{-2 + \sqrt{17}} \xrightarrow{-2 + \sqrt{7}} \xrightarrow$$

Thus, we need either $-2 - \sqrt{17} < x < -2 - \sqrt{7}$ or $-2 + \sqrt{7} < x < -2 + \sqrt{17}$. Notice that $2 = -2 + \sqrt{16}$, so $-2 + \sqrt{7} < 2 < -2 + \sqrt{17}$; thus, we care about the interval $-2 + \sqrt{7} < 2$

 $x < -2 + \sqrt{17}$.

Subtracting 2, we see that we need $-4 + \sqrt{7} < x - 2 < -4 + \sqrt{17}$. Thus, if $|x-2| < \min(\sqrt{17} - 4, 4 - \sqrt{7})$, then $-4 + \sqrt{7} < x - 2 < -4 + \sqrt{17}$ and so $|x^2 + 4x - 8| < 5$. Thus, $\delta = \min(\sqrt{17} - 4, 4 - \sqrt{7})$ is a solution.

(Answer 60) We draw the following picture:



Observe that the box has width 1; thus, $|\delta = 1/2|$ is a solution.

(Answer 61) I choose $\varepsilon = 1/2$. Let $\delta > 0$. Let N be an integer larger than $\frac{1}{\pi\delta}$, so

$$\frac{1}{\pi\delta} < N.$$

Multiplying both sides of the inequality by the positive number δ/N , we see that

$$\frac{1}{N\pi} < \delta.$$

Let $x = 1/(N\pi)$. Then $0 < x < \delta$ and so $0 < |x - 0| < \delta$. We have that $f(x) = \cos(1/x) = \cos(N\pi) = \pm 1$. Then $|f(x) - 0| = |\pm 1| = 1 > 0.5 = \varepsilon$, and so 0 is not $\lim_{x \to 0} f(x)$.

(Answer 62) I choose $\varepsilon = \pi/2$. Let $\delta > 0$. Let x satisfy $-\delta < x < 0$. Then $0 < |x - 0| < \delta$. We have that $f(x) = \arctan(1/x)$, and $\arctan(z) < 0$ whenever z < 0. So $|f(x) - \pi/2| = \pi/2 - \arctan(1/x) \ge \pi/2 = \varepsilon$, and so $\pi/2$ is not $\lim_{x \to 0} f(x)$.

(Answer 63) I choose $\varepsilon = 1/2$. Let $\delta > 0$. Let x satisfy $0 < x < \delta$. Then $0 < |x - 0| < \delta$. Furthermore, 1/x > 0, so $2^{1/x} > 1$ and $1 + 2^{1/x} > 2$ and $f(x) = \frac{1}{1 + 2^{1/x}} < \frac{1}{2}$. Thus, f(x) - 1 < -1/2 and so $|f(x) - 1| > 1/2 = \varepsilon$, and so 1 is not $\lim_{x \to 0} f(x)$.