Math 2574, Fall 2017

You will be allowed a single-sided $8.5" \times 11"$ sheet of notes. You are responsible for writing down all formulas you might need.

(Problem 1) Find $\iint_R x^2 y \, dA$, where R is the triangle with vertices (1,2), (1,5) and (3,2).

(**Problem 2**) Find $\iint_R xy \, dA$, where R is bounded by the curves y = 2x and $x = y^2$.

(Problem 3) Find $\iint_R x^2 y^2 dA$, where R is the region in quadrants 1 and 4 bounded by the semicircle of radius 3 centered at (0,0).

(**Problem 4**) Find $\int_0^3 \int_{2x}^6 e^{-y^2} dy dx$.

(Problem 5) Find $\iint_R x^2 + xy + y^2 dx dy$, where $R = \{(x, y) : 0 < x < y, 1 < x^2 + y^2 < 4\}$.

(Problem 6) Find $\iint_R 3y^2 dA$, where R is bounded by the curves y = 0, y = 2x + 4, and $y = x^3$.

(Problem 7) Find the volume of the segment of the cylinder $x^2 + y^2 = 25$ bounded above by the plane z = x + y + 10 and below by z = 0.

(Problem 8) Find $\iint_R x + y \, dA$, where $R = \{(x, y) : x + y > 0, 4 < x^2 + y^2 < 9\}$.

(Problem 9) Find $\iint_R x + 3y \, dA$, where $R = \{(x, y) : 0 < x < y, 1 < x^2 + y^2 < 4\}$.

(Problem 10) Find $\iint_R \frac{1}{\sqrt{x^2+y^2+1}} dA$, where *R* is the region in the first quadrant bounded by the semicircle of radius 2 centered at the origin.

(Problem 11) Find the area of the region bounded by the curve $r = \sin(3\theta)$.

(Problem 12) Find the volume of the solid bounded by the paraboloid $z = 15 - 3x^2 - 3y^2$ and the plane z = 3.

(Problem 13) Find $\int_{2}^{3} \int_{4}^{7} \int_{0}^{1} xy^{2} \sin(\pi z) dx dy dz$.

(Problem 14) Find the volume of the wedge bounded by the parabolic cylinder $y = x^2$ and the planes z = y - 4x + 6 and z = 4x - y.

(Problem 15) Find $\iiint_D z e^{-x^2 - y^2} dV$, where D is the region $\{(x, y, z) : x^2 + y^2 < 1, 2 < z < 3\}$.

(Problem 16) Find $\iiint_D z \, dx \, dy \, dz$, where D is the region $\{(x, y, z) : z^2 > x^2 + y^2 + 1, 0 < z < 10\}$.

(Problem 17) Find the volume of the region outside the cone $\{(x, y, z) : z > \frac{3}{4}\sqrt{x^2 + y^2}\}$, inside the sphere $\{(x, y, z) : x^2 + y^2 + z^2 < 25\}$, and above the plane z = 0.

(Problem 18) Find $\iiint_D z^2 dV$, where D is the region $\{(x, y, z) : 4 < x^2 + y^2 + z^2 < 9\}$.

(Problem 19) Describe the region $\{(\rho, \theta, \varphi) : 0 < \rho < 6 \cos \varphi, 0 \le \theta < 2\pi, 0 \le \varphi \le \pi\}$ using Cartesian coordinates.

(Problem 20) Find the center of mass of the thin rod of length 5 with density function $\rho(x) = 2 + x + x^3$, $0 \le x \le 5$.

(Problem 21) Find the centroid of the region in the xy-plane bounded by the curves y = x and $y = x^4$.

(Problem 22) Find the center of mass of the truncated half-cone $\{(x, y, z) : x > 0, \sqrt{x^2 + y^2} < z < 3\}$. (Assume this solid has constant density.)

(Problem 23) Let $S = \{(u, v) : 0 < u < 1, 0 < v < 1\}$. Find the image of S in the xy-plane under the transformation x = u + 2v, y = v + 2u.

(Problem 24) Let $S = \{(u, v) : 0 < u < 1, 0 < v < 1\}$. Find the image of S in the xy-plane under the transformation $x = u^2 - v^2$, y = 2uv.

(Problem 25) Find $\iint_R xy \, dx \, dy$, where R is the parallelogram with vertices at (3,2), (5,4), (4,-1), and (6,1).

(Problem 26) Find $\iint_R \left(\frac{x-y}{x+y}\right)^6 dx dy$, where *R* is the parallelogram with vertices at (1, 1), (3, 3), (0, 2), and (2, 4).

(Problem 27) Find $\int_0^{\pi/2} \int_0^{1/(\cos\theta + \sin\theta)} r^6 \cos^5\theta \, dr \, d\theta$.

(Problem 28) Find $\iiint_D z \, dV$, where D is bounded by the cone $(z+3)^2 = 4(x-2)^2 + 9y^2$ and the xy-plane.

(Problem 29) Find the area of the region in the first quadrant bounded by the curves $y = x^3 + 1$, $y = x^3 + 2$, $y = 3 - x^3$ and $y = 4 - x^3$.