
7.1. Basic properties of harmonic functions

[Definition: Harmonic function] We say that u is harmonic in a domain Ω ⊆ C if u is C2 in Ω and if
∂2u

∂x2
+
∂2u

∂y2
= 0 in Ω.

(Problem 1) Write the definition of harmonic function using the operators
∂

∂z
and

∂

∂z̄
.

(Problem 2) Prove that if F is holomorphic in an open set Ω and u = ReF then u is harmonic.

(Problem 3) Prove that if u is harmonic in a disc D, then there is a holomorphic function F such that
ReF = u. Do this by showing that there exists a function v that satisfies the Cauchy-Riemann equations.

(Problem 4) Prove that if u is harmonic in a disc D, then there is a holomorphic function F such that

ReF = u. Do this by considering the function
∂u

∂z
.

[Definition: Harmonic conjugate] Let u and v be two real-valued functions. If F = u+iv is holomorphic,
then we say that v is a harmonic conjugate of u.

(Problem 5) Suppose that v is a harmonic conjugate of u. Is u also a harmonic conjugate of v?

(Problem 6) Show that harmonic functions are smooth.

(Problem 7) Provide an example of a domain Ω and a function u that is harmonic on Ω but is not the real
part of a holomorphic function on Ω.

(Problem 8) Give a general class of domains Ω such that every function u that is harmonic on Ω is the real
part of a holomorphic function. Prove your assertion.

(Problem 8a) Prove that if every function u that is harmonic on Ω is the real part of a holomorphic
function, then Indγ(w) = 0 for every closed piecewise-C1 path γ ⊂ Ω and every point w /∈ Ω.

(Problem 8b) Prove that if Ω is holomorphically simply connected, then Indγ(w) = 0 for every closed
piecewise-C1 path γ ⊂ Ω and every point w /∈ Ω.

(Problem 8c) Prove that if Indγ(w) = 0 for every closed piecewise-C1 path γ ⊂ Ω and every point w /∈ Ω,
then Ω is simply connected.

(Problem 9) Suppose that u, v, and w are real C2 functions on a connected domain Ω and that u+ iv and
u+ iw are both holomorphic. What can you say about v and w?

(Problem 10) Suppose that ϕ : Ω 7→ V is holomorphic and that u is harmonic on V . Prove that ũ = u ◦ ϕ
is harmonic on Ω by using the chain rule for complex differentiation.

(Problem 10a) Suppose that ϕ : Ω 7→ V is holomorphic and that u is harmonic on V . Prove that ũ = u◦ϕ
is harmonic on Ω by using the multivariable chain rule for real-valued functions.

(Problem 11) Suppose that ϕ : Ω 7→ V is holomorphic and that u is harmonic on V . Prove that ũ = u ◦ ϕ
is harmonic on Ω by using the fact that u = ReF (locally) for a holomorphic function F .

7.2. The maximum principle and the mean value property

(Problem 12) Prove that if u is harmonic in a neighborhood of D(P, r), then u(P ) =
1

2π

∫ 2π

0

u(P+reiθ) dθ.

[Definition: Mean value property] The formula given in Problem 12.

(Problem 18) Suppose that u is harmonic on a neighborhood of D(0, 1). If z ∈ D(0, 1), find a formula for
u(z) in terms of the values of u on ∂D(0, 1). Hint : Start by recalling the set of holomorphic self-maps of
D(0, 1).



(Problem 13) Prove the maximum principle for harmonic functions by using the fact that harmonic func-
tions are real parts of holomorphic functions. That is, prove that if Ω ⊆ C is open and connected and if
u : Ω 7→ R is harmonic, and if there is some P ∈ Ω such that u(P ) ≥ u(z) for all z ∈ Ω, then u is constant
in Ω.

(Problem 14) Prove the maximum principle for harmonic functions by using the mean value property.
Hint : Show that {z ∈ Ω : u(z) = u(P )} and {z ∈ Ω : u(z) < u(P )} are both open and use the definition of
connectedness in terms of open sets.

(Problem 15) Prove the minimum principle for harmonic functions.

(Problem 16) Suppose that u is harmonic in Ω and continuous on Ω for some bounded open set Ω. What
can you say about max

Ω
u and max

∂Ω
u?

(Problem 17) Can you make the same statement if Ω is not bounded?

(Problem 17a) Prove that if u and v are both harmonic in D(0, 1), continuous on D(0, 1), and u(ζ) = v(ζ)
for all ζ ∈ ∂D(0, 1), then u(z) = v(z) for all z ∈ D(0, 1).

7.3. The Poisson integral formula

[Definition: Poisson integral formula] We have that if u is harmonic in a neighborhood of D(0, 1), then
for all |z| = r < 1,

u(z) =
1

2π

∫ 2π

0

u(eiψ)
1− |z|2

|eiψ − z|2
dψ, u(reiθ) =

1

2π

∫ 2π

0

u(eiψ)
1− r2

1− 2r cos(θ − ψ) + r2
dψ.

Let Pr(θ − ψ) =
1

2π

1− r2

1− 2r cos(θ − ψ) + r2
, P (z, ζ) =

|ζ|2 − |z|2

2π|ζ − z|2

(Problem 19) Verify that the two formulas above are equivalent.

(Problem 20) Prove that if θ is real and 0 ≤ r < 1 then 0 < Pr(θ) <∞ (in particular, the denominator is
never zero).

(Bonus problem 20a) Show that p(z) = P (z, ζ) is harmonic on C \ {ζ}; in particular, if ζ = eiθ then p(z)
is harmonic in D(0, 1).

(Bonus problem 20b) Find a holomorphic function f(z) = F (z, ζ) such that p(z) = P (z, ζ) is the real
part of f .

(Problem 21) Suppose that u is harmonic in a neighborhood of D(P, r). If z ∈ D(P, r), find a formula for
u(z) in terms of the values of u on ∂D(P, r).

(Problem 22) Suppose that u is continuous on D(0, 1) and harmonic in D(0, 1). Show that the Poisson
integral formula is still valid.

(Problem 23) Let f be real-valued and continuous on ∂D(0, 1). Let u(z) =
1

2π

∫ 2π

0

f(eiψ)
1− |z|2

|eiψ − z|2
dψ.

Show that u ∈ C2(D(0, 1)).

(Problem 24) Let u, f be as in Problem 23. Show that u is harmonic in D(0, 1).

(Problem 25) Prove that if 0 ≤ r < 1 then

∫ 2π

0

Pr(θ) dθ = 1.

(Problem 26) Prove that lim
r→1−

Pr(θ) = 0 for all θ 6= 2nπ.

(Problem 27) Let 0 < δ < π be a small positive number. Prove that lim
r→1−

Pr(θ) = 0 uniformly for all
δ < θ < 2π − δ.

(Problem 28) Let 0 < δ < π. Prove that lim
r→1−

∫ δ

−δ
Pr(θ) dθ = 1.

(Problem 29) Let u, f be as in Problem 23. Show that lim
r→1−

u(reiθ) = f(eiθ) for all 0 ≤ θ ≤ 2π.



(Problem 29a) Let u, f be as in Problem 23. Show that u(reiθ) converges to f(eiθ) as r → 1− uniformly
in θ.

(Problem 30) Let u, f be as in Problem 23. Show that u is continuous on D(0, 1).

(Problem 31) We can find a harmonic function in D(0, 1) with arbitrary boundary data using the Poisson
integral formula. Why can’t we find a holomorphic function in D(0, 1) with arbitrary boundary data by
using the Cauchy integral formula?

7.4. Regularity of harmonic functions

[Definition: The “small circle” mean value property] Let Ω ⊂ C be open and let h : Ω 7→ R be
continuous. We say that h has the SCMV property if, for every P ∈ Ω, there is some number εP > 0 such

that D(P, εP ) ⊂ Ω and such that h(P ) =
1

2π

∫ 2π

0

h(P + εeiθ) dθ for all 0 < ε < εP .

(Problem 32) Let Ω ⊂ C be open and connected. Let g be continuous on Ω and satisfy the “small circle”
mean value property. Show that g satisfies the maximum principle, that is, if there is some P ∈ Ω such that
g(P ) ≥ g(z) for all z ∈ Ω then g is constant.

(Problem 33) Suppose that g is continuous on D(P, r) and has the “small circle” mean value property in
D(P, r). Suppose further that g = 0 on ∂D(P, r). Show that g = 0 in D(P, r).

(Problem 34) Suppose that g and h are continuous on D(P, r) and that u = h on ∂D(P, r). Suppose that
h is harmonic in D(P, r) and that g has the “small circle” mean value property in D(P, r). Show that g = h
in D(P, r) as well.

(Problem 35) Let Ω ⊂ C be open. Suppose that g is continuous and has the “small circle” mean value
property in Ω. Show that g is harmonic in Ω.

(Problem 36) Let Ω ⊂ C be open. Suppose that {hj}∞j=1 is a sequence of functions, each harmonic on Ω,
and that hj → h uniformly on Ω. Show that h is also harmonic by showing that it has the “small circle”
mean value property.

7.5. The Schwarz reflection principle

(Problem 37) Suppose Ω ⊂ C is open and that u is harmonic on Ω. Let v(z) = u(z). Show that v is

harmonic on Ω̂ = {z ∈ C : z ∈ Ω}.

(Problem 38) Suppose Ω ⊂ C is open and that f is holomorphic on Ω. Let g(z) = f(z). Show that g is

holomorphic on Ω̂ = {z ∈ C : z ∈ Ω}.

(Problem 39) Let Ψ ⊂ C be open and connected. Suppose that Ψ is symmetric about the real axis; that
is, z ∈ Ψ if and only if z ∈ Ψ. Let Ω = {z ∈ Ψ : Im z > 0}.

Suppose that v is harmonic in Ω, continuous on Ω ∩Ψ, and that v(x) = 0 for any x ∈ Ψ ∩ R.

Sketch Ψ. Label Ω, Ω̂, the set where v is harmonic, and the set where v is equal to zero.

(Problem 39a) Let Ψ, Ω, Ω̂, and v be as in Problem 39. Show that v̂ is continuous in Ψ, where

v̂(z) =


v(z), z ∈ Ω
0, z ∈ Ω ∩Ψ,

−v(z), z ∈ Ω̂ = {w ∈ C : w ∈ Ω}.

(Problem 40) Suppose that v, v̂, and Ψ are as in Problem 39. Show that v̂ is harmonic in Ψ. Hint: Use
the small circle mean value property.

(Problem 41) Suppose that f is holomorphic in D(x0, r) for some x0 ∈ R and some r > 0. Suppose further
that f(x) is real for all x ∈ (x0 − r, x0 + r) = D(x0, r) ∩ R. Show that f(z) = f(z) for all z ∈ D(x0, r).



(Problem 42) Let f be holomorphic on the half-circle Ω = {z ∈ D(x0, r) : Im z > 0} for some x0 ∈ R and
some r > 0. Suppose that f is continuous on {z ∈ D(x0, r) : Im z ≥ 0}. Further suppose that f(x) is real

for all x ∈ (x0 − r, x0 + r). Show that there is some function f̂ that is holomorphic in D(x0, r) and equals f

on Ω = D(x0, r). Find a formula for f̂(z).

(Problem 43) Let Ψ and Ω be as in Problem 39. Let f be holomorphic in Ω and continuous on Ω ∩ Ψ =
Ω ∪ (Ψ ∩ R). Suppose that Im f = 0 on Ψ ∩ R.

Sketch Ψ. Label Ω, Ω̂, the set where f is holomorphic, and the set where f is real-valued.

(Problem 43a) The Schwarz reflection principle. Let Ψ and Ω be as in Problem 39. Let f be

holomorphic in Ω and continuous on Ω∩Ψ = Ω∪ (Ψ∩R). Suppose that Im f = 0 on Ψ∩R. Show that f̂ is
holomorphic on Ψ, where

f̂(z) =

{
f(z), z ∈ Ω ∩Ψ

f(z), z ∈ Ω̂ = {w ∈ C : w ∈ Ω}.

(Problem 44) Suppose that f is holomorphic on D(0, 1) and continuous on D(0, 1) \ {−1}, and that f is

real on ∂D(0, 1) \ {−1}. Show that that f may be extended to a holomorphic function f̂ on C \ {−1}. Give

a formula for f̂(z) whenever z ∈ C \D(0, 1).

(Problem 44a) Let z0 ∈ ∂D(0, 1). Suppose that for some ε > 0, we have that f is holomorphic in
D(z0, ε) ∩D(0, 1) and that f is continuous on D(z0, ε) ∩D(0, 1). Suppose further that f is real-valued on
D(z0, ε)∩∂D(0, 1). Show that there is some δ with 0 < δ < ε such that f may be extended to a holomorphic

function f̂ in D(z0, δ); that is, show that there exists a function f̂ that his holomorphic in D(z0, δ) and such

that f = f̂ in D(z0, δ) ∩D(0, 1).

(Problem 45) Let X be an open set and let Ω = X ∩ D(0, 1). Suppose that f is holomorphic on Ω and
continuous on Ω ∩ X, and that f is real on ∂D(0, 1) ∩ X. Find an open set Ψ ⊃ Ω such that f may be

extended to a holomorphic function f̂ on Ψ. Give a formula for f̂(z) whenever z ∈ Ψ \ Ω.

(Problem 46) Suppose that f is holomorphic on H = {z ∈ C : Im z > 0} and continuous on H and that
f(x) = 0 for all 0 < x < 1. Show that f(z) = 0 for all z ∈ H.

7.6. Harnack’s principle

(Problem 47) Recall that if u is harmonic in D(P,R) and continuous on D(P,R), then for any 0 ≤ r < R
and any 0 ≤ θ ≤ 2π,

u(P + reiθ) =
1

2π

∫ 2π

0

u(P +Reiψ)
R2 − r2

|Reiψ − reiθ|2
dψ.

Find min
0≤θ≤2π,0≤ψ≤2π

R2 − r2

|Reiψ − reiθ|2
and max

0≤θ≤2π,0≤ψ≤2π

R2 − r2

|Reiψ − reiθ|2
.

(Problem 48) The Harnack inequality. Suppose that u is nonnegative and harmonic in D(P,R) and
continuous on D(P,R). Let z = P + reiθ ∈ D(P,R). Show that

R− r
R+ r

u(P ) ≤ u(z) ≤ R+ r

R− r
u(P ).

(Problem 48a) Did we need the assumption that u was continuous on D(P,R)?

(Bonus problem 48b) Suppose that u is harmonic in D(P,R) and continuous on D(P,R). Find formulas
for ∂xu and ∂yu in terms of u(P +Reiθ), 0 ≤ θ ≤ 2π.

(Bonus problem 48c) Suppose that u is harmonic D(P,R) and that |u| ≤ M in D(P,R). Find an upper
bound on |∇u(z)| for any z ∈ D(P,R) in terms of M , R and |z − P |.
In Problems 49–50, let {uj}∞j=1 be a sequence of real-valued functions harmonic in D(P,R) such that u1(z) ≤
u2(z) ≤ u3(z) ≤ · · · for each z ∈ D(P,R).

(Problem 49) Suppose that lim
j→∞

uj(P ) =∞. Show that uj →∞ uniformly on D(P, r) for any 0 < r < R.

(Problem 50) Suppose that lim
j→∞

uj(P ) <∞. Show that uj converges to some (finite) harmonic function,

uniformly on D(P, r) for any 0 < r < R.



In Problems 51–52, let Ω ⊆ C be a connected open set and let {uj}∞j=1 be a sequence of real-valued functions
harmonic in Ω such that u1(z) ≤ u2(z) ≤ u3(z) ≤ · · · for each z ∈ Ω.

(Problem 51) Show that either lim
j→∞

uj(z) =∞ for all z ∈ Ω or lim
j→∞

uj(z) <∞ for all z ∈ Ω. Hint : Show

that {z : lim
j→∞

uj(z) =∞} and {z : lim
j→∞

uj(z) <∞} are both open.

(Problem 52) Harnack’s principle. Show that either lim
j→∞

uj(z) =∞ for all z ∈ Ω, uniformly on compact

sets, or that there is some function u0 harmonic in Ω such that uj → u0 uniformly on compact sets.

7.7. Subharmonic functions

[Definition: Subharmonic functions] Let Ω ⊆ C be open and let f : Ω 7→ R be continuous. Suppose
that for every D(P, r) ⊂ Ω, we have that

f(P ) ≤ 1

2π

∫ 2π

0

f(P + reiθ) dθ.

Then we say that f is subharmonic in Ω.

[Definition: Superharmonic functions] Let Ω ⊆ C be open and let f : Ω 7→ R be continuous. Suppose
that for every D(P, r) ⊂ Ω, we have that

f(P ) ≥ 1

2π

∫ 2π

0

f(P + reiθ) dθ.

Then we say that f is superharmonic in Ω.

(Problem 53) Show that f is subharmonic if and only if −f is superharmonic.

(Problem 54) Suppose that f is subharmonic in an open set Ω and that α ≥ 0 is a nonnegative real number.
Show that αf is subharmonic in Ω. Did we need the assumption α ≥ 0?

(Problem 55) Suppose that f and g are both subharmonic in an open set Ω. Show that f+g is subharmonic
in Ω. Is f − g subharmonic in Ω?

(Problem 56) Suppose that f is subharmonic and g is superharmonic in an open set Ω ⊆ C. Show that
f − g is subharmonic in Ω.

(Problem 57) Suppose that f is a continuous, real-valued function in an open set Ω ⊆ C. Show that f is
harmonic if and only if f is both subharmonic and superharmonic.

(Problem 58) Suppose that u and v are both subharmonic in an open set Ω. Let f(z) = max(u(z), v(z)).
Show that f is subharmonic in Ω. (In particular, if u and v are real and harmonic then f is subharmonic.)

(Problem 58a) Let Ω ⊂ C be open and let f : Ω 7→ C be holomorphic. Show that u(z) = |f(z)| is
subharmonic in Ω.

(Bonus problem 58b) Let Ω ⊂ C be open and let u : Ω 7→ C be subharmonic. Let ϕ : R 7→ R be
nondecreasing and convex, so that if 0 < t < 1 and a, b ∈ R then ϕ(ta + (1 − t)b) ≤ tϕ(a) + (1 − t)ϕ(b).
Show that v(z) = ϕ(uf(z)) is subharmonic in Ω.

(Problem 59) Give eight examples of functions that are subharmonic in a domain Ω but are not harmonic
in that domain.

(Problem 60) Prove the maximum principle for subharmonic functions.

(Problem 61) Is there a minimum principle for subharmonic functions?

(Problem 69) Let Ω ⊆ C be open and connected. Suppose that f : Ω 7→ R is continuous and satisfies the
small circle sub-mean-value property: for every P ∈ Ω, there is some εP > 0 such that D(P, εP ) ⊂ Ω and
such that

f(P ) ≤ 1

2π

∫ 2π

0

f(P + εeiθ) dθ for all 0 < ε < εP .

Show that f satisfies the maximum principle in Ω.



(Problem 62) Suppose that f is continuous on D(P, r) and subharmonic in D(P, r). Suppose that h is
continuous on D(P, r) and harmonic in D(P, r). Suppose that f ≤ h on ∂D(P, r). Show that f ≤ h in
D(P, r).

(Problem 63) Suppose that Ω ⊆ C is open and that f : Ω 7→ R is continuous. Suppose further that
whenever D(P, r) ⊂ Ω, h is harmonic in D(P, r) and continuous on D(P, r), and h ≥ f on ∂D(P, r), we have
that h ≥ f in D(P, r). Prove that f is subharmonic.

(Problem 70) Let Ω ⊆ C be open. Suppose that f : Ω 7→ R is continuous and satisfies the small circle
sub-mean-value property in Ω (as in Problem 69). Use Problem 63 to show that f is subharmonic in Ω.

7.7. The Dirichlet problem

[Definition: The Dirichlet problem] Let Ω ( C be a bounded open connected set. We say that the
Dirichlet problem is well posed on Ω if, for every function f defined and continuous on ∂Ω, there is exactly
one function u that is harmonic in Ω, continuous on Ω, and such that u = f on ∂Ω.

(Problem 64) Give an example of an unbounded domain Ω and two functions u and v that are harmonic
in Ω, continuous on Ω and equal zero on ∂Ω.

(Problem 65) Prove that we have uniqueness for the Dirichlet problem in any bounded domain; that is,
show that if Ω ( C is bounded, if u and v are both harmonic in Ω and continuous on Ω, and if u = v on ∂Ω,
then u = v in Ω. Clearly explain how you used the fact that Ω is bounded.

(Problem 66) Let 0 < r < 1. Find a function u that is harmonic in the annulus Ω = D(0, 1) \ D(0, r),
continuous on Ω and such that u(eiθ) = 0, u(reiθ) = 1 for any 0 ≤ θ ≤ 2π.

(Problem 67) Let Ω = D(0, 1) \ {0}. Let u be harmonic in Ω and continuous on Ω. Suppose that u(eiθ) is
constant for 0 ≤ θ ≤ 2π. Show that u is radial; that is, for any fixed r with 0 < r < 1, u(reiθ) = u(reiψ) for
any 0 ≤ θ ≤ 2π, 0 ≤ ψ ≤ 2π.

(Problem 68) Let Ω = D(0, 1) \ {0}. Suppose that u is harmonic in Ω, continuous on Ω, and that u = 0
on ∂D(0, 1). Prove that u(0) = 0. Is the Dirichlet problem well posed in Ω?

7.8. The Perròn method and the solution to the Dirichlet problem
Our goal is to use subharmonic functions to construct solutions to the Dirichlet problem.

(Problem 71) Let Ω ⊂ C be a bounded open set. Let f : ∂Ω 7→ R be continuous. Let

S = {ψ : ψ is subharmonic in Ω, continuous on Ω and ψ(w) ≤ f(w) for all w ∈ ∂Ω.}
Show that S is nonempty.

(Problem 72) Let S be as in Problem 71. For each z ∈ Ω, let u(z) = sup{ψ(z) : ψ ∈ S}. Show that u is
finite for all z ∈ Ω and, in fact, is bounded above and below.

(Problem 73) Suppose that Ω = D(0, 1) \ {0} and that f(eiθ) = 1, f(0) = 0. Let u be as in Problem 72.
Show that u(z) = 1 for all z ∈ Ω.

(Problem 74) Let Ω ( C be open. Let u be as in Problem 72. Show that u is lower semicontinuous on Ω;
that is, for each P ∈ Ω and each ε > 0, show that there is some δ > 0 such that if z ∈ D(P, δ) ∩ Ω, then
u(z) > u(P )− ε.

(Problem 75) Can we show that u is continuous on Ω?

(Problem 76) Let Ω ( C be open and let f be subharmonic in Ω. Suppose that D(P, r) ⊂ Ω. Let h be
harmonic in D(P, r) with h = f on ∂D(P, r); we may construct h using the Poisson integral. Let

ψ(z) =

{
h(z), z ∈ D(P, r)
f(z), z ∈ Ω \D(P, r).

Show that ψ is subharmonic in Ω.

(Problem 77) Let u, Ω and S be as in Problems 71–72. Let w ∈ Ω. Show that there is a sequence of
functions {ψwj }∞j=1 ⊂ S such that u(w) = lim

j→∞
ψwj (w).



(Problem 78) Show that there is a sequence of functions {ϕwj }∞j=1 ⊂ S such that u(w) = lim
j→∞

ϕwj (w) and
such that ϕw1 (z) ≤ ϕw2 (z) ≤ ϕw3 (z) ≤ · · · for all z ∈ Ω.

(Problem 79) Let w ∈ D(P, r) for some D(P, r) ⊂ Ω. Show that there is a sequence of functions {ηwj }∞j=1 ⊂
S such that u(w) = lim

j→∞
ηwj (w), such that ηw1 (z) ≤ ηw2 (z) ≤ ηw3 (z) ≤ · · · for all z ∈ Ω, and such that ηwj is

harmonic in D(P, r).

(Problem 80) Suppose that w ∈ D(P, r) and D(P, r) ⊂ Ω. Let ηw = lim
j→∞

ηwj . Prove that ηw is harmonic
in D(P, r).

(Problem 80a) Suppose that w1, w2 ∈ D(P, r) and D(P, r) ⊂ Ω. Let ηw1 = lim
j→∞

ηw1
j and let ηw2 =

lim
j→∞

ηw2
j . Prove that ηw1(z) = ηw2(z) for all z ∈ D(P, r). Hint : Let ϕw1,w2

j (z) = max(ϕw1
j (z), ϕw2

j (z)) and

construct ηw1,w2

j from ϕw1,w2

j as before. What can you say about ηw1,w2

j (z) and ηw1,w2(z) = lim
j→∞

ηw1,w2

j (z)

for arbitrary z ∈ D(P, r), and for z = w1 and z = w2 in particular?

(Problem 81) Let u be as in Problem 72. Prove that u is harmonic in Ω.

[Definition: Barriers] Let Ω ( C be open and let P ∈ ∂Ω. We say that b : Ω 7→ R is a barrier for Ω at P
if:

(i) b is continuous on Ω,
(ii) b is subharmonic in Ω,
(iii) b(P ) > b(z) for all z ∈ Ω \ {P}. (Often we take b(P ) = 0.)

(Problem 84) Let Ω, f and S be as in Problem 71. Let P ∈ ∂Ω.
Suppose that a barrier b at P exists.
Let ε > 0. Use b to construct a function wε such that wε(P ) = f(P )− ε and such that wε ∈ S.

(Problem 85) Let u be as in Problem 72. Use the functions wε to show that u(P ) = f(P ).

(Problem 82) Let Ω, f and S be as in Problem 71. Let P ∈ ∂Ω.
Suppose that a barrier b at P exists.
Let ε > 0. Use b to construct a function gε that is continuous on Ω, superharmonic in Ω, and satisfies

gε ≥ f on ∂Ω, and such that gε(P ) = f(P ) + ε.

(Problem 83) Let u be as in Problem 72. Use the functions gε to show that u is upper semicontinuous
at P .

(Problem 86) Let Ω ( C be open and bounded. Give a condition on Ω that ensures that the Dirichlet
problem is well-posed in Ω.

(Problem 86a) Let Ω ( C be open and bounded. Suppose that the Dirichlet problem is well-posed in Ω.
Show that for any P ∈ ∂Ω, there exists a function b that is a barrier at P .

(Problem 87) Let Ω = D(0, 1) and let P = eiθ ∈ ∂Ω. Give an example of a function b that is a barrier
at P .

(Problem 93) Suppose that Ω ( C and Ψ ( C are two open connected sets. Suppose that ϕ : Ω 7→ Ψ
is continuous and that ϕ : Ω 7→ Ψ is holomorphic. Suppose that there is some P ∈ ∂Ψ and some function
b : Ψ 7→ R that is a barrier for Ψ at P . Show that if there is exactly one Q ∈ Ω̄ with ϕ(Q) = P , then b̃ = b◦ϕ
is a barrier for Ω at Q.

(Problem 88) Let Ω = H = {z ∈ C : Im z > 0} and let P = x ∈ ∂Ω. Give an example of a function b that
is a barrier at P .

(Problem 89) Let Ω = C \ {x + 0i : 0 ≤ x ≤ ∞} denote the complex plane with an infinite slit removed.
Let P = 0 ∈ ∂Ω. Give an example of a function b that is a barrier at P .

(Problem 90) Let Ω = C \ {x + 0i : 0 ≤ x ≤ 1} denote the complex plane with a finite slit removed. Let
P = 0 ∈ ∂Ω. Give an example of a function b that is a barrier at P .



(Problem 91) Let Ω ( C and Ψ ( C be two open sets, and suppose Ω ⊂ Ψ. Suppose that P ∈ ∂Ω ∩ ∂Ψ.
Suppose that there is a barrier for Ψ at P . Show that there is a barrier for Ω at Ψ.

(Problem 91a) Let Ω ( C be open. Suppose that for every point P ∈ ∂Ω, there is some point QP such
that the line segment from P to QP is contained in C \ Ω. Show that the Dirichlet problem is well-posed
in Ω.

(Problem 92) Show that having a barrier is a local property. That is, let Ω ( C and Ψ ( C be two open
sets, and suppose that P ∈ ∂Ω ∩ ∂Ψ and that for some ε > 0, it is the case that Ω ∩D(P, ε) = Ψ ∩D(P, ε).
Suppose that b is a barrier for Ω at P . Construct a barrier for Ψ at P .

(Problem 94) Give an example of a domain Ω ( C and a point P ∈ ∂Ω such that there is no function b
that is a barrier at P .

7.9. Conformal mappings of annuli

(Problem 95) Let 0 < r1 < R1 < ∞ and 0 < r2 < R2 < ∞. Let P1 ∈ C and P2 ∈ C. Show that, if
R1/r1 = R2/r2, then A1 = {z ∈ C : r1 < |z − P1| < R1} and A2 = {z ∈ C : r2 < |z − P2| < R2} are
conformally equivalent; that is, there is a holomorphic bijection ϕ : A1 7→ A2.

(Problem 96) Let Ω ( C and Ψ ( C be two open sets, and suppose that ϕ : Ω 7→ Ψ is a conformal mapping
(holomorphic bijection).

Suppose that {zn}∞n=1 ⊂ Ω and that zn → z∞ for some z∞ ∈ ∂Ω. Suppose that ϕ(zn) converges to
some w∞ ∈ Ψ. Show that w∞ ∈ ∂Ψ.

(Problem 97) Let Ω ( C and Ψ ( C be two bounded open sets, and suppose that ϕ : Ω 7→ Ψ. Suppose
that {zn}∞n=1 ⊂ Ω. Show that there is a subsequence {znk

}∞k=1 such that ϕ(znk
) converges as k →∞.

(Problem 98) Suppose that 1 < R1 <∞ and that 1 < R2 <∞. Let A1 = {z ∈ C : 1/R1 < |z| < R1} and
A2 = {z ∈ C : 1/R2 < |z| < R2}. Let ϕ : A1 7→ A2 be a holomorphic bijection.

Let 1/R2 < ρ < R2. Let rρ = inf{|ϕ−1(ρeiθ)| : 0 ≤ θ ≤ 2π} and let sρ = sup{|ϕ−1(ρeiθ)| : 0 ≤ θ ≤ 2π}.
Show that 1/R1 < rρ ≤ sρ < R1.

(Problem 99) Let z∞ ∈ ∂A1 with |z∞| = R1. Suppose there is some {wn}∞n=1 ⊂ A1 such that wn → z∞
and |ϕ(wn)| → R2 as n→∞.

Suppose further that {zn}∞n=1 ⊂ A1, that zn → z∞ as n → ∞, and that ϕ(zn) converges. Show that
|ϕ(zn)| → R2 as n→∞. Hint : Use the fact that {z ∈ A1 : |ϕ(z)| < 1} and {z ∈ A1 : |ϕ(z)| > 1} are disjoint
open sets and {z ∈ A1 : |z| > s1} is connected.

(Problem 100) If zn, wn ∈ A1, |z∞| = R1, zn → z∞, wn → z∞, |ϕ(wn)| → 1/R2, and ϕ(zn) converges,
what can you say about lim

n→∞
|ϕ(zn)|?

(Problem 100a) If zn, wn ∈ A1, |z∞| = 1/R1, zn → z∞, wn → z∞, |ϕ(wn)| → R2, and ϕ(zn) converges,
what can you say about lim

n→∞
|ϕ(zn)|?

(Problem 100b) If zn, wn ∈ A1, |z∞| = 1/R1, zn → z∞, wn → z∞, |ϕ(wn)| → 1/R2, and ϕ(zn) converges,
what can you say about lim

n→∞
|ϕ(zn)|?

(Problem 101) Let z∞ ∈ ∂A1. Show that there is a sequence of points {wn}∞n=1 ⊂ A1 such that wn → z∞
and such that either |ϕ(wn)| → R2 or |ϕ(wn)| → 1/R2 as n→∞.

(Problem 101a) Let z∞ ∈ ∂A1. Show that one of the following is true:
• For every sequence {zn}∞n=1 ⊂ A1 that satisfies zn → z∞, we have that |ϕ(zn)| → R2 as n→∞.
• For every sequence {zn}∞n=1 ⊂ A1 that satisfies zn → z∞, we have that |ϕ(zn)| → 1/R2 as n→∞.

(Problem 102) Let h(z) = |ϕ(z)|. Show that there is a function h̃ that is continuous on A1 and satisfies
h = h̃ on A1.

(Problem 102a) What values can h̃ take on ∂A1?

(Problem 103) Show that h̃(z) is constant on each of the two boundary components of A1.



(Problem 104) Show that g(z) = log h(z) = log|ϕ(z)| is harmonic in A1.

(Problem 104a) Can h̃ = |ϕ(z)| be equal on the two boundary components of A1?

(Problem 105) For fixed R1 and R2, there are two possible values of g(z) = log|ϕ(z)|. Find them.

(Problem 106) Suppose f : A1 7→ A2 is holomorphic and log|f(z)| = β log|z| for some real number β.
Find f(z). Are there any restrictions on β? If we require that f be one-to-one, are there any additional
restrictions on β?

(Problem 107) Let 0 < r1 < R1 < ∞ and 0 < r2 < R2 < ∞. Let P1 ∈ C and P2 ∈ C. Suppose that
A1 = {z ∈ C : r1 < |z − P1| < R1} and A2 = {z ∈ C : r2 < |z − P2| < R2} are conformally equivalent. Show
that R1/r1 = R2/r2.

(Problem 108) Let A = {z ∈ C : 1/R < |z| < R} be an annulus for some R > 1. Find all conformal
self-maps of A.

8.1. Basic concepts for infinite products

(Problem 109) Let {Aj}∞j=1 be a sequence of complex numbers. Suppose Aj 6= 0 for all j and that

lim
N→∞

N∏
j=1

Aj exists and is nonzero. Show that lim
j→∞

Aj = 1.

(Problem 110) Let {Aj}∞j=1 be a sequence of complex numbers. Suppose Aj 6= 0 for all j and that

lim
N→∞

N∏
j=1

Aj = 0. Can we conclude that lim
j→∞

Aj = 1?

(Problem 111) Let {Aj}∞j=1 be a sequence of complex numbers. Suppose Ak = 0 for some k. What is

lim
N→∞

N∏
j=1

Aj? If the sequence of partial products converges, can we conclude that lim
j→∞

Aj = 1?

(Problem 112) Show that if 0 ≤ x ≤ 1, then 1 + x ≤ ex ≤ 1 + 2x.

(Problem 113) Show that if aj ∈ C with |aj | < 1, then exp

(
1

2

n∑
j=1

|aj |
)
≤

n∏
j=1

1 + |aj | ≤ exp

( n∑
j=1

|aj |
)

.

(Problem 114) Show that if aj ∈ C and

∞∑
j=1

|aj | converges, then lim
N→∞

N∏
j=1

1 + |aj | exists. Can the limit be

zero?

(Problem 115) Show that if aj ∈ C and lim
N→∞

N∏
j=1

1 + |aj | exists, then

∞∑
j=1

|aj | converges.

(Problem 116) Suppose that lim
N→∞

N∏
j=1

1 + |aj | exists. Show that there is some N0 > 0 such that 1 +aj 6= 0

for any j ≥ N0.

(Problem 117) Suppose that aj ∈ C and N ≥M . Show that

∣∣∣∣( N∏
j=M

1 + aj

)
− 1

∣∣∣∣ ≤ ∣∣∣∣( N∏
j=M

1 + |aj |
)
− 1

∣∣∣∣.
Hint : Use induction.

(Problem 118) Suppose that aj ∈ C and aj 6= −1. Suppose that lim
N→∞

N∏
j=1

1 + |aj | exists. Show that

lim
N→∞

N∏
j=1

1 + aj exists and is nonzero.

(Problem 119) Suppose that aj ∈ C and

∞∑
j=1

|aj | converges. Show that lim
N→∞

N∏
j=1

1 + aj exists; if aj 6= −1

for all j, the limit is nonzero.



(Problem 120) Let K ⊂ C and let {fj}∞j=1 be a sequence of functions fj : K 7→ C. Suppose that |fj(z)| < 1

for all j ≥ 1 and all z ∈ K and that

∞∑
j=1

|fj(z)| converges uniformly for all z ∈ K. Show that

N∏
j=1

1 + fj(z)

converges as N →∞ to a function F (z), uniformly for all z ∈ K.

(Problem 120a) Let K ⊂ C and let {fj}∞j=1 be a sequence of functions fj : K 7→ C. Suppose that the

fjs are uniformly bounded (although not necessarily by 1) and that

∞∑
j=1

|fj(z)| converges uniformly for all

z ∈ K. Show that

N∏
j=1

1 + fj(z) converges as N →∞ to a function F (z), uniformly for all z ∈ K.

(Problem 121) Let fj , K and F be as in Problem 120a. Let z0 ∈ K. Show that 1 + fj(z0) = 0 for at most
finitely many numbers j.

(Problem 122) Let Ω ( C be open and let fj : Ω 7→ C be holomorphic. Suppose that

∞∑
j=1

|fj(z)| converges

normally (that is, uniformly on compact sets). Show that

N∏
j=1

1 + fj(z) converges normally as N →∞ to a
holomorphic function F .

(Problem 123) Let Ω, fj and F be as in Problem 122. Let z0 ∈ Ω. Show that F (z0) = 0 if and only if
fj(z0) = −1 for some j ≥ 1.

(Problem 124) Let Ω, fj and F be as in Problem 122. Suppose that F is not identically equal to zero. Let
z0 ∈ Ω and suppose that F (z0) = 0. Show that the multiplicity of the zero of F at z0 is equal to the sum of
the multiplicities of the zeros of 1 + fj at z0.

(Problem 124a) Let Ω, fj and F be as in Problem 122. Show that if F is identically equal to zero then fj
is identically equal to −1 for some j.

8.2. The Weierstrauss factorization theorem

(Problem 125) Let f : C 7→ C be an entire function. Suppose that f has finitely many zeros. Show that
there is an entire function g, an integer N , and complex numbers an such that

f(z) = eg(z)
N∏
n=1

(z − an).

(Problem 126) Let f : C 7→ C be an entire function that is not identically zero. Show that f can have at
most countably many zeros (counted with multiplicity).

[Definition: Elementary factors] If p ≥ 0 is an integer, we let Ep(z) = (1− z) exp

(
z+

z2

2
+ . . .+

zp

p

)
.

(Problem 127) Show that Ep is an entire function and that Ep(z) = 0 if and only if z = 1. What is the
multiplicity of the zero of Ep(z) at 1?

(Problem 128) Let bn be the components of the power series for Ep centered at zero, so Ep(z) =

∞∑
n=0

bn z
n.

Find b0.

(Problem 129) Compute E′p(z) using the definition given above and also using the power series expansion.

(Bonus problem 129a) Write a recurrence relation for the coefficients bn. That is, write the power series
for (1 − z)E′p(z) − zpEp(z) in terms of bn, and then use your formula for (1 − z)E′p(z) − zpEp(z) to find a
formula for bn in terms of b0, b1, . . . , bn−1.

(Problem 130) What can you say about bn for 1 ≤ n ≤ p?

(Problem 131) Show that bn is real and that bn ≤ 0 for any n > p.



(Problem 132) Compute

∞∑
n=p+1

|bn|. Hint : Start by computing Ep(1).

(Problem 133) Show that if |z| ≤ 1 then |Ep(z)− 1| ≤ |z|p+1.

(Problem 134) Let {an}∞n=1 ⊂ C be a sequence of nonzero complex numbers. Suppose that the ans have
no accumulation point in the sense that no subsequence converges. (We do not require that the ans be
distinct.) Show that lim

n→∞
|an| =∞.

(Problem 134a) Let {an}∞n=1 ⊂ C be a sequence of nonzero complex numbers. Suppose that the ans have
no accumulation point.

Fix an r > 0. Show that

∞∑
n=1

|1− En(z/an)| converges uniformly for all |z| < r.

(Problem 135) Let {an}∞n=1 ⊂ C be a sequence of complex numbers. Suppose that the ans have no
accumulation point. (We do not require that the ans be distinct; we also allow an = 0 for finitely many n.)

Show that there is an entire function F whose zero set is precisely equal to {an}∞n=1 (counting multi-
plicities).

(Problem 136) The Weierstrauss factorization theorem. Let f : C 7→ C be an entire function that
is not identically equal to zero. Show that there is an entire function g(z), an integer m ≥ 0, and complex
numbers an ∈ C such that

f(z) = eg(z) zm
∞∏
n=1

En

(
z

an

)
where the infinite product converges uniformly on compact sets.

8.3. The Theorems of Weierstrauss and Mittag-Leffler: interpolation problems

(Problem 137) Let Ω ( C be an open set, let R > 0, and let {an}∞n=1 ⊂ D(0, R) ∩ Ω be a sequence with
no accumulation points in Ω. Show that lim

n→∞
dist(an, ∂Ω) = 0.

(Problem 137a) Show that there exists a sequence of points {ân}∞n=1 ⊂ C \Ω and such that |an− ân| → 0
as n→∞.

(Problem 138) Let Ω, {an}∞n=1 and {ân}∞n=1 be as in Problem 137a. Let N ≥ 1 be an integer. Show that
N∏
n=1

En

(
aj − âj
z − âj

)
is holomorphic in Ω.

(Problem 139) Let Ω, {an}∞n=1 and {ân}∞n=1 be as in Problem 137a. Show that

N∏
n=1

En

(
aj − âj
z − âj

)
converges

as N →∞ for all z ∈ Ω, uniformly on compact sets.

(Problem 140) Let Ω, {an}∞n=1 and {ân}∞n=1 be as in Problem 137a. What can you say about f(z) =

lim
N→∞

N∏
n=1

En

(
aj − âj
z − âj

)
?

(Problem 141) Weierstrauss’s theorem. Let Ω ⊆ C be open and let {an}∞n=1 ⊂ Ω have no accumulation
points in Ω. We do not require that {an} be bounded. Show that there is a function f that is holomorphic
in Ω and such that the zero set of f (with multiplicity) is precisely equal to {an}∞n=1.

(Problem 142) Let Ω ⊆ C be open. Let m be meromorphic on Ω. Show that there are functions f and
g that are holomorphic in Ω and such that m(z) = f(z)/g(z) for all z ∈ Ω \ A, where A is the set of poles
of m.



(Problem 143) Let f(eiθ) =

∞∑
n=0

5n

6n
cos(7nθ). (This is a special case of the Weierstrauss function.) Show

that f is well-defined (the sum converges) for all 0 ≤ θ ≤ 2π and that f is continuous on ∂D(0, 1).

(Problem 144) Plot the first few partial sums for the Weierstrauss function.

(Problem 145) Let u be the function that is harmonic in D(0, 1), continuous on D(0, 1) and with u(eiθ) =
f(eiθ) for 0 ≤ θ ≤ 2π. Let H be the function that is holomorphic in D(0, 1) with real part u.

Show that D(0, 1) is the domain of existence of H; that is, if H̃ = H in D(0, 1) and H̃ is holomorphic
on some open set Ω ⊇ D(0, 1), then Ω = D(0, 1). Hint : Use the fact (proven by Weierstauss in 1872) that
f(θ) is nowhere differentiable.

(Problem 146) Let Qj = {[k2j , (k + 1)2j)× [`2j , (`+ 1)2j) : k, ` are integers} be the grid of squares in C
with side-length 2j aligned with the axes. Sketch Qj .

(Problem 147) Suppose that S ∈ Qj . Let P (S) be the “dyadic parent” of S, so S ( P (S) ∈ Qj+1. Let 2S
be the square concentric to S of side-length 2j+1.

Sketch S, 2S and the four possibilities for P (S).

(Problem 151) If S ∈ Qj , let `(S) = 2j be the side-length of S. Show that if S ∈ Qj and z ∈ S, then

D(z, `(S)/2) ⊂ 2S and 2P (S) ⊂ D(z, 3
√

2`(S)).

(Problem 148) Let Q = ∪∞j=−∞Qj . Let Ω ( C be open. Let G = {S ∈ Q : 2S ⊂ Ω, 2P (S) 6⊂ Ω}. We call
G a dyadic Whitney decomposition of Ω. Show that ∪S∈GS ⊆ Ω.

(Problem 148a) Show that if z ∈ Ω, then there is some S ∈ G with z ∈ S.

(Problem 149) Show that if S ∈ G and T ∈ G, then either S = T or S ∩ T = ∅.

(Problem 149a) If z ∈ Ω, then how many cubes S ∈ G can satisfy z ∈ S?

(Problem 150) Show that G is a countable set.

(Problem 152) Suppose that S, T ∈ G and that dist(S, T ) = 0; that is, the closures of S and T intersect.
Show that `(S) ≤ 8`(T ) and that `(T ) ≤ 8`(S).

(Problem 152a) If S ∈ G, let zS be the midpoint of S. Let A = {zS : S ∈ G}.
Let z ∈ Ω. Show that z is not an accumulation point for A. Hint : if z ∈ T ∈ G, then how many

midpoints zS can appear in D(z, `(T )/16)?

(Problem 153) Let z ∈ ∂Ω. Show that z is an accumulation point for A.

(Problem 154) Show that there is a function f that is holomorphic in Ω and such that f(z) = 0 if and
only if z ∈ A.

(Problem 155) Show that the domain of existence of f is Ω; that is, if f̃ = f in Ω and f̃ is holomorphic
on some open set Ψ ⊇ Ω, then Ψ = Ω.

In Problems 156–159, let {an}∞n=1 ⊂ C be a sequence of distinct points with no accumulation points.

(Problem 156) Let β ∈ C and let k > 0 be an integer. Find an entire function f such that f(ak) = β and
such that f(an) = 0 for all n 6= k.

(Problem 157) Let β ∈ C and let k > 0 be an integer. Find an entire function f such that f(ak) = β and
such that f(an) = 0 for all n 6= k, and such that |f(z)| < 2−k for all |z| < 1

2 |ak|.

(Problem 158) Let {βn}∞n=1 ⊂ C be a sequence of complex numbers. Find an entire function f such that
f(an) = βn for all n ≥ 1.

(Problem 159) Let {βn}∞n=1 ⊂ C and {γn}∞n=1 ⊂ C be two sequences of complex numbers. Find an entire
function f such that f(an) = βn and f ′(an) = γn for all n ≥ 1.



10.1. Definition of an analytic function element

(Problem 160) Let Ω ⊆ C be open. Let Ψ ( Ω be open and nonempty. Suppose that f is holomorphic
in Ψ. Show that there is at most one function F that is holomorphic in Ω and such that F = f in Ψ.

(Problem 161) Let Ψ be the open sector {reiθ : r > 0, 0 < θ < π/2}. Let f(z) be the branch of the
logarithm given by f(reiθ) = log r + iθ whenever 0 < θ < π/2.

Find two functions F and F̃ and domains Ω ) Ψ and Ω̃ ) Ψ such that F is holomorphic in Ω, F̃ is
holomorphic in Ω̃, Ω ∩ Ω̃ is nonempty, F 6= F̃ on Ω ∩ Ω̃, and F = f = F̃ in Ψ.

(Problem 162) The gamma function Γ(z) is defined by Γ(z) =
∫∞

0
e−t tz−1 dt. Find Γ(n), where n is a

positive integer.

(Problem 163) For what values of z does the integral in the definition of the gamma function converge?

(Problem 164) Integrate by parts to find a new formula for Γ(z) that converges for z in a larger set.

[Definition: Function elements] A function element is an ordered pair (f,D(P, r)) where P ∈ C, r > 0
and f is a holomorphic function defined on D(P, r).

[Definition: Direct analytic continuation] If (f,D(P, r)) and (g,D(Q, s)) are function elements, if
D(P, r) ∩ D(Q, s) 6= ∅, and if f = g on D(P, r) ∩ D(Q, s), we say that (g,D(Q, s)) is a direct analytic
continuation of (f,D(P, r)).

[Definition: Analytic continuation] Suppose that we have a finite sequence of function elements
{(fj , D(Pj , rj))}kj=1 such that (fj , D(Pj , rj)) is a direct analytic continuation of (fj−1, D(Pj−1, rj−1)) for
all 1 < j ≤ k. Then (fk, D(Pk, rk)) is an analytic continuation of (f1, D(P1, r1)).

(Problem 165) Find a function element (f,D(P, r)) and two distinct function elements (g,D(Q, s)) and
(g̃, D(Q, s)), with the same disc D(Q, s), such that (g,D(Q, s)) and (g̃, D(Q, s)) are both analytic continua-
tions of (f,D(P, r)).

(Problem 166) Can you do this for a direct analytic continuation?

10.2. Analytic continuation along a curve

[Definition: Analytic continuation along a curve] Let γ : [0, 1] 7→ C be a continuous function (we will
call γ a curve). Let (f,D(γ(0), r)) be a function element. An analytic continuation of (f,D(γ(0), r)) along γ
is a collection of function elements {(ft, D(γ(t), rt))}0≤t≤1 such that (f0, D(γ(0), r0)) = (f,D(γ(0), r)) and
such that if 0 ≤ t ≤ 1, then there is an ε > 0 such that, if 0 ≤ s ≤ 1 and |t− s| < ε, then (fs, D(γ(s), rs)) is
a direct analytic continuation of (ft, D(γ(t), rt)).

(Problem 167) Let γ : [0, 1] 7→ C be a curve and let (f,D(γ(0), r)) be a function element. Suppose that
{(ft, D(γ(t), rt))}0≤t≤1 and {(f̃t, D(γ(t), r̃t))}0≤t≤1 are two analytic continuations of (f,D(γ(0), r)) along γ.

Let S = {s : 0 ≤ s ≤ 1, fs = f̃s on D(γ(s),min(rs, r̃s))}. Let T = {t : 0 ≤ t ≤ 1, s ∈ S for all 0 ≤ s ≤ t}.
Show that T is not empty.

(Problem 168) Show that T is closed.

(Problem 169) Show that T is open in [0, 1].

(Problem 170) Is there a sense in which an analytic continuation along a curve is unique?

(Problem 171) Suppose that γ : [0, 1] 7→ C is a closed curve (so γ(1) = γ(0)). Let {(ft, D(γ(t), rt))}0≤t≤1 be
an analytic continuation of (f,D(γ(0), r)) along γ. Is it necessarily true that f1 = f0 on D(γ(0),min(r0, r1))?


