7.1. Basic properties of harmonic functions

[Definition: Harmonic function] We say that u is harmonic in a domain $\Omega \subseteq \mathbb{C}$ if u is C^2 in Ω and if $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in Ω .

(Problem 1) Write the definition of harmonic function using the operators $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \bar{z}}$.

(Problem 2) Prove that if F is holomorphic in an open set Ω and $u = \operatorname{Re} F$ then u is harmonic.

(Problem 3) Prove that if u is harmonic in a disc \mathcal{D} , then there is a holomorphic function F such that $\operatorname{Re} F = u$. Do this by showing that there exists a function v that satisfies the Cauchy-Riemann equations.

(Problem 4) Prove that if u is harmonic in a disc \mathcal{D} , then there is a holomorphic function F such that $\operatorname{Re} F = u$. Do this by considering the function $\frac{\partial u}{\partial z}$.

[**Definition: Harmonic conjugate**] Let u and v be two real-valued functions. If F = u + iv is holomorphic, then we say that v is a harmonic conjugate of u.

(Problem 5) Suppose that v is a harmonic conjugate of u. Is u also a harmonic conjugate of v?

(Problem 6) Show that harmonic functions are smooth.

(Problem 7) Provide an example of a domain Ω and a function u that is harmonic on Ω but is not the real part of a holomorphic function on Ω .

(Problem 8) Give a general class of domains Ω such that every function u that is harmonic on Ω is the real part of a holomorphic function. Prove your assertion.

(Problem 8a) Prove that if every function u that is harmonic on Ω is the real part of a holomorphic function, then $\operatorname{Ind}_{\gamma}(w) = 0$ for every closed piecewise- C^1 path $\gamma \subset \Omega$ and every point $w \notin \Omega$.

(Problem 8b) Prove that if Ω is holomorphically simply connected, then $\operatorname{Ind}_{\gamma}(w) = 0$ for every closed piecewise- C^1 path $\gamma \subset \Omega$ and every point $w \notin \Omega$.

(Problem 8c) Prove that if $\operatorname{Ind}_{\gamma}(w) = 0$ for every closed piecewise- C^1 path $\gamma \subset \Omega$ and every point $w \notin \Omega$, then Ω is simply connected.

(Problem 9) Suppose that u, v, and w are real C^2 functions on a connected domain Ω and that u + iv and u + iw are both holomorphic. What can you say about v and w?

(Problem 10) Suppose that $\varphi : \Omega \mapsto V$ is holomorphic and that u is harmonic on V. Prove that $\tilde{u} = u \circ \varphi$ is harmonic on Ω by using the chain rule for complex differentiation.

(Problem 10a) Suppose that $\varphi : \Omega \mapsto V$ is holomorphic and that u is harmonic on V. Prove that $\tilde{u} = u \circ \varphi$ is harmonic on Ω by using the multivariable chain rule for real-valued functions.

(Problem 11) Suppose that $\varphi : \Omega \mapsto V$ is holomorphic and that u is harmonic on V. Prove that $\tilde{u} = u \circ \varphi$ is harmonic on Ω by using the fact that $u = \operatorname{Re} F$ (locally) for a holomorphic function F.

7.2. The maximum principle and the mean value property

(Problem 12) Prove that if u is harmonic in a neighborhood of $\overline{D}(P,r)$, then $u(P) = \frac{1}{2\pi} \int_0^{2\pi} u(P+re^{i\theta}) d\theta$.

[Definition: Mean value property] The formula given in Problem 12.

(Problem 18) Suppose that u is harmonic on a neighborhood of $\overline{D}(0,1)$. If $z \in D(0,1)$, find a formula for u(z) in terms of the values of u on $\partial D(0,1)$. *Hint*: Start by recalling the set of holomorphic self-maps of D(0,1).

(Problem 13) Prove the maximum principle for harmonic functions by using the fact that harmonic functions are real parts of holomorphic functions. That is, prove that if $\Omega \subseteq \mathbb{C}$ is open and connected and if $u: \Omega \mapsto \mathbb{R}$ is harmonic, and if there is some $P \in \Omega$ such that $u(P) \ge u(z)$ for all $z \in \Omega$, then u is constant in Ω .

(Problem 14) Prove the maximum principle for harmonic functions by using the mean value property. Hint: Show that $\{z \in \Omega : u(z) = u(P)\}$ and $\{z \in \Omega : u(z) < u(P)\}$ are both open and use the definition of connectedness in terms of open sets.

(Problem 15) Prove the minimum principle for harmonic functions.

(Problem 16) Suppose that u is harmonic in Ω and continuous on $\overline{\Omega}$ for some bounded open set Ω . What can you say about $\max_{\overline{\Omega}} u$ and $\max_{\partial \Omega} u$?

(Problem 17) Can you make the same statement if Ω is not bounded?

(Problem 17a) Prove that if u and v are both harmonic in D(0, 1), continuous on $\overline{D}(0, 1)$, and $u(\zeta) = v(\zeta)$ for all $\zeta \in \partial D(0, 1)$, then u(z) = v(z) for all $z \in D(0, 1)$.

7.3. The Poisson integral formula

[Definition: Poisson integral formula] We have that if u is harmonic in a neighborhood of $\overline{D}(0,1)$, then for all |z| = r < 1,

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} u(e^{i\psi}) \frac{1 - |z|^2}{|e^{i\psi} - z|^2} d\psi, \qquad u(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} u(e^{i\psi}) \frac{1 - r^2}{1 - 2r\cos(\theta - \psi) + r^2} d\psi.$$

Let $P_r(\theta - \psi) = \frac{1}{2\pi} \frac{1 - r^2}{1 - 2r\cos(\theta - \psi) + r^2}, P(z, \zeta) = \frac{|\zeta|^2 - |z|^2}{2\pi|\zeta - z|^2}$

(Problem 19) Verify that the two formulas above are equivalent.

(Problem 20) Prove that if θ is real and $0 \le r < 1$ then $0 < P_r(\theta) < \infty$ (in particular, the denominator is never zero).

(Bonus problem 20a) Show that $p(z) = P(z, \zeta)$ is harmonic on $\mathbb{C} \setminus \{\zeta\}$; in particular, if $\zeta = e^{i\theta}$ then p(z) is harmonic in D(0, 1).

(Bonus problem 20b) Find a holomorphic function $f(z) = F(z, \zeta)$ such that $p(z) = P(z, \zeta)$ is the real part of f.

(Problem 21) Suppose that u is harmonic in a neighborhood of $\overline{D}(P,r)$. If $z \in D(P,r)$, find a formula for u(z) in terms of the values of u on $\partial D(P,r)$.

(Problem 22) Suppose that u is continuous on $\overline{D}(0,1)$ and harmonic in D(0,1). Show that the Poisson integral formula is still valid.

(Problem 23) Let f be real-valued and continuous on $\partial D(0,1)$. Let $u(z) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\psi}) \frac{1-|z|^2}{|e^{i\psi}-z|^2} d\psi$. Show that $u \in C^2(D(0,1))$.

(Problem 24) Let u, f be as in Problem 23. Show that u is harmonic in D(0, 1).

(Problem 25) Prove that if $0 \le r < 1$ then $\int_0^{2\pi} P_r(\theta) d\theta = 1$.

(Problem 26) Prove that $\lim_{r \to 1^-} P_r(\theta) = 0$ for all $\theta \neq 2n\pi$.

(Problem 27) Let $0 < \delta < \pi$ be a small positive number. Prove that $\lim_{r \to 1^-} P_r(\theta) = 0$ uniformly for all $\delta < \theta < 2\pi - \delta$.

(Problem 28) Let $0 < \delta < \pi$. Prove that $\lim_{r \to 1^-} \int_{-\delta}^{\delta} P_r(\theta) d\theta = 1$.

(Problem 29) Let u, f be as in Problem 23. Show that $\lim_{r \to 1^-} u(re^{i\theta}) = f(e^{i\theta})$ for all $0 \le \theta \le 2\pi$.

(Problem 29a) Let u, f be as in Problem 23. Show that $u(re^{i\theta})$ converges to $f(e^{i\theta})$ as $r \to 1^-$ uniformly in θ .

(Problem 30) Let u, f be as in Problem 23. Show that u is continuous on $\overline{D}(0, 1)$.

(Problem 31) We can find a harmonic function in D(0,1) with arbitrary boundary data using the Poisson integral formula. Why can't we find a holomorphic function in D(0,1) with arbitrary boundary data by using the Cauchy integral formula?

7.4. Regularity of harmonic functions

[Definition: The "small circle" mean value property] Let $\Omega \subset \mathbb{C}$ be open and let $h : \Omega \mapsto \mathbb{R}$ be continuous. We say that h has the SCMV property if, for every $P \in \Omega$, there is some number $\varepsilon_P > 0$ such

that $\overline{D}(P,\varepsilon_P) \subset \Omega$ and such that $h(P) = \frac{1}{2\pi} \int_0^{2\pi} h(P + \varepsilon e^{i\theta}) d\theta$ for all $0 < \varepsilon < \varepsilon_P$.

(Problem 32) Let $\Omega \subset \mathbb{C}$ be open and connected. Let g be continuous on Ω and satisfy the "small circle" mean value property. Show that g satisfies the maximum principle, that is, if there is some $P \in \Omega$ such that $g(P) \geq g(z)$ for all $z \in \Omega$ then g is constant.

(Problem 33) Suppose that g is continuous on $\overline{D}(P, r)$ and has the "small circle" mean value property in D(P, r). Suppose further that g = 0 on $\partial D(P, r)$. Show that g = 0 in D(P, r).

(Problem 34) Suppose that g and h are continuous on $\overline{D}(P,r)$ and that u = h on $\partial D(P,r)$. Suppose that h is harmonic in D(P,r) and that g has the "small circle" mean value property in D(P,r). Show that g = h in D(P,r) as well.

(Problem 35) Let $\Omega \subset \mathbb{C}$ be open. Suppose that g is continuous and has the "small circle" mean value property in Ω . Show that g is harmonic in Ω .

(Problem 36) Let $\Omega \subset \mathbb{C}$ be open. Suppose that $\{h_j\}_{j=1}^{\infty}$ is a sequence of functions, each harmonic on Ω , and that $h_j \to h$ uniformly on Ω . Show that h is also harmonic by showing that it has the "small circle" mean value property.

7.5. The Schwarz reflection principle

(Problem 37) Suppose $\Omega \subset \mathbb{C}$ is open and that u is harmonic on Ω . Let $v(z) = u(\overline{z})$. Show that v is harmonic on $\widehat{\Omega} = \{z \in \mathbb{C} : \overline{z} \in \Omega\}$.

(Problem 38) Suppose $\Omega \subset \mathbb{C}$ is open and that f is holomorphic on Ω . Let $g(z) = \overline{f(\overline{z})}$. Show that g is holomorphic on $\widehat{\Omega} = \{z \in \mathbb{C} : \overline{z} \in \Omega\}.$

(Problem 39) Let $\Psi \subset \mathbb{C}$ be open and connected. Suppose that Ψ is symmetric about the real axis; that is, $z \in \Psi$ if and only if $\overline{z} \in \Psi$. Let $\Omega = \{z \in \Psi : \text{Im } z > 0\}$.

Suppose that v is harmonic in Ω , continuous on $\overline{\Omega} \cap \Psi$, and that v(x) = 0 for any $x \in \Psi \cap \mathbb{R}$. Sketch Ψ . Label Ω , $\widehat{\Omega}$, the set where v is harmonic, and the set where v is equal to zero.

(Problem 39a) Let Ψ , Ω , $\hat{\Omega}$, and v be as in Problem 39. Show that \hat{v} is continuous in Ψ , where

$$\widehat{v}(z) = \begin{cases} v(z), & z \in \Omega\\ 0, & z \in \overline{\Omega} \cap \Psi, \\ -v(\overline{z}), & z \in \widehat{\Omega} = \{w \in \mathbb{C} : \overline{w} \in \Omega\}. \end{cases}$$

(Problem 40) Suppose that v, \hat{v} , and Ψ are as in Problem 39. Show that \hat{v} is harmonic in Ψ . *Hint:* Use the small circle mean value property.

(Problem 41) Suppose that f is holomorphic in $D(x_0, r)$ for some $x_0 \in \mathbb{R}$ and some r > 0. Suppose further that f(x) is real for all $x \in (x_0 - r, x_0 + r) = D(x_0, r) \cap \mathbb{R}$. Show that $f(z) = \overline{f(\overline{z})}$ for all $z \in D(x_0, r)$.

(Problem 42) Let f be holomorphic on the half-circle $\Omega = \{z \in D(x_0, r) : \text{Im } z > 0\}$ for some $x_0 \in \mathbb{R}$ and some r > 0. Suppose that f is continuous on $\{z \in D(x_0, r) : \text{Im } z \ge 0\}$. Further suppose that f(x) is real for all $x \in (x_0 - r, x_0 + r)$. Show that there is some function \hat{f} that is holomorphic in $D(x_0, r)$ and equals fon $\Omega = D(x_0, r)$. Find a formula for $\hat{f}(z)$.

(Problem 43) Let Ψ and Ω be as in Problem 39. Let f be holomorphic in Ω and continuous on $\overline{\Omega} \cap \Psi = \Omega \cup (\Psi \cap \mathbb{R})$. Suppose that Im f = 0 on $\Psi \cap \mathbb{R}$.

Sketch Ψ . Label Ω , $\widehat{\Omega}$, the set where f is holomorphic, and the set where f is real-valued.

(Problem 43a) The Schwarz reflection principle. Let Ψ and Ω be as in Problem 39. Let f be holomorphic in Ω and continuous on $\overline{\Omega} \cap \Psi = \Omega \cup (\Psi \cap \mathbb{R})$. Suppose that $\operatorname{Im} f = 0$ on $\Psi \cap \mathbb{R}$. Show that \widehat{f} is holomorphic on Ψ , where

$$\widehat{f}(z) = \begin{cases} \underline{f(z)}, & z \in \overline{\Omega} \cap \Psi \\ \overline{f(\overline{z})}, & z \in \widehat{\Omega} = \{ w \in \mathbb{C} : \overline{w} \in \Omega \}. \end{cases}$$

(Problem 44) Suppose that f is holomorphic on D(0,1) and continuous on $\overline{D}(0,1) \setminus \{-1\}$, and that f is real on $\partial D(0,1) \setminus \{-1\}$. Show that that f may be extended to a holomorphic function \widehat{f} on $\mathbb{C} \setminus \{-1\}$. Give a formula for $\widehat{f}(z)$ whenever $z \in \mathbb{C} \setminus \overline{D}(0,1)$.

(Problem 44a) Let $z_0 \in \partial D(0, 1)$. Suppose that for some $\varepsilon > 0$, we have that f is holomorphic in $D(z_0, \varepsilon) \cap D(0, 1)$ and that f is continuous on $D(z_0, \varepsilon) \cap \overline{D}(0, 1)$. Suppose further that f is real-valued on $D(z_0, \varepsilon) \cap \partial D(0, 1)$. Show that there is some δ with $0 < \delta < \varepsilon$ such that f may be extended to a holomorphic function \widehat{f} in $D(z_0, \delta)$; that is, show that there exists a function \widehat{f} that his holomorphic in $D(z_0, \delta)$ and such that $f = \widehat{f}$ in $D(z_0, \delta) \cap \overline{D}(0, 1)$.

(Problem 45) Let X be an open set and let $\Omega = X \cap D(0,1)$. Suppose that f is holomorphic on Ω and continuous on $\overline{\Omega} \cap X$, and that f is real on $\partial D(0,1) \cap X$. Find an open set $\Psi \supset \Omega$ such that f may be extended to a holomorphic function \widehat{f} on Ψ . Give a formula for $\widehat{f}(z)$ whenever $z \in \Psi \setminus \overline{\Omega}$.

(Problem 46) Suppose that f is holomorphic on $\mathbb{H} = \{z \in \mathbb{C} : \text{Im } z > 0\}$ and continuous on $\overline{\mathbb{H}}$ and that f(x) = 0 for all 0 < x < 1. Show that f(z) = 0 for all $z \in \mathbb{H}$.

7.6. Harnack's principle

(Problem 47) Recall that if u is harmonic in D(P, R) and continuous on $\overline{D}(P, R)$, then for any $0 \le r < R$ and any $0 \le \theta \le 2\pi$,

$$u(P + re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} u(P + Re^{i\psi}) \frac{R^2 - r^2}{|Re^{i\psi} - re^{i\theta}|^2} d\psi.$$

$$\frac{R^2 - r^2}{|Re^{i\psi} - re^{i\theta}|^2} = \frac{R^2 - r^2}{|Re^{i\psi} - re^{i\theta}|^2} d\psi.$$

Find $\min_{0 \le \theta \le 2\pi, 0 \le \psi \le 2\pi} \frac{R^2 - r^2}{|Re^{i\psi} - re^{i\theta}|^2} \text{ and } \max_{0 \le \theta \le 2\pi, 0 \le \psi \le 2\pi} \frac{R^2 - r^2}{|Re^{i\psi} - re^{i\theta}|^2}$

(Problem 48) The Harnack inequality. Suppose that u is nonnegative and harmonic in D(P, R) and continuous on $\overline{D}(P, R)$. Let $z = P + re^{i\theta} \in D(P, R)$. Show that

$$\frac{R-r}{R+r}u(P) \le u(z) \le \frac{R+r}{R-r}u(P).$$

(Problem 48a) Did we need the assumption that u was continuous on $\overline{D}(P, R)$?

(Bonus problem 48b) Suppose that u is harmonic in D(P, R) and continuous on $\overline{D}(P, R)$. Find formulas for $\partial_x u$ and $\partial_y u$ in terms of $u(P + Re^{i\theta})$, $0 \le \theta \le 2\pi$.

(Bonus problem 48c) Suppose that u is harmonic D(P, R) and that $|u| \leq M$ in D(P, R). Find an upper bound on $|\nabla u(z)|$ for any $z \in D(P, R)$ in terms of M, R and |z - P|.

In Problems 49–50, let $\{u_j\}_{j=1}^{\infty}$ be a sequence of real-valued functions harmonic in D(P, R) such that $u_1(z) \le u_2(z) \le u_3(z) \le \cdots$ for each $z \in D(P, R)$.

(Problem 49) Suppose that $\lim_{j \to \infty} u_j(P) = \infty$. Show that $u_j \to \infty$ uniformly on D(P, r) for any 0 < r < R. (Problem 50) Suppose that $\lim_{j \to \infty} u_j(P) < \infty$. Show that u_j converges to some (finite) harmonic function, uniformly on D(P, r) for any 0 < r < R. In Problems 51–52, let $\Omega \subseteq \mathbb{C}$ be a connected open set and let $\{u_j\}_{j=1}^{\infty}$ be a sequence of real-valued functions harmonic in Ω such that $u_1(z) \leq u_2(z) \leq u_3(z) \leq \cdots$ for each $z \in \Omega$.

(Problem 51) Show that either $\lim_{j\to\infty} u_j(z) = \infty$ for all $z \in \Omega$ or $\lim_{j\to\infty} u_j(z) < \infty$ for all $z \in \Omega$. *Hint*: Show that $\{z : \lim_{j\to\infty} u_j(z) = \infty\}$ and $\{z : \lim_{j\to\infty} u_j(z) < \infty\}$ are both open.

(Problem 52) Harnack's principle. Show that either $\lim_{j\to\infty} u_j(z) = \infty$ for all $z \in \Omega$, uniformly on compact sets, or that there is some function u_0 harmonic in Ω such that $u_j \to u_0$ uniformly on compact sets.

7.7. Subharmonic functions

[Definition: Subharmonic functions] Let $\Omega \subseteq \mathbb{C}$ be open and let $f : \Omega \mapsto \mathbb{R}$ be continuous. Suppose that for every $\overline{D}(P, r) \subset \Omega$, we have that

$$f(P) \le \frac{1}{2\pi} \int_0^{2\pi} f(P + re^{i\theta}) \, d\theta$$

Then we say that f is subharmonic in Ω .

[Definition: Superharmonic functions] Let $\Omega \subseteq \mathbb{C}$ be open and let $f : \Omega \mapsto \mathbb{R}$ be continuous. Suppose that for every $\overline{D}(P, r) \subset \Omega$, we have that

$$f(P) \ge \frac{1}{2\pi} \int_0^{2\pi} f(P + re^{i\theta}) \, d\theta.$$

Then we say that f is superharmonic in Ω .

(Problem 53) Show that f is subharmonic if and only if -f is superharmonic.

(Problem 54) Suppose that f is subharmonic in an open set Ω and that $\alpha \ge 0$ is a nonnegative real number. Show that αf is subharmonic in Ω . Did we need the assumption $\alpha \ge 0$?

(Problem 55) Suppose that f and g are both subharmonic in an open set Ω . Show that f+g is subharmonic in Ω . Is f-g subharmonic in Ω ?

(Problem 56) Suppose that f is subharmonic and g is superharmonic in an open set $\Omega \subseteq \mathbb{C}$. Show that f - g is subharmonic in Ω .

(Problem 57) Suppose that f is a continuous, real-valued function in an open set $\Omega \subseteq \mathbb{C}$. Show that f is harmonic if and only if f is both subharmonic and superharmonic.

(Problem 58) Suppose that u and v are both subharmonic in an open set Ω . Let $f(z) = \max(u(z), v(z))$. Show that f is subharmonic in Ω . (In particular, if u and v are real and harmonic then f is subharmonic.)

(Problem 58a) Let $\Omega \subset \mathbb{C}$ be open and let $f : \Omega \mapsto \mathbb{C}$ be holomorphic. Show that u(z) = |f(z)| is subharmonic in Ω .

(Bonus problem 58b) Let $\Omega \subset \mathbb{C}$ be open and let $u : \Omega \mapsto \mathbb{C}$ be subharmonic. Let $\varphi : \mathbb{R} \mapsto \mathbb{R}$ be nondecreasing and convex, so that if 0 < t < 1 and $a, b \in \mathbb{R}$ then $\varphi(ta + (1 - t)b) \leq t\varphi(a) + (1 - t)\varphi(b)$. Show that $v(z) = \varphi(uf(z))$ is subharmonic in Ω .

(Problem 59) Give eight examples of functions that are subharmonic in a domain Ω but are not harmonic in that domain.

(Problem 60) Prove the maximum principle for subharmonic functions.

(Problem 61) Is there a minimum principle for subharmonic functions?

(Problem 69) Let $\Omega \subseteq \mathbb{C}$ be open and connected. Suppose that $f : \Omega \mapsto \mathbb{R}$ is continuous and satisfies the small circle sub-mean-value property: for every $P \in \Omega$, there is some $\varepsilon_P > 0$ such that $D(P, \varepsilon_P) \subset \Omega$ and such that

$$f(P) \le \frac{1}{2\pi} \int_0^{2\pi} f(P + \varepsilon e^{i\theta}) d\theta$$
 for all $0 < \varepsilon < \varepsilon_P$.

Show that f satisfies the maximum principle in Ω .

(Problem 62) Suppose that f is continuous on $\overline{D}(P,r)$ and subharmonic in D(P,r). Suppose that h is continuous on $\overline{D}(P,r)$ and harmonic in D(P,r). Suppose that $f \leq h$ on $\partial D(P,r)$. Show that $f \leq h$ in D(P,r).

(Problem 63) Suppose that $\Omega \subseteq \mathbb{C}$ is open and that $f : \Omega \mapsto \mathbb{R}$ is continuous. Suppose further that whenever $\overline{D}(P,r) \subset \Omega$, h is harmonic in D(P,r) and continuous on $\overline{D}(P,r)$, and $h \geq f$ on $\partial D(P,r)$, we have that $h \geq f$ in D(P,r). Prove that f is subharmonic.

(Problem 70) Let $\Omega \subseteq \mathbb{C}$ be open. Suppose that $f : \Omega \mapsto \mathbb{R}$ is continuous and satisfies the small circle sub-mean-value property in Ω (as in Problem 69). Use Problem 63 to show that f is subharmonic in Ω .

7.7. The Dirichlet problem

[Definition: The Dirichlet problem] Let $\Omega \subseteq \mathbb{C}$ be a bounded open connected set. We say that the Dirichlet problem is well posed on Ω if, for every function f defined and continuous on $\partial\Omega$, there is exactly one function u that is harmonic in Ω , continuous on $\overline{\Omega}$, and such that u = f on $\partial\Omega$.

(Problem 64) Give an example of an unbounded domain Ω and two functions u and v that are harmonic in Ω , continuous on $\overline{\Omega}$ and equal zero on $\partial\Omega$.

(Problem 65) Prove that we have uniqueness for the Dirichlet problem in any bounded domain; that is, show that if $\Omega \subsetneq \mathbb{C}$ is bounded, if u and v are both harmonic in Ω and continuous on $\overline{\Omega}$, and if u = v on $\partial\Omega$, then u = v in Ω . Clearly explain how you used the fact that Ω is bounded.

(Problem 66) Let 0 < r < 1. Find a function u that is harmonic in the annulus $\Omega = D(0,1) \setminus D(0,r)$, continuous on $\overline{\Omega}$ and such that $u(e^{i\theta}) = 0$, $u(re^{i\theta}) = 1$ for any $0 \le \theta \le 2\pi$.

(Problem 67) Let $\Omega = D(0,1) \setminus \{0\}$. Let u be harmonic in Ω and continuous on $\overline{\Omega}$. Suppose that $u(e^{i\theta})$ is constant for $0 \le \theta \le 2\pi$. Show that u is radial; that is, for any fixed r with 0 < r < 1, $u(re^{i\theta}) = u(re^{i\psi})$ for any $0 \le \theta \le 2\pi$, $0 \le \psi \le 2\pi$.

(Problem 68) Let $\Omega = D(0,1) \setminus \{0\}$. Suppose that u is harmonic in Ω , continuous on $\overline{\Omega}$, and that u = 0 on $\partial D(0,1)$. Prove that u(0) = 0. Is the Dirichlet problem well posed in Ω ?

7.8. The Perron method and the solution to the Dirichlet problem

Our goal is to use subharmonic functions to construct solutions to the Dirichlet problem.

(Problem 71) Let $\Omega \subset \mathbb{C}$ be a bounded open set. Let $f : \partial \Omega \mapsto \mathbb{R}$ be continuous. Let

 $S = \{\psi : \psi \text{ is subharmonic in } \Omega, \text{ continuous on } \overline{\Omega} \text{ and } \psi(w) \leq f(w) \text{ for all } w \in \partial \Omega.\}$

Show that S is nonempty.

(Problem 72) Let S be as in Problem 71. For each $z \in \Omega$, let $u(z) = \sup\{\psi(z) : \psi \in S\}$. Show that u is finite for all $z \in \Omega$ and, in fact, is bounded above and below.

(Problem 73) Suppose that $\Omega = D(0,1) \setminus \{0\}$ and that $f(e^{i\theta}) = 1$, f(0) = 0. Let u be as in Problem 72. Show that u(z) = 1 for all $z \in \Omega$.

(Problem 74) Let $\Omega \subsetneq \mathbb{C}$ be open. Let u be as in Problem 72. Show that u is lower semicontinuous on $\overline{\Omega}$; that is, for each $P \in \overline{\Omega}$ and each $\varepsilon > 0$, show that there is some $\delta > 0$ such that if $z \in D(P, \delta) \cap \overline{\Omega}$, then $u(z) > u(P) - \varepsilon$.

(Problem 75) Can we show that u is continuous on $\overline{\Omega}$?

(Problem 76) Let $\Omega \subseteq \mathbb{C}$ be open and let f be subharmonic in Ω . Suppose that $\overline{D}(P,r) \subset \Omega$. Let h be harmonic in D(P,r) with h = f on $\partial D(P,r)$; we may construct h using the Poisson integral. Let

$$\psi(z) = \begin{cases} h(z), & z \in D(P, r) \\ f(z), & z \in \Omega \setminus D(P, r). \end{cases}$$

Show that ψ is subharmonic in Ω .

(Problem 77) Let u, Ω and S be as in Problems 71–72. Let $w \in \Omega$. Show that there is a sequence of functions $\{\psi_j^w\}_{j=1}^{\infty} \subset S$ such that $u(w) = \lim_{j \to \infty} \psi_j^w(w)$.

(Problem 78) Show that there is a sequence of functions $\{\varphi_j^w\}_{j=1}^\infty \subset S$ such that $u(w) = \lim_{j \to \infty} \varphi_j^w(w)$ and such that $\varphi_1^w(z) \le \varphi_2^w(z) \le \varphi_3^w(z) \le \cdots$ for all $z \in \Omega$.

(Problem 79) Let $w \in D(P,r)$ for some $\overline{D}(P,r) \subset \Omega$. Show that there is a sequence of functions $\{\eta_j^w\}_{j=1}^{\infty} \subset S$ such that $u(w) = \lim_{j \to \infty} \eta_j^w(w)$, such that $\eta_1^w(z) \leq \eta_2^w(z) \leq \eta_3^w(z) \leq \cdots$ for all $z \in \Omega$, and such that η_j^w is harmonic in D(P,r).

(Problem 80) Suppose that $w \in D(P, r)$ and $\overline{D}(P, r) \subset \Omega$. Let $\eta^w = \lim_{j \to \infty} \eta_j^w$. Prove that η^w is harmonic in D(P, r).

(Problem 80a) Suppose that $w_1, w_2 \in D(P, r)$ and $\overline{D}(P, r) \subset \Omega$. Let $\eta^{w_1} = \lim_{j \to \infty} \eta_j^{w_1}$ and let $\eta^{w_2} = \lim_{j \to \infty} \eta_j^{w_2}$. Prove that $\eta^{w_1}(z) = \eta^{w_2}(z)$ for all $z \in D(P, r)$. Hint: Let $\varphi_j^{w_1,w_2}(z) = \max(\varphi_j^{w_1}(z), \varphi_j^{w_2}(z))$ and construct $\eta_j^{w_1,w_2}$ from $\varphi_j^{w_1,w_2}$ as before. What can you say about $\eta_j^{w_1,w_2}(z)$ and $\eta^{w_1,w_2}(z) = \lim_{j \to \infty} \eta_j^{w_1,w_2}(z)$ for arbitrary $z \in D(P, r)$, and for $z = w_1$ and $z = w_2$ in particular?

(Problem 81) Let u be as in Problem 72. Prove that u is harmonic in Ω .

[Definition: Barriers] Let $\Omega \subsetneq \mathbb{C}$ be open and let $P \in \partial \Omega$. We say that $b : \overline{\Omega} \mapsto \mathbb{R}$ is a barrier for Ω at P if:

- (i) b is continuous on Ω ,
- (ii) b is subharmonic in Ω ,
- (iii) b(P) > b(z) for all $z \in \overline{\Omega} \setminus \{P\}$. (Often we take b(P) = 0.)
- (Problem 84) Let Ω , f and S be as in Problem 71. Let $P \in \partial \Omega$.

Suppose that a barrier b at P exists.

Let $\varepsilon > 0$. Use b to construct a function w_{ε} such that $w_{\varepsilon}(P) = f(P) - \varepsilon$ and such that $w_{\varepsilon} \in S$.

(Problem 85) Let u be as in Problem 72. Use the functions w_{ε} to show that u(P) = f(P).

(Problem 82) Let Ω , f and S be as in Problem 71. Let $P \in \partial \Omega$. Suppose that a barrier b at P exists.

Let $\varepsilon > 0$. Use b to construct a function g_{ε} that is continuous on $\overline{\Omega}$, superharmonic in Ω , and satisfies $g_{\varepsilon} \geq f$ on $\partial\Omega$, and such that $g_{\varepsilon}(P) = f(P) + \varepsilon$.

(Problem 83) Let u be as in Problem 72. Use the functions g_{ε} to show that u is upper semicontinuous at P.

(Problem 86) Let $\Omega \subsetneq \mathbb{C}$ be open and bounded. Give a condition on Ω that ensures that the Dirichlet problem is well-posed in Ω .

(Problem 86a) Let $\Omega \subsetneq \mathbb{C}$ be open and bounded. Suppose that the Dirichlet problem is well-posed in Ω . Show that for any $P \in \partial \Omega$, there exists a function b that is a barrier at P.

(Problem 87) Let $\Omega = D(0,1)$ and let $P = e^{i\theta} \in \partial\Omega$. Give an example of a function b that is a barrier at P.

(Problem 93) Suppose that $\Omega \subsetneq \mathbb{C}$ and $\Psi \subsetneq \mathbb{C}$ are two open connected sets. Suppose that $\varphi : \overline{\Omega} \mapsto \overline{\Psi}$ is continuous and that $\varphi : \Omega \mapsto \Psi$ is holomorphic. Suppose that there is some $P \in \partial \Psi$ and some function $b : \overline{\Psi} \mapsto \mathbb{R}$ that is a barrier for Ψ at P. Show that if there is exactly one $Q \in \overline{\Omega}$ with $\varphi(Q) = P$, then $\tilde{b} = b \circ \varphi$ is a barrier for Ω at Q.

(Problem 88) Let $\Omega = \mathbb{H} = \{z \in \mathbb{C} : \text{Im } z > 0\}$ and let $P = x \in \partial \Omega$. Give an example of a function b that is a barrier at P.

(Problem 89) Let $\Omega = \mathbb{C} \setminus \{x + 0i : 0 \le x \le \infty\}$ denote the complex plane with an infinite slit removed. Let $P = 0 \in \partial \Omega$. Give an example of a function b that is a barrier at P.

(Problem 90) Let $\Omega = \mathbb{C} \setminus \{x + 0i : 0 \le x \le 1\}$ denote the complex plane with a finite slit removed. Let $P = 0 \in \partial\Omega$. Give an example of a function b that is a barrier at P.

(Problem 91) Let $\Omega \subseteq \mathbb{C}$ and $\Psi \subseteq \mathbb{C}$ be two open sets, and suppose $\Omega \subset \Psi$. Suppose that $P \in \partial \Omega \cap \partial \Psi$. Suppose that there is a barrier for Ψ at P. Show that there is a barrier for Ω at Ψ .

(Problem 91a) Let $\Omega \subsetneq \mathbb{C}$ be open. Suppose that for every point $P \in \partial \Omega$, there is some point Q_P such that the line segment from P to Q_P is contained in $\mathbb{C} \setminus \Omega$. Show that the Dirichlet problem is well-posed in Ω .

(Problem 92) Show that having a barrier is a local property. That is, let $\Omega \subseteq \mathbb{C}$ and $\Psi \subseteq \mathbb{C}$ be two open sets, and suppose that $P \in \partial \Omega \cap \partial \Psi$ and that for some $\varepsilon > 0$, it is the case that $\Omega \cap D(P, \varepsilon) = \Psi \cap D(P, \varepsilon)$. Suppose that b is a barrier for Ω at P. Construct a barrier for Ψ at P.

(Problem 94) Give an example of a domain $\Omega \subsetneq \mathbb{C}$ and a point $P \in \partial \Omega$ such that there is no function b that is a barrier at P.

7.9. Conformal mappings of annuli

(Problem 95) Let $0 < r_1 < R_1 < \infty$ and $0 < r_2 < R_2 < \infty$. Let $P_1 \in \mathbb{C}$ and $P_2 \in \mathbb{C}$. Show that, if $R_1/r_1 = R_2/r_2$, then $A_1 = \{z \in \mathbb{C} : r_1 < |z - P_1| < R_1\}$ and $A_2 = \{z \in \mathbb{C} : r_2 < |z - P_2| < R_2\}$ are conformally equivalent; that is, there is a holomorphic bijection $\varphi: A_1 \mapsto A_2$.

(Problem 96) Let $\Omega \subseteq \mathbb{C}$ and $\Psi \subseteq \mathbb{C}$ be two open sets, and suppose that $\varphi : \Omega \mapsto \Psi$ is a conformal mapping (holomorphic bijection).

Suppose that $\{z_n\}_{n=1}^{\infty} \subset \Omega$ and that $z_n \to z_{\infty}$ for some $z_{\infty} \in \partial \Omega$. Suppose that $\varphi(z_n)$ converges to some $w_{\infty} \in \overline{\Psi}$. Show that $w_{\infty} \in \partial \Psi$.

(Problem 97) Let $\Omega \subseteq \mathbb{C}$ and $\Psi \subseteq \mathbb{C}$ be two bounded open sets, and suppose that $\varphi : \Omega \mapsto \Psi$. Suppose that $\{z_n\}_{n=1}^{\infty} \subset \Omega$. Show that there is a subsequence $\{z_{n_k}\}_{k=1}^{\infty}$ such that $\varphi(z_{n_k})$ converges as $k \to \infty$.

(Problem 98) Suppose that $1 < R_1 < \infty$ and that $1 < R_2 < \infty$. Let $A_1 = \{z \in \mathbb{C} : 1/R_1 < |z| < R_1\}$ and $A_2 = \{z \in \mathbb{C} : 1/R_2 < |z| < R_2\}$. Let $\varphi : A_1 \mapsto A_2$ be a holomorphic bijection.

Let $1/R_2 < \rho < R_2$. Let $\bar{r_{\rho}} = \inf\{|\varphi^{-1}(\rho e^{i\theta})| : 0 \le \theta \le 2\pi\}$ and let $s_{\rho} = \sup\{|\varphi^{-1}(\rho e^{i\theta})| : 0 \le \theta \le 2\pi\}$. Show that $1/R_1 < r_{\rho} \leq s_{\rho} < R_1$.

(Problem 99) Let $z_{\infty} \in \partial A_1$ with $|z_{\infty}| = R_1$. Suppose there is some $\{w_n\}_{n=1}^{\infty} \subset A_1$ such that $w_n \to z_{\infty}$ and $|\varphi(w_n)| \to R_2$ as $n \to \infty$.

Suppose further that $\{z_n\}_{n=1}^{\infty} \subset A_1$, that $z_n \to z_{\infty}$ as $n \to \infty$, and that $\varphi(z_n)$ converges. Show that $|\varphi(z_n)| \to R_2$ as $n \to \infty$. Hint: Use the fact that $\{z \in A_1 : |\varphi(z)| < 1\}$ and $\{z \in A_1 : |\varphi(z)| > 1\}$ are disjoint open sets and $\{z \in A_1 : |z| > s_1\}$ is connected.

(Problem 100) If $z_n, w_n \in A_1, |z_{\infty}| = R_1, z_n \to z_{\infty}, w_n \to z_{\infty}, |\varphi(w_n)| \to 1/R_2$, and $\varphi(z_n)$ converges, what can you say about $\lim_{n \to \infty} |\varphi(z_n)|$?

(Problem 100a) If $z_n, w_n \in A_1, |z_{\infty}| = 1/R_1, z_n \to z_{\infty}, w_n \to z_{\infty}, |\varphi(w_n)| \to R_2$, and $\varphi(z_n)$ converges, what can you say about $\lim |\varphi(z_n)|$?

(Problem 100b) If $z_n, w_n \in A_1, |z_{\infty}| = 1/R_1, z_n \to z_{\infty}, w_n \to z_{\infty}, |\varphi(w_n)| \to 1/R_2$, and $\varphi(z_n)$ converges, what can you say about $\lim_{n\to\infty} |\varphi(z_n)|$?

(Problem 101) Let $z_{\infty} \in \partial A_1$. Show that there is a sequence of points $\{w_n\}_{n=1}^{\infty} \subset A_1$ such that $w_n \to z_{\infty}$ and such that either $|\varphi(w_n)| \to R_2$ or $|\varphi(w_n)| \to 1/R_2$ as $n \to \infty$.

(Problem 101a) Let $z_{\infty} \in \partial A_1$. Show that one of the following is true:

- For every sequence {z_n}_{n=1}[∞] ⊂ A₁ that satisfies z_n → z_∞, we have that |φ(z_n)| → R₂ as n → ∞.
 For every sequence {z_n}_{n=1}[∞] ⊂ A₁ that satisfies z_n → z_∞, we have that |φ(z_n)| → 1/R₂ as n → ∞.

(Problem 102) Let $h(z) = |\varphi(z)|$. Show that there is a function \tilde{h} that is continuous on $\overline{A_1}$ and satisfies h = h on A_1 .

(Problem 102a) What values can \tilde{h} take on ∂A_1 ?

(Problem 103) Show that $\tilde{h}(z)$ is constant on each of the two boundary components of A_1 .

(Problem 104) Show that $g(z) = \log h(z) = \log |\varphi(z)|$ is harmonic in A_1 .

(Problem 104a) Can $\tilde{h} = |\varphi(z)|$ be equal on the two boundary components of A_1 ?

(Problem 105) For fixed R_1 and R_2 , there are two possible values of $g(z) = \log |\varphi(z)|$. Find them.

(Problem 106) Suppose $f : A_1 \to A_2$ is holomorphic and $\log |f(z)| = \beta \log |z|$ for some real number β . Find f(z). Are there any restrictions on β ? If we require that f be one-to-one, are there any additional restrictions on β ?

(Problem 107) Let $0 < r_1 < R_1 < \infty$ and $0 < r_2 < R_2 < \infty$. Let $P_1 \in \mathbb{C}$ and $P_2 \in \mathbb{C}$. Suppose that $A_1 = \{z \in \mathbb{C} : r_1 < |z - P_1| < R_1\}$ and $A_2 = \{z \in \mathbb{C} : r_2 < |z - P_2| < R_2\}$ are conformally equivalent. Show that $R_1/r_1 = R_2/r_2$.

(Problem 108) Let $A = \{z \in \mathbb{C} : 1/R < |z| < R\}$ be an annulus for some R > 1. Find all conformal self-maps of A.

8.1. Basic concepts for infinite products

(Problem 109) Let $\{A_j\}_{j=1}^{\infty}$ be a sequence of complex numbers. Suppose $A_j \neq 0$ for all j and that $\lim_{N\to\infty}\prod_{j=1}^N A_j$ exists and is nonzero. Show that $\lim_{j\to\infty}A_j = 1$.

(Problem 110) Let $\{A_j\}_{j=1}^{\infty}$ be a sequence of complex numbers. Suppose $A_j \neq 0$ for all j and that $\lim_{N\to\infty} \prod_{j=1}^N A_j = 0$. Can we conclude that $\lim_{j\to\infty} A_j = 1$?

(Problem 111) Let $\{A_j\}_{j=1}^{\infty}$ be a sequence of complex numbers. Suppose $A_k = 0$ for some k. What is $\lim_{N \to \infty} \prod_{j=1}^{N} A_j$? If the sequence of partial products converges, can we conclude that $\lim_{j \to \infty} A_j = 1$?

(Problem 112) Show that if $0 \le x \le 1$, then $1 + x \le e^x \le 1 + 2x$.

(Problem 113) Show that if $a_j \in \mathbb{C}$ with $|a_j| < 1$, then $\exp\left(\frac{1}{2}\sum_{j=1}^n |a_j|\right) \le \prod_{j=1}^n 1 + |a_j| \le \exp\left(\sum_{j=1}^n |a_j|\right)$.

(Problem 114) Show that if $a_j \in \mathbb{C}$ and $\sum_{j=1}^{\infty} |a_j|$ converges, then $\lim_{N \to \infty} \prod_{j=1}^{N} 1 + |a_j|$ exists. Can the limit be zero?

(Problem 115) Show that if $a_j \in \mathbb{C}$ and $\lim_{N \to \infty} \prod_{j=1}^N 1 + |a_j|$ exists, then $\sum_{j=1}^\infty |a_j|$ converges.

(Problem 116) Suppose that $\lim_{N\to\infty} \prod_{j=1}^{N} 1 + |a_j|$ exists. Show that there is some $N_0 > 0$ such that $1 + a_j \neq 0$ for any $j \ge N_0$.

(Problem 117) Suppose that $a_j \in \mathbb{C}$ and $N \ge M$. Show that $\left| \left(\prod_{j=M}^N 1 + a_j \right) - 1 \right| \le \left| \left(\prod_{j=M}^N 1 + |a_j| \right) - 1 \right|$. *Hint*: Use induction.

(Problem 118) Suppose that $a_j \in \mathbb{C}$ and $a_j \neq -1$. Suppose that $\lim_{N \to \infty} \prod_{j=1}^{N} 1 + |a_j|$ exists. Show that $\lim_{N \to \infty} \prod_{j=1}^{N} 1 + a_j$ exists and is nonzero.

(Problem 119) Suppose that $a_j \in \mathbb{C}$ and $\sum_{j=1}^{\infty} |a_j|$ converges. Show that $\lim_{N \to \infty} \prod_{j=1}^{N} 1 + a_j$ exists; if $a_j \neq -1$ for all j, the limit is nonzero.

(Problem 120) Let $K \subset \mathbb{C}$ and let $\{f_j\}_{j=1}^{\infty}$ be a sequence of functions $f_j : K \mapsto \mathbb{C}$. Suppose that $|f_j(z)| < 1$ for all $j \ge 1$ and all $z \in K$ and that $\sum_{j=1}^{\infty} |f_j(z)|$ converges uniformly for all $z \in K$. Show that $\prod_{j=1}^{N} 1 + f_j(z)$ converges as $N \to \infty$ to a function F(z), uniformly for all $z \in K$.

(Problem 120a) Let $K \subset \mathbb{C}$ and let $\{f_j\}_{j=1}^{\infty}$ be a sequence of functions $f_j : K \mapsto \mathbb{C}$. Suppose that the f_j s are uniformly bounded (although not necessarily by 1) and that $\sum_{j=1}^{\infty} |f_j(z)|$ converges uniformly for all $z \in K$. Show that $\prod_{j=1}^{N} 1 + f_j(z)$ converges as $N \to \infty$ to a function F(z), uniformly for all $z \in K$.

(Problem 121) Let f_j , K and F be as in Problem 120a. Let $z_0 \in K$. Show that $1 + f_j(z_0) = 0$ for at most finitely many numbers j.

(Problem 122) Let $\Omega \subsetneq \mathbb{C}$ be open and let $f_j : \Omega \mapsto \mathbb{C}$ be holomorphic. Suppose that $\sum_{j=1}^{\infty} |f_j(z)|$ converges normally (that is, uniformly on compact sets). Show that $\prod_{j=1}^{N} 1 + f_j(z)$ converges normally as $N \to \infty$ to a holomorphic function F. holomorphic function F.

(Problem 123) Let Ω , f_j and F be as in Problem 122. Let $z_0 \in \Omega$. Show that $F(z_0) = 0$ if and only if $f_i(z_0) = -1$ for some $j \ge 1$.

(Problem 124) Let Ω , f_j and F be as in Problem 122. Suppose that F is not identically equal to zero. Let $z_0 \in \Omega$ and suppose that $F(z_0) = 0$. Show that the multiplicity of the zero of F at z_0 is equal to the sum of the multiplicities of the zeros of $1 + f_j$ at z_0 .

(Problem 124a) Let Ω , f_j and F be as in Problem 122. Show that if F is identically equal to zero then f_j is identically equal to -1 for some j.

8.2. The Weierstrauss factorization theorem

(Problem 125) Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function. Suppose that f has finitely many zeros. Show that there is an entire function g, an integer N, and complex numbers a_n such that

$$f(z) = e^{g(z)} \prod_{n=1}^{N} (z - a_n).$$

(Problem 126) Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function that is not identically zero. Show that f can have at most countably many zeros (counted with multiplicity).

[Definition: Elementary factors] If $p \ge 0$ is an integer, we let $E_p(z) = (1-z) \exp\left(z + \frac{z^2}{2} + \ldots + \frac{z^p}{p}\right)$.

(Problem 127) Show that E_p is an entire function and that $E_p(z) = 0$ if and only if z = 1. What is the multiplicity of the zero of $E_p(z)$ at 1?

(Problem 128) Let b_n be the components of the power series for E_p centered at zero, so $E_p(z) = \sum_{n=0}^{\infty} b_n z^n$. Find b_0 .

(Problem 129) Compute $E'_p(z)$ using the definition given above and also using the power series expansion.

(Bonus problem 129a) Write a recurrence relation for the coefficients b_n . That is, write the power series for $(1-z)E'_p(z) - z^p E_p(z)$ in terms of b_n , and then use your formula for $(1-z)E'_p(z) - z^p E_p(z)$ to find a formula for b_n in terms of $b_0, b_1, \ldots, b_{n-1}$.

(Problem 130) What can you say about b_n for $1 \le n \le p$?

(Problem 131) Show that b_n is real and that $b_n \leq 0$ for any n > p.

(Problem 132) Compute $\sum_{n=p+1}^{\infty} |b_n|$. *Hint*: Start by computing $E_p(1)$.

(Problem 133) Show that if $|z| \le 1$ then $|E_p(z) - 1| \le |z|^{p+1}$.

(Problem 134) Let $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$ be a sequence of nonzero complex numbers. Suppose that the a_n s have no accumulation point in the sense that no subsequence converges. (We do not require that the a_n s be distinct.) Show that $\lim_{n \to \infty} |a_n| = \infty$.

(Problem 134a) Let $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$ be a sequence of nonzero complex numbers. Suppose that the a_n s have no accumulation point.

Fix an
$$r > 0$$
. Show that $\sum_{n=1}^{\infty} |1 - E_n(z/a_n)|$ converges uniformly for all $|z| < r$.

(Problem 135) Let $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$ be a sequence of complex numbers. Suppose that the a_n s have no accumulation point. (We do not require that the a_n s be distinct; we also allow $a_n = 0$ for finitely many n.)

Show that there is an entire function F whose zero set is precisely equal to $\{a_n\}_{n=1}^{\infty}$ (counting multiplicities).

(Problem 136) The Weierstrauss factorization theorem. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function that is not identically equal to zero. Show that there is an entire function g(z), an integer $m \ge 0$, and complex numbers $a_n \in \mathbb{C}$ such that

$$f(z) = e^{g(z)} z^m \prod_{n=1}^{\infty} E_n\left(\frac{z}{a_n}\right)$$

where the infinite product converges uniformly on compact sets.

8.3. The Theorems of Weierstrauss and Mittag-Leffler: interpolation problems

(Problem 137) Let $\Omega \subseteq \mathbb{C}$ be an open set, let R > 0, and let $\{a_n\}_{n=1}^{\infty} \subset D(0, R) \cap \Omega$ be a sequence with no accumulation points in Ω . Show that $\lim_{n \to \infty} \text{dist}(a_n, \partial \Omega) = 0$.

(Problem 137a) Show that there exists a sequence of points $\{\widehat{a}_n\}_{n=1}^{\infty} \subset \mathbb{C} \setminus \Omega$ and such that $|a_n - \widehat{a}_n| \to 0$ as $n \to \infty$.

(Problem 138) Let Ω , $\{a_n\}_{n=1}^{\infty}$ and $\{\widehat{a}_n\}_{n=1}^{\infty}$ be as in Problem 137a. Let $N \ge 1$ be an integer. Show that $\prod_{n=1}^{N} E_n\left(\frac{a_j - \widehat{a}_j}{z - \widehat{a}_j}\right)$ is holomorphic in Ω .

(Problem 139) Let Ω , $\{a_n\}_{n=1}^{\infty}$ and $\{\widehat{a}_n\}_{n=1}^{\infty}$ be as in Problem 137a. Show that $\prod_{n=1}^{N} E_n\left(\frac{a_j - \widehat{a}_j}{z - \widehat{a}_j}\right)$ converges as $N \to \infty$ for all $z \in \Omega$, uniformly on compact sets.

(Problem 140) Let Ω , $\{a_n\}_{n=1}^{\infty}$ and $\{\widehat{a}_n\}_{n=1}^{\infty}$ be as in Problem 137a. What can you say about $f(z) = \lim_{N \to \infty} \prod_{n=1}^{N} E_n\left(\frac{a_j - \widehat{a}_j}{z - \widehat{a}_j}\right)$?

(Problem 141) Weierstrauss's theorem. Let $\Omega \subseteq \mathbb{C}$ be open and let $\{a_n\}_{n=1}^{\infty} \subset \Omega$ have no accumulation points in Ω . We do not require that $\{a_n\}$ be bounded. Show that there is a function f that is holomorphic in Ω and such that the zero set of f (with multiplicity) is precisely equal to $\{a_n\}_{n=1}^{\infty}$.

(Problem 142) Let $\Omega \subseteq \mathbb{C}$ be open. Let m be meromorphic on Ω . Show that there are functions f and g that are holomorphic in Ω and such that m(z) = f(z)/g(z) for all $z \in \Omega \setminus A$, where A is the set of poles of m.

(Problem 143) Let $f(e^{i\theta}) = \sum_{n=0}^{\infty} \frac{5^n}{6^n} \cos(7^n \theta)$. (This is a special case of the Weierstrauss function.) Show that f is well-defined (the sum converges) for all $0 \le \theta \le 2\pi$ and that f is continuous on $\partial D(0, 1)$.

(Problem 144) Plot the first few partial sums for the Weierstrauss function.

(Problem 145) Let u be the function that is harmonic in D(0,1), continuous on $\overline{D}(0,1)$ and with $u(e^{i\theta}) = f(e^{i\theta})$ for $0 \le \theta \le 2\pi$. Let H be the function that is holomorphic in D(0,1) with real part u.

Show that D(0,1) is the domain of existence of H; that is, if H = H in D(0,1) and H is holomorphic on some open set $\Omega \supseteq D(0,1)$, then $\Omega = D(0,1)$. *Hint*: Use the fact (proven by Weierstauss in 1872) that $f(\theta)$ is nowhere differentiable.

(Problem 146) Let $Q_j = \{ [k2^j, (k+1)2^j) \times [\ell 2^j, (\ell+1)2^j) : k, \ell \text{ are integers} \}$ be the grid of squares in \mathbb{C} with side-length 2^j aligned with the axes. Sketch Q_j .

(Problem 147) Suppose that $S \in Q_j$. Let P(S) be the "dyadic parent" of S, so $S \subsetneq P(S) \in Q_{j+1}$. Let 2S be the square concentric to S of side-length 2^{j+1} .

Sketch S, 2S and the four possibilities for P(S).

(Problem 151) If $S \in Q_j$, let $\ell(S) = 2^j$ be the side-length of S. Show that if $S \in Q_j$ and $z \in S$, then $D(z, \ell(S)/2) \subset 2S$ and $2P(S) \subset D(z, 3\sqrt{2\ell(S)})$.

(Problem 148) Let $\mathcal{Q} = \bigcup_{j=-\infty}^{\infty} \mathcal{Q}_j$. Let $\Omega \subsetneq \mathbb{C}$ be open. Let $\mathcal{G} = \{S \in \mathcal{Q} : 2S \subset \Omega, 2P(S) \not\subset \Omega\}$. We call \mathcal{G} a dyadic Whitney decomposition of Ω . Show that $\bigcup_{S \in \mathcal{G}} S \subseteq \Omega$.

(Problem 148a) Show that if $z \in \Omega$, then there is some $S \in \mathcal{G}$ with $z \in S$.

(Problem 149) Show that if $S \in \mathcal{G}$ and $T \in \mathcal{G}$, then either S = T or $S \cap T = \emptyset$.

(Problem 149a) If $z \in \Omega$, then how many cubes $S \in \mathcal{G}$ can satisfy $z \in S$?

(Problem 150) Show that \mathcal{G} is a countable set.

(Problem 152) Suppose that $S, T \in \mathcal{G}$ and that dist(S,T) = 0; that is, the closures of S and T intersect. Show that $\ell(S) \leq 8\ell(T)$ and that $\ell(T) \leq 8\ell(S)$.

(Problem 152a) If $S \in \mathcal{G}$, let z_S be the midpoint of S. Let $A = \{z_S : S \in \mathcal{G}\}$.

Let $z \in \Omega$. Show that z is not an accumulation point for A. *Hint*: if $z \in T \in \mathcal{G}$, then how many midpoints z_S can appear in $D(z, \ell(T)/16)$?

(Problem 153) Let $z \in \partial \Omega$. Show that z is an accumulation point for A.

(Problem 154) Show that there is a function f that is holomorphic in Ω and such that f(z) = 0 if and only if $z \in A$.

(Problem 155) Show that the domain of existence of f is Ω ; that is, if $\tilde{f} = f$ in Ω and \tilde{f} is holomorphic on some open set $\Psi \supseteq \Omega$, then $\Psi = \Omega$.

In Problems 156–159, let $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$ be a sequence of distinct points with no accumulation points.

(Problem 156) Let $\beta \in \mathbb{C}$ and let k > 0 be an integer. Find an entire function f such that $f(a_k) = \beta$ and such that $f(a_n) = 0$ for all $n \neq k$.

(Problem 157) Let $\beta \in \mathbb{C}$ and let k > 0 be an integer. Find an entire function f such that $f(a_k) = \beta$ and such that $f(a_n) = 0$ for all $n \neq k$, and such that $|f(z)| < 2^{-k}$ for all $|z| < \frac{1}{2}|a_k|$.

(Problem 158) Let $\{\beta_n\}_{n=1}^{\infty} \subset \mathbb{C}$ be a sequence of complex numbers. Find an entire function f such that $f(a_n) = \beta_n$ for all $n \ge 1$.

(Problem 159) Let $\{\beta_n\}_{n=1}^{\infty} \subset \mathbb{C}$ and $\{\gamma_n\}_{n=1}^{\infty} \subset \mathbb{C}$ be two sequences of complex numbers. Find an entire function f such that $f(a_n) = \beta_n$ and $f'(a_n) = \gamma_n$ for all $n \ge 1$.

10.1. Definition of an analytic function element

(Problem 160) Let $\Omega \subseteq \mathbb{C}$ be open. Let $\Psi \subsetneq \Omega$ be open and nonempty. Suppose that f is holomorphic in Ψ . Show that there is at most one function F that is holomorphic in Ω and such that F = f in Ψ .

(Problem 161) Let Ψ be the open sector $\{re^{i\theta} : r > 0, 0 < \theta < \pi/2\}$. Let f(z) be the branch of the logarithm given by $f(re^{i\theta}) = \log r + i\theta$ whenever $0 < \theta < \pi/2$.

Find two functions F and \widetilde{F} and domains $\Omega \supseteq \Psi$ and $\widetilde{\Omega} \supseteq \Psi$ such that F is holomorphic in Ω , \widetilde{F} is holomorphic in $\widetilde{\Omega}$, $\Omega \cap \widetilde{\Omega}$ is nonempty, $F \neq \widetilde{F}$ on $\Omega \cap \widetilde{\Omega}$, and $F = f = \widetilde{F}$ in Ψ .

(Problem 162) The gamma function $\Gamma(z)$ is defined by $\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$. Find $\Gamma(n)$, where n is a positive integer.

(Problem 163) For what values of z does the integral in the definition of the gamma function converge?

(Problem 164) Integrate by parts to find a new formula for $\Gamma(z)$ that converges for z in a larger set.

[Definition: Function elements] A function element is an ordered pair (f, D(P, r)) where $P \in \mathbb{C}$, r > 0and f is a holomorphic function defined on D(P, r).

[Definition: Direct analytic continuation] If (f, D(P, r)) and (g, D(Q, s)) are function elements, if $D(P, r) \cap D(Q, s) \neq \emptyset$, and if f = g on $D(P, r) \cap D(Q, s)$, we say that (g, D(Q, s)) is a direct analytic continuation of (f, D(P, r)).

[Definition: Analytic continuation] Suppose that we have a finite sequence of function elements $\{(f_j, D(P_j, r_j))\}_{j=1}^k$ such that $(f_j, D(P_j, r_j))$ is a direct analytic continuation of $(f_{j-1}, D(P_{j-1}, r_{j-1}))$ for all $1 < j \le k$. Then $(f_k, D(P_k, r_k))$ is an analytic continuation of $(f_1, D(P_1, r_1))$.

(Problem 165) Find a function element (f, D(P, r)) and two distinct function elements (g, D(Q, s)) and $(\tilde{g}, D(Q, s))$, with the same disc D(Q, s), such that (g, D(Q, s)) and $(\tilde{g}, D(Q, s))$ are both analytic continuations of (f, D(P, r)).

(Problem 166) Can you do this for a direct analytic continuation?

10.2. Analytic continuation along a curve

[Definition: Analytic continuation along a curve] Let $\gamma : [0,1] \mapsto \mathbb{C}$ be a continuous function (we will call γ a curve). Let $(f, D(\gamma(0), r))$ be a function element. An analytic continuation of $(f, D(\gamma(0), r))$ along γ is a collection of function elements $\{(f_t, D(\gamma(t), r_t))\}_{0 \le t \le 1}$ such that $(f_0, D(\gamma(0), r_0)) = (f, D(\gamma(0), r))$ and such that if $0 \le t \le 1$, then there is an $\varepsilon > 0$ such that, if $0 \le s \le 1$ and $|t - s| < \varepsilon$, then $(f_s, D(\gamma(s), r_s))$ is a direct analytic continuation of $(f_t, D(\gamma(t), r_t))$.

(Problem 167) Let $\gamma : [0,1] \mapsto \mathbb{C}$ be a curve and let $(f, D(\gamma(0), r))$ be a function element. Suppose that $\{(f_t, D(\gamma(t), r_t))\}_{0 \le t \le 1}$ and $\{(\tilde{f}_t, D(\gamma(t), \tilde{r}_t))\}_{0 \le t \le 1}$ are two analytic continuations of $(f, D(\gamma(0), r))$ along γ . Let $S = \{s : 0 \le s \le 1, f_s = \tilde{f}_s \text{ on } D(\gamma(s), \min(r_s, \tilde{r}_s))\}$. Let $T = \{t : 0 \le t \le 1, s \in S \text{ for all } 0 \le s \le t\}$. Show that T is not empty.

(Problem 168) Show that T is closed.

(Problem 169) Show that T is open in [0, 1].

(Problem 170) Is there a sense in which an analytic continuation along a curve is unique?

(Problem 171) Suppose that $\gamma : [0,1] \mapsto \mathbb{C}$ is a *closed* curve (so $\gamma(1) = \gamma(0)$). Let $\{(f_t, D(\gamma(t), r_t))\}_{0 \le t \le 1}$ be an analytic continuation of $(f, D(\gamma(0), r))$ along γ . Is it necessarily true that $f_1 = f_0$ on $D(\gamma(0), \min(r_0, r_1))$?