
Math 2584, Spring 2024

Exam 2 will occur on Friday, March 8, 2024, at 2:00 p.m., in
PHYS 133.

You are allowed a non-graphing calculator and a double-sided 3
inch by 5 inch card of notes.

(AB 1) For each of the following initial-value problems, tell me
whether we expect to have an infinite family of solutions, no solu-
tions, or a unique solution. Do not find the solution to the differential
equation.

(a) dy
dt

+ arctan(t) y = et , y(3) = 7.

(b) 1
1+t2

dy
dt
− t5y = cos(6t), y(2) = −1, y ′(2) = 3.

(c) d2y
dt2
− 5 sin(t) y = t, y(1) = 2, y ′(1) = 5, y ′′(1) = 0.

(d) et d
2y

dt2
+ 3(t− 4)dy

dt
+ 4t6y = 2, y(3) = 1, y ′(3) = −1.

(e) d2y
dt2

+ cos(t) dy
dt

+ 3 ln(1 + t2) y = 0, y(2) = 3.

(f ) d3y
dt3
− t7 d2y

dt2
+ dy

dt
+ 5 sin(t) y = t3, y(1) = 2, y ′(1) = 5,

y ′′(1) = 0, y ′′′(1) = 3.

(g) (1 + t2) d3y
dt3
− 3 d2y

dt2
+ 5 dy

dt
+ 2y = t3, y(3) = 9, y ′(3) = 7,

y ′′(3) = 5.

(h) d3y
dt3
− et d

2y
dt2

+ e2t dy
dt

+ e3ty = e4t , y(−1) = 1, y ′(−1) = 3.

(i) (2 + sin t)d3y
dt3

+ cos t d
2y

dt2
+ dy

dt
+ 5 sin(t) y = t3, y(7) = 2.



(AB 2) For each of the following initial-value problems, tell me
whether we expect to have an infinite family of solutions, no solu-
tions, or a unique solution. Do not find the solution to the differential
equation.

(a) et dy
dt

+ y = cos t, y(0) = 3, y ′(0) = −2.

(b) (t2 +4)d2y
dt2

+3t dy
dt

+6y = 7t3, y(2) = 4, y ′(2) = 4, y ′′(2) =
1.

(c) d3y
dt3

+ 3 d2y
dt2

+ 3 dy
dt

+y = 0, y(4) = 3, y ′(4) = −2, y ′′(4) = 0,
y ′′′(4) = 3.

(AB 3) Find the general solution to the following differential equa-
tions.

(a) d2x
dt2

+ 12 dx
dt

+ 85x = 0.

(b) d2y
dt2

+ 4 dy
dt

+ 2y = 0.

(c) d4z
dt4

+ 7 d2z
dt2
− 144z = 0.

(d) d4w
dt4
− 8 d2w

dt2
+ 16w = 0.

(AB 4) Solve the following initial-value problems. Express your
answers in terms of real functions.

(a) 9 d2v
dt2

+ 6 dv
dt

+ 2v = 0, v(0) = 3, v ′(0) = 2.

(b) d2u
dt2

+ 10 du
dt

+ 25u = 0, u(0) = 1, u′(0) = 4.

(c) 8 d2f
dt2
− 6 df

dt
+ f = 0, f (0) = 3, f ′(0) = 1.



(AB 5) A spring is suspended vertically. When an object with mass
5 kg is attached, it stretches the spring to a new equilibrium 4 cm
lower. The system moves in a medium which damps it with damping
constant 16 newton · seconds/meter. The object is pulled down an
additional 2 cm and is released with initial velocity 3 meters/second
upwards.

Write the differential equation and initial conditions that de-
scribe the position of the object. You may use 9.8 meters/second2

for the acceleration of gravity.

(AB 6) A 2-kg object is attached to a spring with constant 80 N/m
and to a viscous damper with damping constant ˛. The object is
pulled down to 10cm below its equilibrium position and released with
no initial velocity.

Write the differential equation and initial conditions that de-
scribe the position of the object.

If ˛ = 20 N · s/m, is the system overdamped, underdamped, or
critically damped? Do you expect to see decaying oscillations in the
solutions?

If ˛ = 30 N · s/m, is the system overdamped, underdamped, or
critically damped? Do you expect to see decaying oscillations in the
solutions?

(AB 7) A 3-kg object is attached to a spring with constant k and to
a viscous damper with damping constant 42 N·sec/m. The object
is set in motion from its equilibrium position with initial velocity 5
m/s downwards.

Write the differential equation and initial conditions that de-
scribe the position of the object.

Find the values of k for which the system is underdamped,
overdamped, and critically damped. Be sure to include units for k.



(AB 8) A 4-kg object is attached to a spring with constant 70 N/m
and to a viscous damper with damping constant ˛. The object is
pushed up to 5cm above its equilibrium position and released with
initial velocity 3 m/s downwards.

Write the differential equation and initial conditions that de-
scribe the position of the object. Then find the values of ˛ for which
the system is underdamped, overdamped, and critically damped. Be
sure to include units for ˛.

(AB 9) An object of mass m is attached to a spring with constant
80 N/m and to a viscous damper with damping constant 20 N·s/m.
The object is pulled down to 5cm below its equilibrium position and
released with initial velocity 3 m/s downwards.

Write the differential equation and initial conditions that de-
scribe the position of the object. Then find the value of m for which
the system is underdamped, overdamped, or critically damped. Be
sure to include units for m.



(AB 10) Five objects, each with mass 3 kg, are attached to five
springs, each with constant 48 N/m. Five dampers with unknown
constants are attached to the objects. In each case, the object is
pulled down to a distance 1 cm below the equilibrium position and
released from rest. You are given that the system is critically damped
in exactly one of the five cases.

Here are the graphs of the objects’ positions with respect to
time:
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(a) For which damper is the system critically damped?
(b) For which dampers is the system overdamped?
(c) For which dampers is the system underdamped?
(d) Which damper has the highest damping constant? Which

damper has the lowest damping constant?



(AB 11) An object with mass 5 kg stretches a spring 4 cm. It is
attached to a viscous damper with damping constant 16 newton ·
seconds/meter. The object is pulled down an additional 2 cm and is
released with initial velocity 3 meters/second upwards.

Using only first derivatives, write the differential equations and
initial conditions for the object’s position. That is, write a first-order
system involving the object’s position. You may use 9.8 meters/
second2 for the acceleration of gravity.

(AB 12) Imperial stormtroopers and Rebel Alliance fighters bat-
tle each other on an open plain, where both groups can easily see
and aim at all members of the other group. Every minute, each
stormtrooper has a 2% chance of killing a rebel, and each rebel
has a 5% chance of killing a stormtrooper. There are initially 4000
stormtroopers and 1000 rebels.

Write the initial value problem for the number of stormtroopers
and rebels still alive.

(AB 13) Jedi knights and Sith lords battle in a dense forest. Every
minute, each Jedi has a 1% chance of finding each Sith lord. If a
Jedi finds a Sith lord, they fight; the Jedi has a 60% chance of dying
and the Sith lord has a 40% chance of dying. Initially there are 90
Jedi and 50 Sith lords.

Write the initial value problem for the number of Jedi and Sith
lords still alive.



(AB 14) Consider the following system of tanks. Tank A initially
contains 200 L of water in which 3 kg of salt have been dissolved,
and Tank B initially contains 300 L of water in which 2 kg of salt
have been dissolved. Salt water flows into each tank at the rates
shown, and the well-stirred solution flows between the two tanks and
is drained away through the pipes shown at the indicated rates.

A B

2 L/min
5 g/L

4 L/min
6 L/min
pure water

5 L/min
mixture

3 L/min

4 L/min
mixture

Write the differential equations and initial conditions that describe
the amount of salt in each tank.

(AB 15) An isolated town has a population of 9000 people. Three of
them are simultaneously infected with a contagious disease to which
no member of the town has previously been exposed, but from which
one eventually recovers and which cannot be caught twice. Each in-
fected person encounters an average of 8 other townspeople per day.
Encounters are distributed among susceptible, infected, and recov-
ered people according to their proportion of the total population. If
an infected person encounters a susceptible person, the susceptible
person has a 5% chance of contracting the disease. Each infected
person has a 17% chance of recovering from the disease on any given
day.

Set up the initial value problem that describes the number of
susceptible, infected, and recovered people.



(AB 16) Suppose that a disease is spreading through a town of
5000 people, and that its transmission in the absence of vaccination
is given by the Kermack-McKendrick SIR model dS

dt
= − 0:2

5000SI,
dI
dt

= 0:2
5000SI − 0:1I, dR

dt
= 0:1I where t denotes time (in days), S

denotes the number of susceptible people, I denotes the number of
infected people, and R denotes the number of recovered, disease-
resistant people.

Suppose we modify the model by assuming that 15 susceptible
people are vaccinated each day (and thus become resistant without
being infected first).

Set up the system of differential equations that describes the
number of susceptible, infected, and recovered people. You may
use the same variable names as before. (You may let R denote all
disease-resistant people, both vaccinated and recovered.)

(AB 17) Suppose that a disease is spreading through a town of
5000 people, and that its transmission in the absence of vaccination
is given by the Kermack-McKendrick SIR model dS

dt
= − 0:2

5000SI,
dI
dt

= 0:2
5000SI − 0:1I, dR

dt
= 0:1I where t denotes time (in days), S

denotes the number of susceptible people, I denotes the number of
infected people, and R denotes the number of recovered, disease-
resistant people.

Suppose we modify the model by assuming that 15 people are
vaccinated each day (and thus become resistant without being in-
fected first). No testing is available, and so vaccines are distributed
among susceptible, resistant, and infected people according to their
proportion of the total population. A vaccine administered to an
infected or resistant person has no effect.

Set up the system of differential equations that describes the
number of susceptible, infected, and resistant people. You may
use the same variable names as before. (You may let R denote
all disease-resistant people, both vaccinated and recovered.)



(AB 18) An isolated town has a population of 9000 people. Three of
them are simultaneously infected with a contagious disease to which
no member of the town has previously been exposed, but from which
one eventually recovers.

Each infected person encounters an average of 20 other towns-
people per day. Encounters are distributed among susceptible, in-
fected, and recovered people according to their proportion of the to-
tal population. If an infected person encounters a susceptible person,
the susceptible person has a 5% chance of contracting the disease.
If an infected person encounters a recovered person, the recovered
person has a 1% chance of contracting the disease again. Each in-
fected person has a 12% chance of recovering from the disease on
any given day.

Set up the initial value problem that describes the number of
susceptible, infected, and recovered people.

(AB 19) Here is a grid. Draw a small phase plane (vector field)
with nine arrows for the autonomous system dx

dt
= y , dy

dt
= x .
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(AB 20) Here is the phase plane for the system

dx

dt
= 2y − x; dy

dt
= −2x − y

Sketch the solution to the initial value problem

dx

dt
= 2y − x; dy

dt
= −2x − y; x(0) = 2; y(0) = 1:
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(AB 21) Find the solution to the initial-value problem

dx

dt
= 6x + 8y;

dy

dt
= −2x − 2y; x(0) = −5; y(0) = 3:

Express your final answer in terms of real functions (no complex
numbers or complex exponentials).

Note: On the exam I may ask you to find the general solution
instead. However, for a problem like this there are always many ways
to write the general solution, not all of which are obviously equiva-
lent; solutions to initial value problems take much more predictable
forms and therefore make the answer key much easier to read.

(AB 22) Find the solution to the initial-value problem

dx

dt
= 7x − 9

2
y;

dy

dt
= −18x − 17y; x(0) = 0; y(0) = 1:

Express your final answer in terms of real functions (no complex
numbers or complex exponentials).

(AB 23) Find the solution to the initial-value problem

dx

dt
= −6x + 4y;

dy

dt
= −1

4
x − 4y; x(0) = 1; y(0) = 4:

Express your final answer in terms of real functions (no complex
numbers or complex exponentials).



(AB 24) Find the solution to the initial-value problem

dx

dt
= −2x + 2y;

dy

dt
= 2x − 5y; x(0) = 1; y(0) = 0:

Express your final answer in terms of real functions (no complex
numbers or complex exponentials).

(AB 25) You are given that the general solution to the system„
dx=dt
dy=dt

«
=

„
11 −4
9 −1

«„
x
y

«
may be written as„

x
y

«
= C1e

5t

„
2
3

«
+ C2e

5t

„
2t + 1
3t + 1

«
:

Find the solution to the initial value problem„
dx=dt
dy=dt

«
=

„
11 −4
9 −1

«„
x
y

«
;

„
x(0)
y(0)

«
=

„
1
5

«
:



Answer key

(AB 1) For each of the following initial-value problems, tell me
whether we expect to have an infinite family of solutions, no solu-
tions, or a unique solution. Do not find the solution to the differential
equation.

(a) dy
dt

+ arctan(t) y = et , y(3) = 7.
We expect a unique solution.

(b) 1
1+t2

dy
dt
− t5y = cos(6t), y(2) = −1, y ′(2) = 3.

We do not expect any solutions.

(c) d2y
dt2
− 5 sin(t) y = t, y(1) = 2, y ′(1) = 5, y ′′(1) = 0.

We do not expect any solutions.

(d) et d
2y

dt2
+ 3(t − 4) dy

dt
+ 4t6y = 2, y(3) = 1, y ′(3) = −1.

We expect a unique solution.

(e) d2y
dt2

+ cos(t) dy
dt

+ 3 ln(1 + t2) y = 0, y(2) = 3.
We expect an infinite family of solutions.

(f ) d3y
dt3
− t7 d2y

dt2
+ dy

dt
+ 5 sin(t) y = t3, y(1) = 2, y ′(1) = 5,

y ′′(1) = 0, y ′′′(1) = 3.
We do not expect any solutions.

(g) (1 + t2) d3y
dt3
− 3 d2y

dt2
+ 5 dy

dt
+ 2y = t3, y(3) = 9, y ′(3) = 7,

y ′′(3) = 5.
We expect a unique solution.

(h) d3y
dt3
− et d

2y
dt2

+ e2t dy
dt

+ e3ty = e4t , y(−1) = 1, y ′(−1) = 3.
We expect an infinite family of solutions.

(i) (2 + sin t) d3y
dt3

+ cos t d
2y

dt2
+ dy

dt
+ 5 sin(t) y = t3, y(7) = 2.

We expect an infinite family of solutions.



(AB 2) For each of the following initial-value problems, tell me
whether we expect to have an infinite family of solutions, no solu-
tions, or a unique solution. Do not find the solution to the differential
equation.

(a) et dy
dt

+ y = cos t, y(0) = 3, y ′(0) = −2.
We expect a unique solution.

(b) (t2 +4)d2y
dt2

+3t dy
dt

+6y = 7t3, y(2) = 4, y ′(2) = 4, y ′′(2) =
1.
We expect a unique solution.

(c) d3y
dt3

+ 3 d2y
dt2

+ 3 dy
dt

+y = 0, y(4) = 3, y ′(4) = −2, y ′′(4) = 0,
y ′′′(4) = 3.
We expect a unique solution.

(AB 3) Find the general solution to the following differential equa-
tions.

(a) d2x
dt2

+ 12 dx
dt

+ 85x = 0.

If d2x
dt2

+12 dx
dt

+85x = 0, then x = C1e
−6t cos(7t)+C2e

−6t sin(7t).

(b) d2y
dt2

+ 4 dy
dt

+ 2y = 0.

If d2y
dt2

+4dy
dt

+2y = 0, then y = C1e
(−2+

√
2)t +C2e

(−2−
√
2)t .

(c) d4z
dt4

+ 7 d2z
dt2
− 144z = 0.

If d4z
dt4

+ 7 d2z
dt2
− 144z = 0, then z = C1e

3t + C2e
−3t +

C3 cos 4t + C4 sin 4t.
(d) d4w

dt4
− 8 d2w

dt2
+ 16w = 0.

If d4w
dt4
− 8 d2w

dt2
+ 16w = 0, then w = C1e

2t + C2te
2t +

C3e
−2t + C4te

−2t .



(AB 4) Solve the following initial-value problems. Express your
answers in terms of real functions.

(a) 9 d2v
dt2

+ 6 dv
dt

+ 2v = 0, v(0) = 3, v ′(0) = 2.

If 9d2v
dt2

+ 6dv
dt

+ 2v = 0, v(0) = 3, v ′(0) = 2, then v =

3e−t=3 cos(t=3) + 9e−t=3 sin(t=3).

(b) d2u
dt2

+ 10 du
dt

+ 25u = 0, u(0) = 1, u′(0) = 4.

If d2u
dt2

+ 10 du
dt

+ 25u = 0, u(0) = 1, u′(0) = 4, then u =
e−5t + 9te−5t .

(c) 8 d2f
dt2
− 6 df

dt
+ f = 0, f (0) = 3, f ′(0) = 1.

If 8 d2f
dt2
− 6 df

dt
+ f = 0, then f = et=2 + 2et=4.

(AB 5) A spring is suspended vertically. When an object with mass
5 kg is attached, it stretches the spring to a new equilibrium 4 cm
lower. The system moves in a medium which damps it with damping
constant 16 newton · seconds/meter. The object is pulled down an
additional 2 cm and is released with initial velocity 3 meters/second
upwards.

Write the differential equation and initial conditions that de-
scribe the position of the object. You may use 9.8 meters/second2

for the acceleration of gravity.

(Answer 5) Let t denote time (in seconds) and let x denote the
object’s displacement above equilibrium (in meters). Then

5
d2x

dt2
+ 16

dx

dt
+ 1225x = 0; x(0) = −0:04; x ′(0) = 3:



(AB 6) A 2-kg object is attached to a spring with constant 80 N/m
and to a viscous damper with damping constant ˛. The object is
pulled down to 10cm below its equilibrium position and released with
no initial velocity.

Write the differential equation and initial conditions that de-
scribe the position of the object.

If ˛ = 20 N · s/m, is the system overdamped, underdamped, or
critically damped? Do you expect to see decaying oscillations in the
solutions?

If ˛ = 30 N · s/m, is the system overdamped, underdamped, or
critically damped? Do you expect to see decaying oscillations in the
solutions?

(Answer 6) Let t denote time (in seconds) and let x denote the
object’s displacement above equilibrium (in meters). Then

2
d2x

dt2
+ ˛

dx

dt
+ 80x = 0; x(0) = −0:1; x ′(0) = 0:

If ˛ = 20 N · s/m, then the system is underdamped, and we do
expect to see decaying oscillations.

If ˛ = 30 N · s/m, then the system overdamped, and we do not
expect to see decaying oscillations.

(AB 7) A 3-kg object is attached to a spring with constant k and to
a viscous damper with damping constant 42 N·sec/m. The object
is set in motion from its equilibrium position with initial velocity 5
m/s downwards.

Write the differential equation and initial conditions that de-
scribe the position of the object.

Find the values of k for which the system is underdamped,
overdamped, and critically damped. Be sure to include units for k.



(Answer 7) Let t denote time (in seconds) and let x denote the
object’s displacement above equilibrium (in meters). Then

3
d2x

dt2
+ 42

dx

dt
+ kx = 0; x(0) = 0; x ′(0) = −5:

The system is critically damped if k = 147 newtons/meter. It is
underdamped if k > 147 newtons/meter and overdamped if 0 <
k < 147 newtons/meter.

(AB 8) A 4-kg object is attached to a spring with constant 70 N/m
and to a viscous damper with damping constant ˛. The object is
pushed up to 5cm above its equilibrium position and released with
initial velocity 3 m/s downwards.

Write the differential equation and initial conditions that de-
scribe the position of the object. Then find the values of ˛ for which
the system is underdamped, overdamped, and critically damped. Be
sure to include units for ˛.

(Answer 8) Let t denote time (in seconds) and let x denote the
object’s displacement above equilibrium (in meters). Then

4
d2x

dt2
+ ˛

dx

dt
+ 70x = 0; x(0) = 0:05; x ′(0) = −3:

Critical damping occurs when ˛ = 4
√

70 N · s/m. The system
is underdamped if 0 < ˛ < 4

√
70 N · s/m and is overdamped if

˛ > 4
√

70 N · s/m.



(AB 9) An object of mass m is attached to a spring with constant
80 N/m and to a viscous damper with damping constant 20 N·s/m.
The object is pulled down to 5cm below its equilibrium position and
released with initial velocity 3 m/s downwards.

Write the differential equation and initial conditions that de-
scribe the position of the object. Then find the value of m for which
the system is underdamped, overdamped, or critically damped. Be
sure to include units for m.

(Answer 9) Let t denote time (in seconds) and let x denote the
object’s displacement above equilibrium (in meters). Then

m
d2x

dt2
+ 20

dx

dt
+ 80x = 0; x(0) = −0:05; x ′(0) = −3:

Critical damping occurs when m = 5
4 kg. The system is under-

damped if m > 5
4 kg and overdamped if 0 < m < 5

4 kg.



(AB 10) Five objects, each with mass 3 kg, are attached to five
springs, each with constant 48 N/m. Five dampers with unknown
constants are attached to the objects. In each case, the object is
pulled down to a distance 1 cm below the equilibrium position and
released from rest. You are given that the system is critically damped
in exactly one of the five cases.

Here are the graphs of the objects’ positions with respect to
time:
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(a) For which damper is the system critically damped?

The system is critically damped for Damper H.

(b) For which dampers is the system overdamped?

The system overdamped for Dampers J and F.

(c) For which dampers is the system underdamped?

The system underdamped for Dampers G and I.

(d) Which damper has the highest damping constant? Which
damper has the lowest damping constant?



Damper F has the highest damping constant. Damper I has
the lowest damping constant.

(AB 11) An object with mass 5 kg stretches a spring 4 cm. It is
attached to a viscous damper with damping constant 16 newton ·
seconds/meter. The object is pulled down an additional 2 cm and is
released with initial velocity 3 meters/second upwards.

Using only first derivatives, write the differential equations and
initial conditions for the object’s position. That is, write a first-order
system involving the object’s position. You may use 9.8 meters/
second2 for the acceleration of gravity.

(Answer 11) Let t denote time (in seconds), let x denote the ob-
ject’s displacement above equilibrium (in meters), and let v denote
the object’s velocity (in meters per second). Then

5
dv

dt
+16v+1225x = 0;

dx

dt
= v; x(0) = −0:04; v(0) = 3:

(AB 12) Imperial stormtroopers and Rebel Alliance fighters bat-
tle each other on an open plain, where both groups can easily see
and aim at all members of the other group. Every minute, each
stormtrooper has a 2% chance of killing a rebel, and each rebel
has a 5% chance of killing a stormtrooper. There are initially 4000
stormtroopers and 1000 rebels.

Write the initial value problem for the number of stormtroopers
and rebels still alive.



(Answer 12) Let t denote time (in minutes), let S denote the num-
ber of stormtroopers, and let R denote the number of rebels.

Then

dR

dt
= −0:02S;

dS

dt
= −0:05R; R(0) = 1000; S(0) = 4000:

(AB 13) Jedi knights and Sith lords battle in a dense forest. Every
minute, each Jedi has a 1% chance of finding each Sith lord. If a
Jedi finds a Sith lord, they fight; the Jedi has a 60% chance of dying
and the Sith lord has a 40% chance of dying. Initially there are 90
Jedi and 50 Sith lords.

Write the initial value problem for the number of Jedi and Sith
lords still alive.

(Answer 13) Let t denote time (in minutes), let S denote the num-
ber of Sith lords, and let J denote the number of Jedi.

Then

dR

dt
= −0:006JS;

dS

dt
= −0:004JS; J(0) = 90; S(0) = 50:



(AB 14) Consider the following system of tanks. Tank A initially
contains 200 L of water in which 3 kg of salt have been dissolved,
and Tank B initially contains 300 L of water in which 2 kg of salt
have been dissolved. Salt water flows into each tank at the rates
shown, and the well-stirred solution flows between the two tanks and
is drained away through the pipes shown at the indicated rates.

A B

2 L/min
5 g/L

4 L/min
6 L/min
pure water

5 L/min
mixture

3 L/min

4 L/min
mixture

Write the differential equations and initial conditions that describe
the amount of salt in each tank.

(Answer 14) Let t denote time (in minutes).
Let x denote the amount of salt (in grams) in tank A.
Let y denote the amount of salt (in grams) in tank B.
Then x(0) = 3000 and y(0) = 2000.
If t < 50, then

dx

dt
= 10− 9x

200− 4t
+

3y

300 + 3t
;

dy

dt
=

4x

200− 4t
− 7y

300 + 3t
:



(AB 15) An isolated town has a population of 9000 people. Three of
them are simultaneously infected with a contagious disease to which
no member of the town has previously been exposed, but from which
one eventually recovers and which cannot be caught twice. Each in-
fected person encounters an average of 8 other townspeople per day.
Encounters are distributed among susceptible, infected, and recov-
ered people according to their proportion of the total population. If
an infected person encounters a susceptible person, the susceptible
person has a 5% chance of contracting the disease. Each infected
person has a 17% chance of recovering from the disease on any given
day.

Set up the initial value problem that describes the number of
susceptible, infected, and recovered people.

(Answer 15) Let t denote time (in days), let S denote the num-
ber of susceptible people (who have never had the disease), let
I denote the number of infected people (who currently have the
disease), and let R denote the number of recovered people (who
now are resistant, that is, cannot get the disease again). Then
dS
dt

= − 1
22500SI, dI

dt
= 1

22500SI − 0:17I, dR
dt

= 0:17I, S(0) = 8997, I(0) = 3, R(0) = 0.



(AB 16) Suppose that a disease is spreading through a town of
5000 people, and that its transmission in the absence of vaccination
is given by the Kermack-McKendrick SIR model dS

dt
= − 0:2

5000SI,
dI
dt

= 0:2
5000SI − 0:1I, dR

dt
= 0:1I where t denotes time (in days), S

denotes the number of susceptible people, I denotes the number of
infected people, and R denotes the number of recovered, disease-
resistant people.

Suppose we modify the model by assuming that 15 susceptible
people are vaccinated each day (and thus become resistant without
being infected first).

Set up the system of differential equations that describes the
number of susceptible, infected, and recovered people. You may
use the same variable names as before. (You may let R denote all
disease-resistant people, both vaccinated and recovered.)

(Answer 16) dS
dt

= − 0:2
5000SI − 15, dI

dt
= 0:2

5000SI − 0:1I, dR
dt

=
0:1I + 15.



(AB 17) Suppose that a disease is spreading through a town of
5000 people, and that its transmission in the absence of vaccination
is given by the Kermack-McKendrick SIR model dS

dt
= − 0:2

5000SI,
dI
dt

= 0:2
5000SI − 0:1I, dR

dt
= 0:1I where t denotes time (in days), S

denotes the number of susceptible people, I denotes the number of
infected people, and R denotes the number of recovered, disease-
resistant people.

Suppose we modify the model by assuming that 15 people are
vaccinated each day (and thus become resistant without being in-
fected first). No testing is available, and so vaccines are distributed
among susceptible, resistant, and infected people according to their
proportion of the total population. A vaccine administered to an
infected or resistant person has no effect.

Set up the system of differential equations that describes the
number of susceptible, infected, and resistant people. You may
use the same variable names as before. (You may let R denote
all disease-resistant people, both vaccinated and recovered.)

(Answer 17) dS
dt

= − 0:2
5000SI − 15 S

5000 , dI
dt

= 0:2
5000SI − 0:1I, dR

dt
= 0:1I + 15 S

5000 .



(AB 18) An isolated town has a population of 9000 people. Three of
them are simultaneously infected with a contagious disease to which
no member of the town has previously been exposed, but from which
one eventually recovers.

Each infected person encounters an average of 20 other towns-
people per day. Encounters are distributed among susceptible, in-
fected, and recovered people according to their proportion of the to-
tal population. If an infected person encounters a susceptible person,
the susceptible person has a 5% chance of contracting the disease.
If an infected person encounters a recovered person, the recovered
person has a 1% chance of contracting the disease again. Each in-
fected person has a 12% chance of recovering from the disease on
any given day.

Set up the initial value problem that describes the number of
susceptible, infected, and recovered people.

(Answer 18) Let t denote time (in days), let S denote the number
of susceptible people (who have never had the disease), let I denote
the number of infected people (who currently have the disease), and
let R denote the number of recovered people (who now are resistant,
that is, are less likely to get the disease again). Then dS

dt
= − 1

9000SI,
dI
dt

= 1
9000SI+ 1

45000RI−0:12I, dR
dt

= 0:12I− 1
45000RI, S(0) = 8997,

I(0) = 3, R(0) = 0.



(AB 19) Here is a grid. Draw a small phase plane (vector field)
with nine arrows for the autonomous system dx

dt
= y , dy

dt
= x .

−1 0 1

−1

0

1

x

y

•

•

•

•

•

•

•

•

•

(Answer 19) Here is the direction field for the differential equation
system dx

dt
= y , dy

dt
= x .

−1 0 1

−1

0

1

x

y



(AB 20) Here is the phase plane for the system

dx

dt
= 2y − x; dy

dt
= −2x − y

Sketch the solution to the initial value problem

dx

dt
= 2y − x; dy

dt
= −2x − y; x(0) = 2; y(0) = 1:

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3



(Answer 20)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

•

(AB 21) Find the solution to the initial-value problem

dx

dt
= 6x + 8y;

dy

dt
= −2x − 2y; x(0) = −5; y(0) = 3:

Express your final answer in terms of real functions (no complex
numbers or complex exponentials).



(Answer 21) If

dx

dt
= 6x + 8y;

dy

dt
= −2x − 2y; x(0) = −5; y(0) = 3

then „
x(t)
y(t)

«
= e2t

„
4t − 5
−2t + 3

«
:

(AB 22) Find the solution to the initial-value problem

dx

dt
= 7x − 9

2
y;

dy

dt
= −18x − 17y; x(0) = 0; y(0) = 1:

Express your final answer in terms of real functions (no complex
numbers or complex exponentials).

(Answer 22) If

dx

dt
= 7x − 9

2
y;

dy

dt
= −18x − 17y; x(0) = 0; y(0) = 1

then „
x(t)
y(t)

«
= e−20t

„
3=20
9=10

«
+ e10t

„
−3=20
1=10

«
:



(AB 23) Find the solution to the initial-value problem

dx

dt
= −6x + 4y;

dy

dt
= −1

4
x − 4y; x(0) = 1; y(0) = 4:

Express your final answer in terms of real functions (no complex
numbers or complex exponentials).

(Answer 23) If

dx

dt
= −6x + 4y;

dy

dt
= −1

4
x − 4y; x(0) = 1; y(0) = 4

then „
x(t)
y(t)

«
= e−5t

„
15t + 1

(15=4)t + 4

«
:

(AB 24) Find the solution to the initial-value problem

dx

dt
= −2x + 2y;

dy

dt
= 2x − 5y; x(0) = 1; y(0) = 0:

Express your final answer in terms of real functions (no complex
numbers or complex exponentials).



(Answer 24) If

dx

dt
= −2x + 2y;

dy

dt
= 2x − 5y; x(0) = 1; y(0) = 0

then „
x(t)
y(t)

«
= e−t

„
4=5
2=5

«
+ e−6t

„
1=5
−2=5

«
:

(AB 25) You are given that the general solution to the system„
dx=dt
dy=dt

«
=

„
11 −4
9 −1

«„
x
y

«
may be written as„

x
y

«
= C1e

5t

„
2
3

«
+ C2e

5t

„
2t + 1
3t + 1

«
:

Find the solution to the initial value problem„
dx=dt
dy=dt

«
=

„
11 −4
9 −1

«„
x
y

«
;

„
x(0)
y(0)

«
=

„
1
5

«
:

(Answer 25) If„
dx=dt
dy=dt

«
=

„
11 −4
9 −1

«„
x
y

«
;

„
x(0)
y(0)

«
=

„
1
5

«
;

then „
x
y

«
= 4e5t

„
2
3

«
− 7e5t

„
2t + 1
3t + 1

«
= e5t

„
1− 14t
5− 21t

«
:
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