0A. Complete Ordered Fields

[Definition: Field] A field is a set **F** along with operations + and \cdot with the following properties:

- If $a, b \in \mathbf{F}$, then $a + b \in \mathbf{F}$.
- If $a, b \in \mathbf{F}$, then $a \cdot b \in \mathbf{F}$. (We often write $ab = a \cdot b$.)
- Commutivity of addition: if $a, b \in \mathbf{F}$, then a + b = b + a.
- Associativity of addition: if $a, b, c \in \mathbf{F}$, then (a + b) + c = a + (b + c).
- Additive identity: There is an element of **F**, denoted 0 or $0_{\mathbf{F}}$, such that if $a \in \mathbf{F}$ then a + 0 = 0 + a = a.
- Additive inverses: For each $a \in \mathbf{F}$, there is a $b \in \mathbf{F}$ such that a + b = b + a = 0.
- Commutivity of multiplication: if $a, b \in \mathbf{F}$, then ab = ba.
- Associativity of multiplication: if $a, b, c \in \mathbf{F}$, then (ab)c = a(bc).
- Multiplicative identity: There is an element of **F**, denoted 1 or 1_{F} , such that if $a \in F$ then a1 = 1a = a.
- Multiplicative inverses: For each $a \in \mathbf{F} \setminus \{0\}$, there is a $b \in \mathbf{F}$ such that ab = ba = 1.
- Distributivity: if $a, b, c \in \mathbf{F}$, then a(b + c) = ab + ac.
- Nontriviality: $1 \neq 0$.

(Problem 10) Show that if $a, b, c \in \mathbf{F}$ satisfy a + b = a + c = 0 then b = c.

(Problem 20) Show that if $a, b, c \in \mathbf{F}$ satisfy ab = ac = 1 then b = c.

(**Problem 30**) Suppose that **F** is a field. Show that if $a \in \mathbf{F}$ then 0a = 0.

[Definition: Inverses] If **F** is a field and $a \in \mathbf{F}$, then:

- (-*a*) denotes the additive inverse of *a*.
- If $a \neq 0$, then a^{-1} or $\frac{1}{a}$ denote the multiplicative inverse of a.
- a-b denotes $a + (-\tilde{b})$.
- $\frac{a}{b}$ denotes ab^{-1} .

(Problem 40) Show that (-(-a)) = a.

(Problem 50) Suppose that **F** is a field and that $a \in \mathbf{F}$. Show that a(-1) = (-a)1 = (-a).

(Problem 60) Suppose that **F** is a field and that $a \in \mathbf{F}$. Show that aa = (-a)(-a).

[Definition: Ordered field] An ordered field is a field **F** together with a subset $P \subset F$, called the positive subset, such that:

- If $a, b \in P$, then $a + b \in P$ and $ab \in P$.
- 0∉*P*.
- If $a \in \mathbf{F}$ with $a \neq 0$, then $a \in P$ if and only if $(-a) \notin P$.

(Problem 70) Let **F** be an ordered field with positive subset *P*. Show that $1 \in P$.

(Problem 80) Let $a \in \mathbf{F}$ with $a \neq 0$. Show that $a \in P$ if and only if $a^{-1} \in P$.

[Definition: Comparison] Let **F** be an ordered field with positive subset *P*. Let $a, b \in \mathbf{F}$.

- We say that a < b (or b > a) if $b a \in P$.
- We say that $a \le b$ (or $b \ge a$) if $b a \in (P \cup \{0\})$.

(Problem 90) Show that the relation < is transitive. Show that the relation \leq is reflexive. Is either relation symmetric?

(**Problem 100**) Let $a, b, c \in \mathbf{F}$. Suppose that $a \le b$. Show that $a + c \le b + c$.

(Problem 110) Let **F** be an ordered field. Let $a, b \in \mathbf{F}$. Show that exactly one of the following is true:

- a < b
- a = b
- *a* > *b*

[Definition: Inductive set] Let **F** be an ordered field. A subset $I \subseteq \mathbf{F}$ is inductive if:

• 1 ∈ *I*.

• If $x \in I$ then $x + 1 \in I$.

(Problem 120) Let F be an ordered field. Give three examples of inductive subsets of F.

(Problem 130) Let **F** be an ordered field. Suppose that \mathcal{I} is a collection of inductive subsets of *F* (that is, if $J \in \mathcal{I}$ then $J \subseteq \mathbf{F}$ and *J* is inductive). Show that $\bigcap_{I \in \mathcal{I}} J$ is inductive.

(Problem 140) Let **F** be an ordered field. Let *N* be the intersection of all inductive subsets of **F**. (Thus *N* is an inductive set.) Let $m \in N$. Show that $1 \le m$.

(Problem 150) Let $m, k \in N$. Show that $m + k \in N$.

(Problem 170) Let $k \in N$. Show that there does not exist a $m \in N$ with k < m < k + 1.

(Problem 160) Let $m, k \in N$ with k > m. Show that $k - m \in N$.

(Problem 180) Let **F** and **P** be two ordered fields. Let N, \tilde{N} be the intersection of all inductive subsets of **F** and **P**, respectively. If $m \in N$, let $J_m = \{n \in N : n \le m\}$. Suppose that there are two numbers $n, k \in N$ (not necessarily distinct) and two functions φ_k, φ_n that satisfy

- $\varphi_k : J_k \to \widetilde{N}$
- $\varphi_n: J_n \to \widetilde{N}$
- $\varphi_k(1) = \tilde{1}$
- $\varphi_n(1) = \tilde{1}$
- If $m \in J_k$ and $m + 1 \in J_k$ then $\varphi_k(m + 1) = \varphi_k(m) + 1$.
- If $m \in J_n$ and $m + 1 \in J_n$ then $\varphi_n(m + 1) = \varphi_n(m) + 1$.

Show that $\varphi_n(i) = \varphi_k(i)$ for all $i \in J_k \cap J_n$.

(Problem 190) Show that if $m \in N$ then a function $\varphi_m : J_m \to \tilde{N}$ as in Problem 180 must exist.

(Problem 200) Let **F** and **P** be two ordered fields, with **N**, **R** the respective minimal inductive sets. Let φ : **N** \rightarrow **R** be given by $\varphi(n) = \varphi_n(n)$ for all $n \in N$. Let $\tilde{\varphi}$ be defined as φ with the roles of **R** and **R** reversed. Show that

- $\varphi(n+k) = \varphi(n) + \varphi(k)$ for all $n, k \in \mathbb{N}$.
- $\varphi(nk) = \varphi(n)\varphi(k)$ for all $n, k \in \mathbb{N}$.
- If n > k then $\varphi(n) > \varphi(k)$.
- $\varphi \circ \widetilde{\varphi}(\widetilde{n}) = \widetilde{n}$ and $\widetilde{\varphi} \circ \varphi(n) = n$ for all $n \in N$, $\widetilde{n} \in \widetilde{N}$.

(**Problem 210**) We will define the natural numbers (up to isomorphism) as a minimal inductive set of an ordered field. Let **F** be an ordered field. Define subsets Z and Q of **F** that we expect to be isomorphic to the integers **Z** and rational numbers **Q**.

[Definition: Upper and lower bounds] Let **F** be an ordered field and let $A \subseteq F$. We say that $l \in F$ is a lower bound for A if $l \leq a$ for all $a \in A$. We say that u is an upper bound for A if $u \geq a$ for all $a \in A$.

[Definition: Least upper bound] Let **F** be an ordered field and let $A \subseteq F$. We say that $b \in F$ is the least upper bound for A if

- *b* is an upper bound for *A*.
- If c is an upper bound for A then $b \le c$.

[Definition: Greatest lower bound] Let **F** be an ordered field and let $A \subseteq F$. We say that $b \in F$ is the greatest lower bound for A if

- *b* is a lower bound for *A*.
- If c is a lower bound for A then $b \ge c$.

(**Problem 220**) Let **F** be an ordered field and let $A \subseteq F$. Show that A has at most one least upper bound.

(**Problem 230**) Let **F** be an ordered field and let $A \subseteq F$. Suppose that $a \in A$ is an upper bound for A. Show that a is a least upper bound.

(Problem 240) Let $A \subseteq N$ where N is as in Problem 140. Suppose that A is nonempty and that A has an upper bound in N. Show that A has a least upper bound.

(Problem 250) Let $A \subseteq N$ where N is as in Problem 140. Suppose that A has a least upper bound. Show that the least upper bound is an element of A.

[Definition: Completeness] An ordered field **F** is complete if every nonempty subset of **F** with an upper bound has a least upper bound.

(Problem 251) Let F be a complete ordered field and let N be as in Problem 140. Show that N has no upper bound.

(Problem 252) Let *F* be a complete ordered field, let $r \in F$, and let $s \in F$ with s > 0. Show that there is a $n \in N$ with n > r and an $m \in N$ with 1/m < s.

[Definition: The real numbers] The real numbers **R** are a complete ordered field. (We saw in MATH 4513 that a complete ordered field exists. You can review the argument in Section 0B.)

(Problem 260) Let **F** and **P** be two ordered fields, with **N**, **R** the respective minimal inductive sets. Let $\varphi : \mathbf{N} \to \mathbf{R}$ be the isomorphism in Problem 200. Let $\tilde{\varphi}$ be defined as φ with the roles of **F** and **P** reversed. Show that

- $\varphi(n+k) = \varphi(n) + \varphi(k)$ for all $n, k \in \mathbb{N}$.
- $\varphi(nk) = \varphi(n)\varphi(k)$ for all $n, k \in \mathbb{N}$.
- If n > k then $\varphi(n) > \varphi(k)$.
- $\varphi \circ \tilde{\varphi}$ and $\tilde{\varphi} \circ \varphi$ are the identity functions.

(Problem 270) Let **Z**, **E** be as in Problem 210. Extend φ to a function φ : **Z** \rightarrow **E**.

(Problem 280) Show that

- $\varphi(-z) = -\varphi(z)$ for all $z \in \mathbf{Z}$.
- $\varphi(n+k) = \varphi(n) + \varphi(k)$ for all $n, k \in \mathbb{Z}$.
- $\varphi(nk) = \varphi(n)\varphi(k)$ for all $n, k \in \mathbb{Z}$.
- If n > k then $\varphi(n) > \varphi(k)$.
- $\varphi \circ \widetilde{\varphi}$ and $\widetilde{\varphi} \circ \varphi$ are the identity functions.

(**Problem 290**) Let \mathbf{Q} , \mathbf{Q} be as in Problem 210. Extend φ to a function $\varphi : \mathbf{Q} \to \mathbf{Q}$.

(Problem 300) Show that

- $\varphi(q^{-1}) = \varphi(q)^{-1}$ for all $q \in \mathbf{Q}$.
- $\varphi(-z) = -\varphi(z)$ for all $z \in \mathbf{Q}$.
- $\varphi(n+k) = \varphi(n) + \varphi(k)$ for all $n, k \in \mathbf{Q}$.
- $\varphi(nk) = \varphi(n)\varphi(k)$ for all $n, k \in \mathbf{Q}$.
- If n > k then $\varphi(n) > \varphi(k)$.
- $\varphi \circ \widetilde{\varphi}$ and $\widetilde{\varphi} \circ \varphi$ are the identity functions.

(**Problem 301**) Let $\psi(r) = \sup{\phi(q) : q \in \mathbf{Q}, q < r}$. Show that $\psi : F \to \tilde{F}$ is well defined and that $\psi(q) = \phi(q)$ for all $q \in Q$.

(Problem 310) Show that

- $A \subseteq F$ has an upper bound if and only if $\psi(A) \subseteq \tilde{F}$ has an upper bound, and $\sup \psi(A) = \psi(\sup A)$.
- $\psi(q^{-1}) = \psi(q)^{-1}$ for all $q \in \mathbf{R}$.
- $\psi(-z) = -\psi(z)$ for all $z \in \mathbf{R}$.
- $\psi(n+k) = \psi(n) + \psi(k)$ for all $n, k \in \mathbf{R}$.
- $\psi(nk) = \psi(n)\psi(k)$ for all $n, k \in \mathbf{R}$.
- If n > k then $\psi(n) > \psi(k)$.

• $\psi \circ \tilde{\psi}$ and $\tilde{\psi} \circ \psi$ are the identity functions.

1A. Undergraduate analysis

[Definition: Open cover] Let $K \subseteq \mathbf{R}$. A cover of K is a collection \mathcal{U} of subsets of \mathbf{R} that satisfies $K \subseteq \bigcup_{V \in \mathcal{U}} V$. We say that \mathcal{U} is an open cover if every element V of \mathcal{U} is an open set in \mathbf{R} .

[Definition: Finite subcover] Let $K \subseteq \mathbf{R}$ and let \mathcal{U} be a cover of K. A subcover of \mathcal{U} is any subcollection $\mathcal{U}_1 \subseteq \mathcal{U}$ such that $K \subseteq \bigcup_{V \in \mathcal{U}_1} V$. A finite subcover is a subcover that is also a collection of finitely many sets.

[Definition: Compact set] A set $K \subseteq \mathbf{R}$ is compact if every open cover of K has a finite subcover.

(Problem 320) State the Heine-Borel theorem.

(Problem 330) Let $K \subseteq \mathbf{R}$ be nonempty, closed, and bounded. Show that $\inf K \in K$ and $\sup K \in K$.

(Problem 340) Let $K \subseteq \mathbf{R}$ be nonempty, closed, and bounded. Let \mathcal{U} be an open cover of K. Let $K_r = \{x \in K : x \leq r\}$. Then $K_r \subseteq K$ so \mathcal{U} is also an open cover of K_r . Let $\mathcal{S} = \{r \in K : \text{there is a finite subcover of } K_r\}$. Show that \mathcal{S} is nonempty and bounded.

(**Problem 350**) Let $s = \sup S$. Show that $s = \sup K$.

(Problem 360) (The Heine-Borel theorem.) Let $K \subset \mathbf{R}$. Suppose that K is both closed and bounded. Show that K is compact.

[Definition: Continuous function] A function $f : X \to \mathbf{R}$, where X is a metric space, is continuous if, for every $x \in X$ and every $\varepsilon > 0$, there is a $\delta > 0$ depending on x and ε such that if $|x - y| < \delta$ then $|f(x) - f(y)| < \varepsilon$. f is uniformly continuous if δ may be chosen independent of x.

(**Problem 370**) Let X be compact and let $f : X \rightarrow \mathbf{R}$ be continuous. Show that f is bounded.

(**Problem 380**) Show that *f* is uniformly continuous.

(Problem 420) Show that $\mathbf{Q} \cap [0, 1]$ is countable. That is, show that there is a sequence $\{q_k\}_{k=1}^{\infty}$ that contains each rational number in [0, 1] exactly once and contains no other numbers.

1A. Review: the Riemann Integral

[Definition: Partition] Suppose $a, b \in \mathbf{R}$ with a < b. We say that *P* is a *partition* of [a, b] if:

- $P \subseteq [a, b],$
- *P* is finite,
- $a \in P$ and $b \in P$.

We will write $P = \{x_0, x_1, ..., x_n\}$ with $a = x_0 < x_1 < \cdots < x_n = b$.

[Definition: \sup_A , \inf_A] If A is a set and $f : A \to \mathbf{R}$, then $\sup_A f = \sup\{f(x) : x \in A\}$ and $\inf_A f = \inf\{f(x) : x \in A\}$.

[Definition: Lower and upper Darboux sums] Let $[a, b] \subseteq \mathbf{R}$, $f : [a, b] \to \mathbf{R}$, and let P be a partition of [a, b]. Suppose that f is bounded on [a, b], so $-\infty < \inf_{[a,b]} f \le \sup_{[a,b]} f < \infty$.

Then the upper and lower Darboux sums of *f* with respect to the partition *P* are

$$L(f, P) = \sum_{j=1}^{n} (x_j - x_{j-1}) \inf_{[x_{j-1}, x_j]} f,$$

$$U(f, P) = \sum_{j=1}^{n} (x_j - x_{j-1}) \sup_{[x_{j-1}, x_j]} f.$$

[Definition: Lower and upper Darboux integrals] Let $[a, b] \subseteq \mathbf{R}$ be a closed bounded interval and let $f : [a, b] \rightarrow \mathbf{R}$ be a bounded function. We define

$$L(f, [a, b]) = \sup_{p} L(f, P), \qquad U(f, [a, b]) = \sup_{p} U(f, P)$$

where the supremum and infimum are over all partitions *P* of [*a*, *b*].

[Definition: Riemann integral] Let $[a, b] \subseteq \mathbf{R}$ be a closed bounded interval and let $f : [a, b] \rightarrow \mathbf{R}$ be a bounded function. If U(f, [a, b]) = L(f, [a, b]), then we say that f is *Riemann integrable* on [a, b] and write

$$\int_{a}^{b} f = U(f, [a, b]) = L(f, [a, b]).$$

1B. The Riemann integral is not good enough

(Problem 390) Let $f(x) = \frac{1}{\sqrt[3]{x}}$. Let P be any partition of [0, 1]. What is U(f, P)?

(Problem 400) How did you define $\int_0^1 \frac{1}{\frac{3}{2}/x} dx$ in calculus? In undergraduate analysis?

(Problem 410) Can you write down a generalization of the Riemann integral that can be used to define $\int_0^1 \frac{1}{\sqrt[3]{\sin \pi/x}} dx$?

(**Problem 440**) Let $f : [0, 1] \rightarrow \mathbf{R}$. Suppose that f has a singularity at every rational number in [0, 1]. Can we generalize the approach in Problem 410 to define $\int_{0}^{1} f$?

(**Problem 450**) Let $\xi \in (0, 1)$. Let $\{q_k\}_{k=1}^{\infty}$ be as in Problem 420. Write down a formula for a function h_k that is continuous, nonnegative, integrates to $2^{-k}\xi$, and satisfies $h_k(x) = 0$ if $|x - q_k| > 2^{-k}\xi$. Let $f_n(x) = \sum_{k=1}^n h_k(x)$. What is $\int_{-1}^2 f_n$? What can you say about $\int_0^1 f_n$?

(**Problem 460**) Consider the semi-metric¹ space (*X*, *d*), where *X* is the set of all bounded Riemann integrable functions on [0, 1], and where $d(f, g) = \int_0^1 |f - g|$. Show that $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence in *X*.

(Problem 470) Suppose (for the sake of contradiction) that $\{f_n\}_{n=1}^{\infty}$ is convergent, that is, that there is a Riemann integrable function f such that $f_n \to f$ (that is, $\int_0^1 |f_n - f| \to 0$ as $n \to \infty$). Provide an upper bound on $\int_0^1 f$.

(**Problem 480**) Let $(x_{j-1}, x_j) \subseteq [0, 1]$ with $x_{j-1} < x_j$. Show that there is a point x in (x_{j-1}, x_j) such that $f(x) \ge 1/2$.

(Problem 490) Show that $U(f, P) \ge 1/2$ for any partition P of [0, 1]. Have we derived a contradiction?

2A. Outer Measure on R

[Definition: Extended real number] An extended real number is either a real number, $\infty = +\infty$, or $-\infty$.

[Definition: Ordering on the extended real numbers] Let a, b be extended real numbers. We say that $a \le b$ if:

- $a, b \in \mathbf{R}$ and $a \leq b$,
- $a = -\infty$, or
- $b = \infty$.

¹A semi-metric space satisfies all of the axioms of a metric space, except that d(x, y) = 0 is no longer required to imply that x = y.

(Problem 500) Let E be a set of extended real numbers. What is sup E? What is inf E?

(Problem 510) Write down a rigorous definition of the expression a + b where a and b are extended real numbers. Are there any pairs of values we do not want to allow?

(**Problem 520**) Write down a rigorous definition of the expression $\sum_{k=0}^{\infty} a_k$ where the a_k s are nonnegative extended real numbers.

[Definition: Length of an open interval] Let $I \subseteq \mathbf{R}$ be an open interval. The *length of I*, or l(I), is defined to be

$$\ell(I) = \begin{cases} b-a & \text{if } I = (a, b) \text{ with } -\infty < a < b < \infty, \\ 0 & \text{if } I = \emptyset, \\ \infty & \text{if } I \text{ is unbounded.} \end{cases}$$

[Definition: Outer measure] Let $A \subseteq \mathbf{R}$. The *outer measure* |A| of A is defined to be

$$|A| = \inf \left\{ \sum_{k=1}^{\infty} \ell(I_k) : \text{Each } I_k \text{ is an open interval and } A \subseteq \bigcup_{k=1}^{\infty} I_k \right\}.$$

(Problem 580) Let $A \subseteq \mathbf{R}$ be a countable set. Show that |A| = 0.

(Problem 530) Let $[a, b] \subseteq \mathbf{R}$ be a closed bounded interval. Show that |[a, b]| = b - a.

(Problem 540) Let f be a bounded function defined on the closed and bounded interval [a, b]. Show that

$$U(f, [a, b]) = \inf \{ \sum_{j=1}^{n} |I_j| \sup_{I_j} f : \text{each } I_j \text{ is a closed interval and } [a, b] = \bigcup_{j=1}^{n} I_j \}.$$

(Problem 550) Show that if $A \subseteq B \subseteq \mathbf{R}$ then $|A| \leq |B|$.

(**Problem 560**) Let *I* be an open interval. Show that l(I) = |I|.

(Problem 570) Let I = [a, b] or I = (a, b] be a bounded half-open interval. Show that |I| = b-a.

(**Problem 590**) Use the previous result to show that [a, b] is uncountable whenever a < b.

(Problem 600) Show that if $A \subseteq \mathbf{R}$ and $B \subseteq \mathbf{R}$ then $|A \cup B| \le |A| + |B|$.

(Problem 610) Show that if $A_k \subseteq \mathbf{R}$ for all $k \ge 0$ then $\left| \bigcup_{k=1}^{\infty} A_k \right| \le \sum_{k=1}^{\infty} |A_k|$.

(Problem 620) Show that if A and B are disjoint sets, and if $\sup A < \inf B$, then $|A \cup B| = |A| + |B|$.

(Problem 630) Show that if A and B are disjoint sets, and if $\sup A \leq \inf B$, then $|A \cup B| = |A| + |B|$.

(Problem 640) Let $A \subseteq \mathbf{R}$, $t \in \mathbf{R}$, and let $A + t = \{a + t : a \in A\}$. Show that |A + t| = |A|.

[Axiom of Choice] The axiom of choice states that, if \mathcal{E} is a collection of sets, and if the elements of \mathcal{E} are pairwise-disjoint nonempty sets, there is a set V such that V contains exactly one element of each set in \mathcal{E} and no other elements.

(Problem 650) Define the relation ~ by $a \sim b$ if $a-b \in \mathbf{Q}$. If $r \in [-1, 1]$, let $E_r = \{s \in [-1, 1] : r \sim s\}$. Show that if $r, s \in [-1, 1]$, then either $E_r = E_s$ or $E_r \cap E_s = \emptyset$.

(Problem 660) Let $\mathcal{E} = \{E_r : r \in [-1, 1]\}$. Let $V = V_0$ be the set given by the axiom of choice. Show that if $v, w \in V$ with $v \neq w$ then $v - w \notin \mathbf{Q}$.

(Problem 670) Let q be a rational number in [-2, 2]. Let $V_q = \{v + q : v \in V\}$. Show that $|V_q| = |V|$.

(Problem 680) Show that if $q, p \in \mathbf{Q} \cap [-2, 2]$ then either q = p or $V_q \cap V_p = \emptyset$.

(Problem 690) Show that

$$[-1,1] \subseteq \bigcup_{q \in [-2,2] \cap \mathbf{Q}} V_q \subseteq [-3,3].$$

(Problem 700) Show that |V| > 0.

(Problem 710) Let $\{q_k\}_{k=1}^{\infty}$ be a sequence that contains each rational number in [-2, 2]exactly once and contains no other numbers. Show that $\sum_{k=1}^{\infty} |V_{q_k}| \neq \bigcup_{k=1}^{\infty} V_{q_k}|$.

(**Problem 720**) Show that there exist two disjoint sets A and B such that $|A \cup B| \neq |A| + |B|$.

2B. Undergraduate analysis

(Problem 730) Show that if $V \subseteq \mathbf{R}$ and V is open then $V = \bigcup_{i=1}^{\infty} I_i$ for some sequence $\{I_i\}_{i=1}^{\infty}$ of bounded open intervals.

(Problem 731) Let (X, d) be a measure space and let $Y \subseteq X$. Recall that $G \subseteq Y$ is relatively open (or open in Y) if, for every $g \in G$, there is a $r_g > 0$ such that if $d(g, y) < r_g$ and $y \in Y$, then $y \in G$. Show that G is relatively open if and only if $G = U \cap Y$ for some $U \subseteq X$ that is open (in X).

[Definition: Inverse image] Let $f : X \to Y$ be a function and let $A \subseteq Y$. Then $f^{-1}(A) = \{x \in A\}$ $X:f(x)\in A\}.$

(**Problem 740**) Let $X \subseteq \mathbf{R}$ and let $f: X \to \mathbf{R}$. Show that f is continuous if and only if $f^{-1}(U)$ is open in X whenever U is open in \mathbf{R} .

(**Problem 750**) Let $f: X \to Y$ be a function and let $A \subseteq Y$. Show $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$.

(Problem 760) Let $\mathcal{B} \subseteq 2^{Y}$ be a collection of subsets of Y. Show that $f^{-1}(\bigcup_{A \in \mathcal{B}} A) = \bigcup_{A \in \mathcal{B}} f^{-1}(A)$.

(Problem 770) Let $\mathcal{B} \subseteq 2^{Y}$ be a collection of subsets of Y. Show that $f^{-1}(\bigcap_{A \in \mathcal{B}} A) = \bigcap_{A \in \mathcal{B}} f^{-1}(A)$.

(Problem 780) Let $f: X \to Y$ and $g: Y \to Z$. Let $A \subseteq Z$. Show that $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$.

[Definition: Increasing function] Let $X \subseteq \mathbf{R}$ and let $f : X \rightarrow \mathbf{R}$.

- f is increasing if $f(x) \le f(y)$ for all $x, y \in X$ with x < y.
- f is strictly increasing if f(x) < f(y) for all $x, y \in X$ with x < y.

2B. Measurable spaces and functions

(Problem 790) What properties of the outer measure | · | did we use in the proof of Problems 650-720?

[Definition: σ -algebra; measure] Let X be a set. Let S be a collection of subsets of S. Let $\mu: S \to [0, \infty]$. We say that (X, S) is a measurable space and μ is a measure on (X, S) if:

- $\mu(\emptyset) = 0.$
- If $\{E_k\}_{k=1}^{\infty} \subseteq S$ is a sequence of pairwise-disjoint subsets of X then $\mu(\bigcup_{k=1}^{\infty} E_k) =$ $\sum_{k=1}^{\infty} \mu(E_k).$ • S is a σ -algebra on X, that is,
- - $\emptyset \in \mathcal{S},$

 - If *E* ∈ *S*, then *X* \ *E* ∈ *S*, If $\{E_k\}_{k=1}^{\infty} \subseteq S$ then $\bigcup_{k=1}^{\infty} E_k \in S$.

We call the elements of S measurable sets.

(Problem 800) Is $\mu(E) = |E|$ a measure on (**R**, 2^{**R**}), where 2^{**R**} is the collection of all subsets of **R**?

(Problem 810) Does there exist a measure μ on (**R**, 2^{**R**}) that satisfies

- $\mu((a, b)) = b a$ for every $-\infty \le a < b \le \infty$,
- $\mu(t + E) = \mu(E)$ for all $E \subseteq \mathbf{R}$ and all $t \in \mathbf{R}$?

(**Problem 820**) Let X be a nonempty set. Show that $S = \{\emptyset, X\}$ is a σ -algebra on X.

(**Problem 830**) Let X be a nonempty set. Show that $S = 2^X$ is a σ -algebra on X.

(Problem 840) Let X be a nonempty set. Let $C = \{E \subseteq X : E \text{ is countable}\}$. Let $S = C \cup \{E \subseteq X : X \setminus E \in C\}$. Show that S is a σ -algebra on X.

(Problem 850) Let (X, S) be a measurable space (that is, let X be a set and let S be a σ -algebra on X). Show that $X \in S$.

(**Problem 860**) Let (X, S) be a measurable space. Show that if $D, E \in S$ then $D \cup E \in S$.

(Problem 870) Show $D \cap E \in S$.

(Problem 880) Show $D \setminus E \in S$.

(Problem 890) Let (X, S) be a measurable space. Let $\{E_k\}_{k=1}^{\infty} \subseteq S$. Show that $\bigcap_{k=1}^{\infty} E_k \in S$.

[Exercise 2B.11] Let (Y, \mathcal{T}) be a measurable space. Let $X \in \mathcal{T}$ and let $S = \{E \in \mathcal{T} : E \subseteq X\}$. Then (X, S) is a measurable space.

(Problem 900) Let *X* be a set. Let \mathcal{T} be a collection of σ -algebras on *X*. Show that $\bigcap_{S \in \mathcal{T}} S$ is also a σ -algebra on *X*.

[Definition: Smallest σ **-algebra]** Let X be a set and let $\mathcal{A} \subseteq 2^X$ be a collection of subsets of S. The intersection of all σ -algebras containing \mathcal{A} is the smallest σ -algebra containing \mathcal{A} .

(**Problem 910**) Let $X = \mathbf{R}$ and let $A = \{\{3\}, \{5\}\}$. What is the smallest σ -algebra containing A?

(Problem 920) Let $X = \mathbb{R}$ and let $A = \{\{x\} : x \in \mathbb{R}\}$. What is the smallest σ -algebra containing A?

[Definition: Borel set] A set $E \subseteq \mathbf{R}$ is called a Borel set if E is in the smallest σ -algebra on \mathbf{R} that contains all the open subsets of \mathbf{R} .

(Problem 930) Show that all closed subsets of R are Borel sets.

(Problem 940) Show that all countable subsets of R are Borel sets.

(**Problem 950**) Let $-\infty < a < b < \infty$. Show that [a, b) is a Borel set.

[Definition: Measurable function] Let (X, S) be a measurable space. Let $f : X \to \mathbf{R}$. We say that f is S-measurable if $f^{-1}(B) \in S$ for every Borel set B.

(**Problem 960**) Show that any function $f : X \rightarrow \mathbf{R}$ is 2^X -measurable.

(Problem 980) Let $S = \{\emptyset, X\}$. Suppose that $f : X \to \mathbf{R}$ is S-measurable. Show that f is constant.

(Problem 970) Let (X, S) be a measurable space and let $f : X \to \mathbf{R}$ be a constant function. Show that f is S-measurable.

(Problem 981) Let *X* be a set and let S, T be two σ -algebras on *X*. Suppose that $T \subseteq S$ and that $f : X \to \mathbf{R}$ is T-measureable. Show that f is S-measurable.

(Problem 982) Let *Y* be a set, let \mathcal{T} be a σ -algebra on *Y*, and let $f : Y \to \mathbf{R}$ be \mathcal{T} -measurable. Let $X \in \mathcal{T}$ and let S be as in Exercise 2B.11. Show that $f|_X$ is S-measurable.

[Definition: Characteristic function] Let $E \subseteq X$. Then $\chi_E : X \to \mathbf{R}$ is the piecewise defined function given by

$$\chi_E(x) = \begin{cases} 1, & x \in E, \\ 0, & x \notin E. \end{cases}$$

(**Problem 1000**) Show that χ_E is *S*-measurable if and only if $E \in S$.

(**Problem 1010**) Let (X, S) be a measurable space and let $f : X \to \mathbf{R}$. Suppose that $f^{-1}((a, \infty)) \in S$ for all $a \in \mathbf{R}$. Let $\mathcal{T} = \{A \subseteq \mathbf{R} : f^{-1}(A) \in S\}$. Show that \mathcal{T} is a σ -algebra on \mathbf{R} .

(Problem 1020) Let $-\infty < a < b < \infty$. Show that $(a, b) \in \mathcal{T}$.

(**Problem 1030**) Let $U \subseteq \mathbf{R}$ be open. Show that $U \in \mathcal{T}$.

(Problem 1040) Is f measurable?

(Problem 1041) Let (X, S) be a measurable space. Let $f : X \to \mathbf{R}$ be S-measurable. Let $a \in \mathbf{R}$. Show that af is also S-measurable.

[Definition: Borel measurable] If $X \subseteq \mathbf{R}$, then $f : X \to \mathbf{R}$ is Borel measurable if $f^{-1}(B)$ is a Borel set for every Borel set $B \subseteq \mathbf{R}$. That is, f is Borel measurable if f is \mathcal{B} -measurable where \mathcal{B} is the set of all Borel subsets of \mathbf{R} .

(**Problem 1042**) Let $f : X \rightarrow \mathbf{R}$ be Borel measurable. Show that X is Borel.

(**Problem 1050**) Let $f : \mathbf{R} \rightarrow \mathbf{R}$ be continuous. Show that f is Borel measurable.

(Problem 1060) Let $X \subseteq \mathbf{R}$ be a Borel set and let $f : X \to \mathbf{R}$ be continuous. Show that f is Borel measurable.

(**Problem 1070**) Let $X \subseteq \mathbf{R}$ be a Borel set and let $f : X \to \mathbf{R}$ be increasing. Show that f is Borel measurable.

(Problem 1080) Let (X, S) be a measurable space. Let $Y \subseteq \mathbf{R}$. Let $f : X \to Y$ be S-measurable and let $g : Y \to \mathbf{R}$ be Borel measurable. Show that $g \circ f : X \to \mathbf{R}$ is S-measurable.

(Problem 1081) Let B be a Borel set. Let $a \in \mathbf{R}$. Show that $aB = \{ab : b \in B\}$ is Borel.

(Problem 1090) Let (X, S) be a measurable space. Let $f, g : X \to \mathbf{R}$ be S-measurable functions. Show that f + g is S-measurable.

(**Problem 1100**) Show that fg is S-measurable.

(**Problem 1110**) If $g(x) \neq 0$ for all $x \in X$, show that f/g is S-measurable.

(Problem 1120) Let (X, S) be a measurable space and let $\{f_n\}_{n=1}^{\infty}$ be a sequence of *S*-measurable functions $f_n : X \to \mathbf{R}$. Suppose that $f(x) = \lim_{n \to \infty} f_n(x)$ exists for each $x \in X$. Show that f is *S*-measurable.

[Definition: Borel subsets of the extended real numbers] Let $B \subseteq [-\infty, \infty]$. We say that *B* is a Borel set if $B \cap \mathbf{R}$ is a Borel set. If (X, S) is a measurable space and $f : X \to [-\infty, \infty]$, we say that *f* is *S*-measureable if $f^{-1}(B) \in S$ for every Borel set $B \subseteq [-\infty, \infty]$.

(**Problem 1121**) Let (X, S) be a measure space and let $f : X \to [-\infty, \infty]$. Let $\tilde{X} = f^{-1}(\mathbf{R})$ and let $\tilde{S} = \{E \in S : E \subseteq X\}$. Show that f is S-measurable if and only if

- $f^{-1}(\{\infty\}) \in \mathcal{S},$
- $f^{-1}(\{-\infty\}) \in \mathcal{S},$
- $(\widetilde{X}, \widetilde{S})$ is a measurable space, and
- $f|_{\widetilde{X}} : \widetilde{X} \to \mathbf{R}$ is \widetilde{S} -measurable.

(**Problem 1130**) Suppose (X, S) is a measurable space and $f : X \to [-\infty, \infty]$ satisfies $f^{-1}((a, \infty]) \in S$ for all $a \in \mathbb{R}$. Show that f is S-measurable.

(**Problem 1140**) Let (X, S) be a measurable space. Let $f_n : X \to [-\infty, \infty]$ be *S*-measurable for each *n*. Show that $g(x) = \sup\{f_n(x) : n \in \mathbb{N}\}$ is *S*-measurable.

(**Problem 1150**) Show that $h(x) = \inf\{f_n(x) : n \in \mathbb{N}\}$ is *S*-measurable.

(**Problem 1151**) If $\{f_i\}_{i \in \mathcal{I}}$ is a collection of measurable functions, and \mathcal{I} is an uncountable index set, must $g(x) = \sup\{f_i(x) : i \in \mathcal{I}\}$ be *S*-measurable?

2C. Measures and their properties.

[Definition: measure] Let X be a set. Let S be a σ -algebra on X. We say that μ is a measure on (*X*, *S*) if:

- $\mu: S \rightarrow [0, \infty]$
- $\mu(\emptyset) = 0.$
- If $\{E_k\}_{k=1}^{\infty} \subseteq S$ is a sequence of pairwise-disjoint subsets of X then $\mu(\bigcup_{k=1}^{\infty} E_k) =$ $\sum_{k=1}^{\infty} \mu(E_k).$

We call (X, S, μ) a measure space.

(**Problem 1160**) Let X be a set. Let μ satisfy $\mu(\{x\}) = 1$ for every $x \in X$. Can we extend μ to a measure on $(X, 2^X)$?

(**Problem 1170**) Let X be a set, S a σ -algebra on X, and $w: X \to [0, \infty]$ a function. Show that

$$\mu(E) = \sum_{x \in E} w(x) = \sup \left\{ \sum_{x \in D} w(x) : D \subseteq E, D \text{ finite} \right\}$$

is a measure.

(**Problem 1180**) Let $\mu(E) = 0$ if E is countable and $\mu(E) = 3$ if E is uncountable. Is μ a measure on (**R**, 2^{**R**})?

(**Problem 1190**) Let μ be as in Problem 1180. Is there a σ -algebra S on **R** such that $\mu|_{S}$ is a measure on S?

(**Problem 1360**) Let (X, S) be a measurable space. Let μ satisfy

- $\mu: S \to [0, \infty]$
- If $\{E_k\}_{k=1}^{\infty} \subseteq S$ then $\mu\left(\bigcup_{k=1}^{\infty} E_k\right) \leq \sum_{k=1}^{\infty} \mu(E_k)$. If $A, B \in S$ with $A \cap B = \emptyset$ then $\mu(A \cup B) = \mu(A) + \mu(B)$.

Show that (X, S, μ) is a measure space.

(Problem 1200) Let (X, S, μ) be a measure space. Let $D, E \in S$ with $D \subseteq E$. Show that $\mu(D) \leq \mu(E).$

(**Problem 1210**) Show that if $\mu(D) < \infty$ then $\mu(E \setminus D) = \mu(E) - \mu(D)$.

(**Problem 1220**) Give an example of a measure space (X, S, μ) and sets $D, E \in S$ with $D \subseteq E$, $\mu(D) = \mu(E) = \infty$, and such that $\mu(E \setminus D) = 0$.

(**Problem 1230**) Give an example where $\mu(E \setminus D) = \infty$.

(**Problem 1240**) Give an example where $\mu(E \setminus D) = 7$.

(Problem 1250) Let (X, S, μ) be a measure space and let $\{E_k\}_{k=1}^{\infty} \subseteq S$. We do not require that the E_k s be pairwise-disjoint. Show that $\mu(\bigcup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} \mu(E_k)$.

(Problem 1260) Let (X, S, μ) be a measure space and let $\{E_k\}_{k=1}^{\infty} \subseteq S$. We require that $E_k \subseteq E_{k+1}$ for all k. Show that $\mu(\bigcup_{k=1}^{\infty} E_k) = \lim_{k \to \infty} \mu(E_k)$.

(Problem 1270) Let (X, S, μ) be a measure space and let $\{E_k\}_{k=1}^{\infty} \subseteq S$. We require that $E_k \supseteq E_{k+1}$ for all k and that $\mu(E_k) < \infty$ for at least one k. Show that $\mu(\bigcap_{k=1}^{\infty} E_k) = \lim_{k \to \infty} \mu(E_k)$.

[Exercise 2C.10] Give an example of a measure space (X, S, μ) and a sequence of sets ${E_k}_{k=1}^{\infty} \subseteq S$ such that $\mu(\bigcap_{k=1}^{\infty} E_k) \neq \lim_{k \to \infty} \mu(E_k)$.

(**Problem 1280**) Let (X, S, μ) be a measure space and let $D, E \in S$. Show that $\mu(D \cup E) + \mu(D \cap E)$ $E) = \mu(D) + \mu(E).$

2D. Undergraduate analysis

(Problem 1290) Let $G \subseteq \mathbf{R}$ be open. Show that G is the union of countably many pairwisedisjoint open intervals.

(**Problem 1300**) Let $X \subseteq \mathbf{R}$ and let $f : X \to \mathbf{R}$ be strictly increasing. Show that f is one-to-one.

(**Problem 1310**) Let $X \subseteq \mathbf{R}$ and let $f : X \to \mathbf{R}$ be increasing. Let $E = \{y \in \mathbf{R} : f^{-1}(y) \text{ contains more than one element}\}$. Show that E is countable.

(**Problem 1311**) Let $f : \mathbf{R} \to \mathbf{R}$ be increasing. Let $E = \{x \in \mathbf{R} : f \text{ is not continuous at } x\}$. Show that *E* is countable.

(Bonus Problem 1312) Let $f : \mathbf{R} \to \mathbf{R}$ be increasing. Let $E = \{y \in \mathbf{R} : y \notin f(\mathbf{R})\}$. Show that *E* is the union of countably many disjoint intervals.

(Problem 1320) Let $X \subseteq \mathbf{R}$ and let $f_n : X \to \mathbf{R}$ be increasing for each n. Suppose that there is a function $f : X \to \mathbf{R}$ such that $f_n(x) \to f(x)$ for each $x \in X$. Show that f is also increasing.

(Problem 1330) Let X, Y be two metric spaces. Let $f : X \to Y$ and let $f_n : X \to Y$ for each $n \in \mathbb{N}$. Suppose that each f_n is continuous and that $f_n \to f$ uniformly on X. Show that f is continuous.

(Problem 1331) Let X, Y be two metric spaces. Let $f : X \to Y$ and let $f_n : X \to Y$ for each $n \in \mathbb{N}$. Suppose that each f_n is uniformly continuous and that $f_n \to f$ uniformly on X. Show that f is uniformly continuous.

(Problem 1340) A sequence of functions $f_n : X \to Y$ is uniformly Cauchy if, for every $\varepsilon > 0$, there is a $K \in \mathbf{N}$ such that if $m, n \in \mathbf{N}$ with $m \ge n \ge K$, then $d(f_n(x), f_m(x)) < \varepsilon$ for all $x \in X$. Suppose that $\{f_n\}_{n=1}^{\infty}$ is uniformly Cauchy and that Y is complete. Show that $f_n \to f$ uniformly for some function $f : X \to Y$.

2D. Lebesgue measure.

(**Problem 1350**) Let $\mu(E) = |E|$, where |E| is the outer measure of Section 2A. Is μ a measure on (**R**, 2^{**R**})?

(**Problem 1370**) Let $A, Z \subseteq \mathbf{R}$. Suppose that |Z| = 0. Show that $|A \cup Z| = |A| + |Z|$.

(Problem 1371) Let $A, Z \subseteq \mathbf{R}$. Suppose that $|Z| = \infty$. Show that $|A \cup Z| = |A| + |Z|$.

(Problem 1380) Let *A* ⊆ **R** and *b* < *c*, *b*, *c* ∈ **R**. Suppose that *A* ∩ (*b*, *c*) = Ø. Show that $|A \cup (b, c)| = |A| + |(b, c)|$.

(Problem 1390) Let $G \subseteq \mathbf{R}$ be open. Suppose $G = \bigcup_{k=1}^{\infty} I_k$ where each I_k is a (possibly empty or infinite) open interval and the I_k s are pairwise-disjoint. Show that $|G| = \sum_{k=1}^{\infty} \ell(I_k)$.

(Problem 1400) Let $A, G \subseteq \mathbb{R}$. Suppose that $A \cap G = \emptyset$ and that G is open. Show that $|A \cup G| = |A| + |G|$.

(Problem 1410) Let $A, F \subseteq \mathbf{R}$. Suppose that $A \cap F = \emptyset$ and that F is closed. Show that $|A \cup F| = |A| + |F|$.

(Problem 1420) Let $\mathcal{L} = \{D \subseteq \mathbf{R} : \text{If } \varepsilon > 0, \text{ then there is a closed set } F \text{ with } F \subseteq D \text{ and with } |D \setminus F| < \varepsilon\}$. Let $F \subseteq \mathbf{R}$ be closed. Show that $F \in \mathcal{L}$.

(Problem 1421) Show that $D \in \mathcal{L}$ if and only if, for every $\varepsilon > 0$, there is an open set *G* with $D \cup G = \mathbf{R}$ and with $|G \cap D| < \varepsilon$.

(Problem 1440) Show that if $\{D_k\}_{k=1}^{\infty} \subseteq \mathcal{L}$ then $\bigcap_{k=1}^{\infty} D_k \in \mathcal{L}$.

(**Problem 1440**) Let $F \subseteq \mathbf{R}$ be closed. Suppose that $|F| < \infty$. Show that $\mathbf{R} \setminus F \in \mathcal{L}$.

(Problem 1450) Let $F \subseteq \mathbf{R}$ be closed. Show that $\mathbf{R} \setminus F \in \mathcal{L}$ even if $|F| = \infty$.

(Problem 1460) Let $D \in \mathcal{L}$. Show that $\mathbf{R} \setminus D \in \mathcal{L}$.

(Problem 1461) Show that if $D \in \mathcal{L}$ then for all $\varepsilon > 0$, there is an open set G with $D \subseteq G$ and with $|G \setminus D| < \varepsilon$.

(Problem 1462) Show that if for all $\varepsilon > 0$, there is an open set *G* with $D \subseteq G$ and with $|G \setminus D| < \varepsilon$, then $D \in \mathcal{L}$.

(Problem 1470) Show that if $\{D_k\}_{k=1}^{\infty} \subseteq \mathcal{L}$ then $\bigcup_{k=1}^{\infty} D_k \in \mathcal{L}$.

(Problem 1530) Show that the set of all Lebesgue measurable subsets of **R** is a σ -algebra.

(Problem 1480) Show that if *B* is a Borel set and $\varepsilon > 0$, then there exists a closed set *F* with $F \subseteq B$ and with $|B \setminus F| < \varepsilon$.

(Problem 1490) Let $A, B \subseteq \mathbf{R}$. Suppose that B is a Borel set and that $A \cap B = \emptyset$. Show that $|A \cup B| = |A| + |B|$.

[Exercise 2D.10] Let $A, B \subseteq \mathbb{R}$. Suppose that $B \in \mathcal{L}$, where \mathcal{L} is as in Problem 1420, and that $A \cap B = \emptyset$. Show that $|A \cup B| = |A| + |B|$.

(**Problem 1500**) Show that there exists an $A \subseteq \mathbf{R}$ that is not a Borel set.

(**Problem 1510**) Let \mathcal{B} be the set of all Borel subsets of **R**. Let $\mu(E) = |E|$ for all $E \in \mathcal{B}$. Show that (**R**, \mathcal{B}, μ) is a measure space.

(**Problem 1520**) Let $A \subseteq \mathbf{R}$. Show that the following statements are equivalent:

- (a) If $\varepsilon > 0$, then there is a closed set *F* with $F \subseteq A$ and with $|A \setminus F| < \varepsilon$.
- (b) There exists a sequence $\{F_k\}_{k=1}^{\infty}$ such that $F_k \subseteq A$ and F_k is closed for each $k \in \mathbf{N}$, and such that $|A \setminus \bigcup_{k=1}^{\infty} F_k| = 0$.
- (c) There exists a Borel set B with $B \subseteq A$ and with $|A \setminus B| = 0$.
- (d) If $\varepsilon > 0$, then there is an open set *G* with $G \supseteq A$ and with $|G \setminus A| < \varepsilon$.
- (e) There exists a sequence $\{G_k\}_{k=1}^{\infty}$ such that $G_k \supseteq A$ and G_k is open for each $k \in \mathbb{N}$, and such that $|\bigcap_{k=1}^{\infty} G_k \setminus A| = 0$.
- (f) There exists a Borel set B with $B \supseteq A$ and with $|B \setminus A| = 0$.

[Definition: Lebesgue measureable] A set $A \subseteq \mathbf{R}$ is Lebesgue measurable if there is a Borel set $B \subseteq A$ such that $|A \setminus B| = 0$.

(Problem 1590) Let \mathcal{L} be the set of all Lebesgue measureable subsets of **R**. Let $\mu(E) = |E|$ for all $E \in \mathcal{L}$. Show that (**R**, \mathcal{L} , μ) is a measure space. (We refer to outer measure restricted to \mathcal{L} as *Lebesgue measure*.)

(**Problem 1600**) Show that there exists an $A \subseteq [0, 1]$ that is not Lebesgue measurable.

[Exercise 2D.12] Suppose that $A \subseteq \mathbf{R}$ is a bounded set. Let $b, c \in \mathbf{R}$ be such that $A \subseteq [b, c]$. Suppose that

$$|A \cup ([b,c] \setminus A)| = |A| + |[b,c] \setminus A|.$$

Show that A is Lebesgue measurable.

[Exercise 2D.13] Suppose that $A \subseteq \mathbf{R}$. Suppose that

$$|(A \cap [-n, n]) \cup ([-n, n] \setminus A)| = |A \cap [-n, n]| + |[-n, n] \setminus A|$$

for all $n \in \mathbf{N}$. Show that A is Lebesgue measurable.

(Problem 1610) Suppose that (\mathbf{R}, S, μ) is a measure space, where $\mu(E) = |E|$ for all $E \in S$. Suppose further that S contains all closed bounded intervals. Show that $S \subseteq \mathcal{L}$, where \mathcal{L} is the set of all Lebesgue measurable sets.

* *

[Definition: Lebesgue measurable] Let $A \subseteq \mathbf{R}$ and let $f : A \to \mathbf{R}$. We say that f is Lebesgue measurable if, whenever $B \subseteq \mathbf{R}$ is Borel, we have that $f^{-1}(B)$ is a Lebesgue measurable set (that is, satisfies one of the six equivalent conditions of Problem 1520).

(**Problem 1620**) Let $f : \mathbf{R} \to \mathbf{R}$ be increasing and continuous. Let $S = \{E \subseteq \mathbf{R} : f(E) \text{ is Borel}\}$. Show that S contains all intervals.

(Bonus Problem 1621) Show that the previous problem is valid if *f* is merely increasing (not necessarily continuous).

(**Problem 1630**) Show that S is a σ -algebra.

(**Problem 1640**) Show that if $f : \mathbf{R} \to \mathbf{R}$ is increasing, and if $B \subseteq \mathbf{R}$ is a Borel set, then f(B) is also a Borel set.

* * *

(Problem 1641) Let $F_0 = F_{1,0} = [0,1]$. If $n, k \in \mathbb{N}$ and $F_{k,n-1} = [a_{k,n-1}, b_{k,n-1}]$ exists, let $F_{2k-1,n} = [a_{k,n-1}, \frac{2}{3}a_{k,n-1} + \frac{1}{3}b_{k,n-1}]$, and let $F_{2k,n} = [\frac{1}{3}a_{k,n-1} + \frac{2}{3}b_{k,n-1}, b_{k,n-1}]$. Show that

- $F_{k,n}$ exists for all $n \in \mathbb{N}$ and for $1 \le k \le 2^n$.
- $F_{k,n}$ is a closed interval of length 3^{-n} .
- If $1 \le k < j \le 2^n$, $x \in F_{k,n}$ and $y \in F_{j,n}$, then x < y. In particular, $F_{k,n} \cap F_{j,n} = \emptyset$ if $j \ne k$.

Let $F_n = \bigcup_{k=1}^{2^n} F_{k,n}$.

(**Problem 1642**) If $n \in \mathbb{N}$ and $1 < k < 2^{n-1}$, let $G_{k,n} = F_{k,n-1} \setminus (F_{2k-1,n} \cup F_{2k,n})$. Show that

- $G_{k,n}$ is an open interval of length 3^{-n} .
- If $1 \le k < j \le 2^{n-1}$, $x \in G_{k,n}$ and $y \in G_{j,n}$, then x < y. In particular, $G_{k,n} \cap G_{j,n} = \emptyset$ if $j \ne k$.
- If $n \neq m$ then $G_{k,n} \cap G_{j,m} = \emptyset$.

[Definition: The Cantor set] The Cantor set $C = \bigcap_{k=0}^{\infty} F_k = [0, 1] \setminus \bigcup_{k=1}^{\infty} G_k$.

(Problem 1650) Show that C is closed.

(**Problem 1660**) Show that |C| = 0.

(Problem 1670) Let $I \subseteq \mathbf{R}$ be an interval. Show that if $I \subseteq C$ then I contains at most one point.

(Problem 1680) Let $\Lambda_k(x) = \frac{|F_k \cap (-\infty, x)|}{|F_k|}$. Show that Λ_k is continuous.

(**Problem 1690**) Sketch the graphs of Λ_0 , Λ_1 , and Λ_2 .

(**Problem 1700**) Show that if $n \ge m$, then $\Lambda_n(x) = \Lambda_m(x)$ for all $x \in G_m$.

(Problem 1710) Show that $\{\Lambda_k\}_{k=1}^{\infty}$ is uniformly Cauchy.

[Definition: The Cantor function] Let $\Lambda(x) = \lim_{k\to\infty} \Lambda_k(x)$.

(Problem 1720) Show that Λ exists and is continuous, increasing, and surjective Λ : $[0, 1] \rightarrow [0, 1]$.

(**Problem 1730**) Show that $\Lambda([0, 1] \setminus C)$ is countable.

(**Problem 1740**) Show that $\Lambda(C) = [0, 1]$.

(Problem 1750) Show that C is uncountable.

(**Problem 1760**) Let $A \subseteq [0, 1]$ be a set that is not a Borel set. Let $E = C \cap \Lambda^{-1}(A)$. Show that *E* is Lebesgue measurable but that $\Lambda(E)$ is not Lebesgue measurable.

2E. Undergraduate analysis

[Definition: Pointwise convergence] Let *X* be a set, let $f : X \to \mathbf{R}$, and let $\{f_k\}_{k=1}^{\infty}$ be a sequence of functions from *X* to *R*. We say that the sequence $\{f_k\}_{k=1}^{\infty}$ converges to *f* pointwise if $\lim_{k\to\infty} f_k(x) = f(x)$ for each $x \in X$. That is, if for every $\varepsilon > 0$ and every $x \in X$ there is a $N \in \mathbf{N}$ such that $|f_k(x) - f(x)| < \varepsilon$ for all $k \ge N$.

[Definition: Uniform convergence] Let X be a set, let $f : X \to \mathbf{R}$, and let $\{f_k\}_{k=1}^{\infty}$ be a sequence of functions from X to R. We say that the sequence $\{f_k\}_{k=1}^{\infty}$ converges to f uniformly if for every $\varepsilon > 0$ there is a $N \in \mathbf{N}$ such that $|f_k(x) - f(x)| < \varepsilon$ for all $k \ge N$ and all $x \in X$.

(**Problem 1770**) Give an example of a sequence of functions that converges pointwise but not uniformly.

(**Problem 1771**) Let X be a metric space and let $Y \subseteq X$ be a subspace. Show that $G \subseteq Y$ is open in Y (relatively open) if and only if there is a $U \subseteq X$ that is open in X and satisfies $G = Y \cap U$.

(Problem 1772) Let X be a metric space and let $Y \subseteq X$ be a subspace. Show that $F \subseteq Y$ is closed in Y (relatively closed) if and only if there is a $D \subseteq X$ that is closed in X and satisfies $F = Y \cap D$.

(Problem 1773) Let $X \subseteq \mathbf{R}$ and let $f : X \to \mathbf{R}$. Show that f is continuous everywhere on X if and only if, for every $U \subseteq \mathbf{R}$ open, the set $f^{-1}(U)$ is relatively open.

(Problem 1780) Show that if the sequence $\{f_k\}_{k=1}^{\infty}$ converges uniformly to f, then the sequence $\{f_k\}_{k=1}^{\infty}$ converges pointwise to f.

(Problem 1790) Let $X \subseteq \mathbf{R}$, let $x_0 \in X$, let $f : X \to \mathbf{R}$, and let $\{f_k\}_{k=1}^{\infty}$ be a sequence of functions from X to R. Suppose that each f_k is continuous at x_0 and that the sequence $\{f_k\}_{k=1}^{\infty}$ converges to f uniformly on X. Show that f is also continuous at x_0 .

(**Problem 1800**) Give an example of a sequence of continuous functions that converge pointwise to a discontinuous function.

(Problem 1810) Let $F \subseteq \mathbf{R}$ be a closed set. Let $g : F \to \mathbf{R}$ be continuous. Show that there exists a function $h : \mathbf{R} \to \mathbf{R}$ such that h is continuous and such that h(x) = g(x) for all $x \in F$.

2E. Convergence of Measurable Functions.

(Problem 1820) Let X be a set. Let $f : X \to \mathbf{R}$ and let $\{f_k\}_{k=1}^{\infty}$ be a sequence of functions from X to **R**. Let $Y = \{x \in X : \lim_{k \to \infty} f_k(x) = f(x)\}$ and let $A_{n,m,k} = \{x \in X : |f_k(x) - f(x)| < \frac{1}{n}\}$. Write Y in terms of unions and intersections of the sets $A_{n,m,k}$.

(Problem 1830) Let $\{m_n\}_{n=1}^{\infty}$ be a sequence of natural numbers. Show that f_k converges uniformly to f on the set

$$\bigcap_{n=1}^{\infty}\bigcap_{k=m_n}^{\infty} \{x \in X : |f_k(x) - f(x)| < \frac{1}{n}\}.$$

(Problem 1840) Let (X, S, μ) be a measure space. Let $f : X \to \mathbf{R}$ be S-measurable and let $\{f_k\}_{k=1}^{\infty}$ be a sequence of S-measurable functions from X to **R**. Suppose that f_k converges to f pointwise on X. Let

$$A_{n,m} = \bigcap_{k=m}^{\infty} \left\{ x \in X : |f_k(x) - f(x)| < \frac{1}{n} \right\}.$$

Show that $\lim_{m\to\infty} \mu(A_{n,m}) = \mu(X)$.

(Problem 1850) Suppose further that $\mu(X) < \infty$. Choose some $\varepsilon > 0$. For each $n \in \mathbb{N}$, let m_n be such that $\mu(A_{n,m_n}) > \mu(X) - \frac{\varepsilon}{2^n}$. Show that $\mu(X \setminus \bigcap_{n=1}^{\infty} A_{n,m_n}) < \varepsilon$.

(Problem 1860) [Egorov's Theorem] Let (X, S, μ) be a measure space with $\mu(X) < \infty$. Let $f : X \to \mathbf{R}$ be *S*-measurable and let $\{f_k\}_{k=1}^{\infty}$ be a sequence of *S*-measurable functions from *X* to **R**. Suppose that f_k converges to *f* pointwise on *X*. Show that for every $\varepsilon > 0$ there is a set $E \subseteq X$ with $\mu(X \setminus E) < \varepsilon$ such that f_k converges to *f* uniformly on *E*.

[Exercise 2E.5] Give an example of a Borel measurable function $f : \mathbf{R} \to \mathbf{R}$ and a sequence of Borel measurable functions $f_k : \mathbf{R} \to \mathbf{R}$ such that $f_k \to f$ pointwise but such that f_k does not converge uniformly on any set of infinite measure.

(**Problem 1861**) What is the best analogue to Egorov's Theorem available in **R**? In an arbitrary measure space of infinite measure?

* * *

[Definition: Simple function] A function is called simple if it takes on only finitely many values.

(Problem 1870) Let (X, S) be a measurable space and let $f : X \to \mathbf{R}$ be a simple function. Let $f(X) = \{c_k : 1 \le k \le n\}$. Let $E_k = f^{-1}(\{c_k\})$. Show that if $x \in X$ then $x \in E_k$ for exactly one value of k (so $X = \bigcup_{k=1}^{n} E_k$ and $E_j \cap E_k = \emptyset$ if $j \ne k$).

(**Problem 1871**) Show that $f = \sum_{k=1}^{n} c_k \chi_{E_k}$.

(**Problem 1880**) Show that f is S-measurable if and only if $\{E_k : 1 \le k \le n\} \subseteq S$.

(**Problem 1890**) Let X be a set, let $k \in \mathbf{N}$, and let $f : X \to \mathbf{R}$. Define f_k as

$$f_k(x) = \operatorname{sgn}(f(x)) \min\left(k, \frac{\lfloor 2^k | f(x) | \rfloor}{2^k}\right)$$

where $\lfloor y \rfloor = \inf\{n \in \mathbb{Z} : n \leq y\}$. Find f(X) and show that f_k is simple.

(**Problem 1900**) Show that $\{f_k(x)\}_{k=1}^{\infty}$ is increasing if $f(x) \ge 0$ and decreasing if $f(x) \le 0$.

(Problem 1910) Let $X_m = \{x \in X : |f(x)| < m\}$. Show that $f_k \to f$ uniformly on X_m for each $m \in \mathbb{N}$.

(**Problem 1920**) Show that $\lim_{k\to\infty} f_k(x) = f(x)$ for all $x \in X$ and that, if f is bounded, then f_k converges to f uniformly on X.

(**Problem 1930**) Let S be a σ -algebra on X. Suppose in addition that f is S-measurable. Show that f_k is S-measurable for each $k \in \mathbb{N}$.

* * *

(**Problem 1940**) Give an example of a Borel measurable function $f : \mathbf{R} \to \mathbf{R}$ such that f is not continuous at any point $x \in \mathbf{R}$.

(Problem 1950) Let *B* be a Lebesgue measurable set. Show that for all $\varepsilon > 0$, there is an open set *U* with $|U| < \varepsilon$ such that $B \setminus U$ is closed and such that $(\mathbf{R} \setminus B) \setminus U$ is also closed.

(**Problem 1960**) Show that $g = \chi_B|_{\mathbf{R} \setminus U}$ is continuous everywhere on $\mathbf{R} \setminus U$.

(**Problem 1970**) Show that if $s : \mathbf{R} \to \mathbf{R}$ is simple and Lebesgue measurable and $\varepsilon > 0$, then there is an open set U with $|U| < \varepsilon$ such that $s|_{\mathbf{R}\setminus U}$ is continuous everywhere on $\mathbf{R} \setminus U$.

(Problem 1980) Let $f : \mathbf{R} \to \mathbf{R}$ be Lebesgue measurable. Let $B \subseteq \mathbf{R}$ be Lebesgue measurable with $|B| < \infty$. For all $\varepsilon > 0$, show that there is an open set G such that $|G| < \varepsilon$ and such that f is bounded on $B \setminus G$.

(**Problem 1990**) [Luzin's theorem] Let $f : \mathbf{R} \to \mathbf{R}$ be Lebesgue measurable. For all $\varepsilon > 0$, show that there is an open set U and a continuous function $h : \mathbf{R} \to \mathbf{R}$ such that $|U| < \varepsilon$ and such that f(x) = h(x) for all $x \notin U$.

(Problem 2000) Need f be continuous on R?

(**Problem 2010**) Let $s : \mathbf{R} \to \mathbf{R}$ be Lebesgue measurable and simple. Show that there exists a function $g : \mathbf{R} \to \mathbf{R}$ that is Borel measurable and such that the set $\{x \in \mathbf{R} : f(x) \neq g(x)\}$ is Borel and satisfies $|\{x \in \mathbf{R} : s(x) \neq g(x)\}| = 0$.

(Problem 2020) Let $f : \mathbf{R} \to \mathbf{R}$ be Lebesgue measurable. Show that there exists a function $g : \mathbf{R} \to \mathbf{R}$ that is Borel measurable and satisfies $|\{x \in \mathbf{R} : f(x) \neq g(x)\}| = 0$.

Undergraduate analysis

(Problem 2021) Let $\{x_n\}_{n=1}^{\infty} \subseteq [-\infty, \infty]$. Suppose that $x_n \leq x_{n+1}$ for all n. Show that $\lim_{n\to\infty} x_n$ exists and satisfies $\lim_{n\to\infty} x_n = \sup_{n\in\mathbb{N}} x_n$.

3A. Integration with Respect to a Measure.

[Definition: S-partition] Let S be a σ -algebra on a set X. An S-partition of X is a finite collection of disjoint sets in S whose union is all of X. (So $P = \{A_j : 1 \le j \le m\}, m < \infty, A_j \cap A_k = \emptyset$ if $j \ne k$, and $X = \bigcup_{i=1}^m A_j$.)

[Definition: Lower Lebesgue sum] Let (X, S, μ) be a measure space. Let $f : X \to [0, \infty]$ be *S*-measurable. Let $P = \{A_j : 1 \le j \le m\}$ be an *S*-partition of *X*. The lower Lebesgue sum $\mathcal{L}(f, P)$ is

$$\mathcal{L}(f, P) = \sum_{j=1}^{m} \mu(A_j) \inf_{A_j} f.$$

(If either $\mu(A_j) = 0$ or $\inf_{A_j} f = 0$, then we take $\mu(A_j) \inf_{A_j} f = 0$ even if the other quantity is ∞ .)

[Definition: Integral of a nonnegative function] Let (X, S, μ) be a measure space. Let $f : X \rightarrow [0, \infty]$ be *S*-measurable. Then

$$\int f d\mu = \sup \{ \mathcal{L}(f, P) : P \text{ is an } S \text{-partition of } X \}.$$

(**Problem 2100**) Suppose that (X, S, μ) is a measure space and $E \in S$. What is $\int \chi_E d\mu$?

(Problem 2110) What is $\int \chi_{\mathbf{Q}} d\lambda$? What is $\int \chi_{[0,1]\setminus\mathbf{Q}} d\lambda$?

[Exercise 3A.5] Let $\{b_k\}_{k=1}^{\infty}$ be a sequence of nonnegative real numbers. Define the function $b : \mathbf{N} \to \mathbf{R}$ by $b(k) = b_k$. Let $\mu(E) = \#E$ denote the counting measure. Then $\int b \, d\mu = \sum_{k=1}^{\infty} b_k$.

(Bonus Problem 2030) Let X = [a, b] for some $a, b \in \mathbf{R}$, a < b. Let $a = x_0 < x_1 < \cdots < x_m = b$. Let $A_0 = \{x_j : 0 \le l \le m\}$ and let $A_k = (x_{k-1}, x_k)$ for $1 \le k \le m$. Show that $P = \{A_j : 0 \le j \le m\}$ is a \mathcal{L} -partition and a \mathcal{B} -partition, where \mathcal{L} and \mathcal{B} are the σ -algebras of Borel and Lebesgue measurable sets, respectively.

(Bonus Problem 2040) Let *P* be the partition in Problem 2030. Let $f : [a, b] \rightarrow \mathbf{R}$ be Lebesgue measurable. How does $\mathcal{L}(f, P)$ relate to the upper and lower Darboux sums $U(f, A_0)$ and $L(f, A_0)$ of f over $A_0 = \{x_0, \ldots, x_m\}$?

(Bonus Problem 2050) Suppose that X = [a, b], S denotes the Borel (or Lebesgue) sets, λ denotes Lebesgue measure, and $f : X \rightarrow [0, \infty)$ is bounded and Borel measurable. How does $\int f d\lambda$ compare to the lower Riemann integral L(f, [a, b])?

(Bonus Problem 2060) Let (X, S, μ) be a measurable space and $f : X \to [0, \infty)$ be bounded. How would you define an upper Lebesgue sum $\mathcal{U}(f, P)$? How would you define an integral in terms of the upper Lebesgue sum?

(Bonus Problem 2061) Let *P*, *Q* be two partitions of *X*. What can you say about $\mathcal{L}(f, P)$ and $\mathcal{U}(f, Q)$?

[Exercise 3B.4a] If $\mu(X) < \infty$ and $f : X \rightarrow [0, \infty)$ is a bounded *S*-measurable function, then the "upper" and "lower" Lebesgue integrals are equal.

[Exercise 3B.4b]

[Exercise 3B.4c]

(Bonus Problem 2080) Why did we use the "lower" Lebesgue integral (instead of the "upper" Lebesgue integral) as the definition of Lebesgue integral?

(Bonus Problem 2090) Suppose that X = [a, b], S denotes the Borel (or Lebesgue) subsets of X, λ denotes Lebesgue measure, and $f : X \to [0, \infty)$ is bounded and Borel measurable. How does the (upper) Lebesgue integral compare to the upper Riemann integral U(f, [a, b])?

(Bonus Problem 2091) Suppose that X = [a, b], S denotes the Borel (or Lebesgue) subsets of X, λ denotes Lebesgue measure, and $f : X \rightarrow [0, \infty)$ is bounded. Show that if f is Riemann

integrable, then f is Lebesgue measurable, and moreover the Riemann and Lebesgue integrals of f coincide.

(Bonus Problem 2092) Give an example of a function that is Lebesgue integrable (measurable) but not Riemann integrable.

* * *

(Problem 2120) Let (X, S, μ) be a measure space. Let f be an S-measurable simple function, so $f = \sum_{k=1}^{m} c_k \chi_{E_k}$ for some partition $\{E_k\}$ and distinct values c_k . What is $\int f d\mu$ in terms of c_k and E_k ?

(**Problem 2121**) Suppose that $f = \sum_{k=1}^{m} c_k \chi_{E_k}$, where the E_k s are pairwise-disjoint, but possibly empty or not having union X, and where the numbers c_k need not be distinct. What is $\int f d\mu$?

(Bonus Problem 2122) What is $\int f d\mu$ if we relax the requirement that the E_k s be pairwise disjoint?

(Problem 2130) Let (X, S, μ) be a measure space. Let $f : X \to [0, \infty]$ be *S*-measurable. Show that

$$\int f d\mu = \sup \left\{ \int s d\mu : s \text{ is simple and } 0 \le s(x) \le f(x) \text{ for all } x \in X \right\}.$$

(Problem 2140) Let (X, S, μ) be a measure space. Let $f, g : X \to [0, \infty]$ be S-measurable. Suppose that $f(x) \le g(x)$ for all $x \in X$. Show that $\int f d\mu \le \int g d\mu$.

(Problem 2150) Let (X, S, μ) be a measure space. Let $f_k : X \to [0, \infty]$ be S-measurable. Suppose that $f_k(x) \le f_{k+1}(x)$ for all $x \in X$ and all $k \in \mathbb{N}$. Show that $\lim_{k\to\infty} \int f_k d\mu$ exists.

(**Problem 2160**) Let $f(x) = \lim_{k\to\infty} f_k(x)$. By Problem 1120, f is S-measurable. Show that $\lim_{k\to\infty} \int f_k d\mu \leq \int f d\mu$.

(**Problem 2170**) Let $s \le f$ be a S-measurable simple function. Let 0 < t < 1. Let

$$s_k(x) = \begin{cases} t \, s(x), & \text{if } t \, s(x) \leq f_k(x), \\ 0, & \text{otherwise.} \end{cases}$$

Show that s_k is simple and S-measurable.

(**Problem 2171**) What can you say about $\int s_k d\mu$ and $\int f_k d\mu$?

(Problem 2180) What is $\lim_{k\to\infty} \int s_k d\mu$?

(**Problem 2190**) Show that $\lim_{k\to\infty} \int f_k d\mu = \int f d\mu$.

[Exercise 3A.8] There exists a sequence of simple Borel measurable functions from **R** to $[0, \infty)$ such that $\lim_{k\to\infty} f_k(x) = 0$ for all $x \in \mathbf{R}$ but $\lim_{k\to\infty} \int f_k d\lambda = 1$.

(Problem 2240) Let (X, S, μ) be a measure space. Let f be a nonnegative *S*-measurable function. Let $c \ge 0$. Show that $\int cf d\mu = c \int f d\mu$.

(Problem 2210) Let (X, S, μ) be a measure space. Let f, g be two nonnegative S-measurable simple functions. Show that f + g is also simple.

(**Problem 2220**) Show that $\int f + g \, d\mu = \int f \, d\mu + \int g \, d\mu$ if f and g are nonnegative and simple. (**Problem 2230**) Let (X, S, μ) be a measure space. Let f, g be two nonnegative S-measurable functions. By Problem 1090, f + g is also S-measurable. Show that $\int f + g \, d\mu = \int f \, d\mu + \int g \, d\mu$.

[Definition: Positive and negative parts] Let $f : X \rightarrow [-\infty, \infty]$ be a function. We define

$$f^{+}(x) = \begin{cases} f(x) & \text{if } f(x) > 0, \\ 0 & \text{if } f(x) \le 0, \end{cases} \quad f^{-}(x) = \begin{cases} -f(x) & \text{if } f(x) < 0, \\ 0 & \text{if } f(x) \ge 0. \end{cases}$$

(**Problem 2250**) Show that $f(x) = f^+(x) - f^-(x)$ and that $f^{\pm} : X \to [0, \infty]$.

(Problem 2260) Let (X, S) be a measurable space and $f : X \to [-\infty, \infty]$. Suppose f is S-measurable. Show that f^+ and f^- are S-measurable.

[Definition: Integral of a real-valued function] Let (X, S, μ) be a measure space. Let $f: X \to [-\infty, \infty]$ be S-measurable. If $\int f^+ d\mu < \infty$ or $\int f^- d\mu < \infty$ (or both), we define

$$\int f \, d\mu = \int f^+ \, d\mu - \int f^- \, d\mu.$$

(**Problem 2290**) What are the two ways that $\int f d\mu$ can fail to exist?

(**Problem 2270**) Show that the definition of the integral of a nonnegative function given above coincides with this new definition in the case where f is nonnegative.

(**Problem 2280**) Show that $\int |f| d\mu < \infty$ if and only if $\int f^+ d\mu < \infty$ and $\int f^- d\mu < \infty$.

(Problem 2330) Suppose (X, S, μ) is a measure space, $f : X \to [-\infty, \infty]$, and $\int f d\mu$ exists. Show that $|\int f d\mu| \leq \int |f| d\mu$.

(**Problem 2300**) Suppose (X, S, μ) is a measure space, $f : X \to [-\infty, \infty]$, and $\int f d\mu$ exists. Let $c \in \mathbf{R}$. Show that $\int cf d\mu = c \int f d\mu$.

(Problem 2310) Suppose (X, S, μ) is a measure space, $f, g : X \to [-\infty, \infty]$, and $\int |f| d\mu < \infty$, $\int |g| d\mu < \infty$. Show that $\int f + g d\mu = \int f d\mu + \int g d\mu$.

(Problem 2320) Suppose (X, S, μ) is a measure space, $f, g : X \to [-\infty, \infty], f(x) \le g(x)$ for all $x \in X$, and $\int f d\mu$, $\int g d\mu$ exist. Show that $\int f d\mu \le \int g d\mu$.

3B. Limits of integrals and integrals of limits

[Definition: Integration on a subset] Let (X, S, μ) be a measure space. Let $E \in S$. If $f: X \rightarrow [-\infty, infty]$ is a *S*-measurable function, then we let

$$\int_{E} f \, d\mu = \int \chi_{E} f \, d\mu$$

provided the right-hand side exists.

(**Problem 2350**) Let A, $B \in S$ be disjoint. Show that $\int_A f d\mu + \int_B f d\mu = \int_{A \cup B} f d\mu$.

(Problem 2340) Show that $\left|\int_{F} f d\mu\right| \le \mu(E) \sup_{E} |f|$.

(Problem 2360) [The Bounded Convergence Theorem] Let (X, S, μ) be a measure space. Let $\{f_k\}_{k=1}^{\infty}$ be a sequence of *S*-measurable functions from *X* to **R** that converges pointwise on *X* to a function $f : X \to \mathbf{R}$. Suppose that $\mu(X) < \infty$ and that $\sup_{x \in X} \sup_{k \in \mathbf{N}} |f_k(x)| < \infty$. Show that $\lim_{k \to \infty} \int f_k d\mu = \int f d\mu$.

(**Problem 2380**) Suppose that $\mu(E) = 0$. Show that $\int_{E} f d\mu = 0$.

(Problem 2370) Let (X, S, μ) be a measure space. Let $f, g : X \to [-\infty, \infty]$ be two *S*-measurable functions. Suppose that $\mu\{x \in X : f(x) \neq g(x)\} = 0$. Show that $\int f d\mu$ exists if and only if $\int g d\mu$ exists, and that $\int f d\mu = \int g d\mu$ if they exist.

[Definition: Almost everywhere] Let (X, S, μ) be a measure space. If $E \in S$, then E contains μ -almost every element in X if $\mu(X \setminus E) = 0$. If μ is clear from context, we say E contains almost every element in X.

(Problem 2390) Show that the Bounded Convergence Theorem is still true if we relax the requirement that the f_k s are uniformly bounded to the requirement that there is some $c \in \mathbf{R}$ such that $|f_k(x)| \le c$ for μ -almost every $x \in X$.

(Problem 2400) Let (X, S, μ) be a measure space. Let $g : X \to [0, \infty]$ be *S*-measurable. Suppose that g is bounded. Show that for every $\varepsilon > 0$ there is a $\delta > 0$ such that, if $B \in S$ and $\mu(B) < \delta$, then $\int_B g d\mu < \varepsilon$.

(**Problem 2410**) Show that the preceding problem is true provided $\int g d\mu < \infty$ even if g is not bounded.

[Exercise 3A.1] Let (X, S, μ) be a measure space. Let $g : X \to [0, \infty]$ be S-measurable. Suppose that $\int g d\mu < \infty$. Show that if $E \in S$ and $\mu(E) = \infty$ then $\inf_E g = 0$.

(**Problem 2420**) Show that for every $\varepsilon > 0$ there is an $E \in S$ with $\mu(E) < \infty$ and $\int_{X \setminus E} g \, d\mu < \varepsilon$.

(Problem 2430) [The Dominated Convergence Theorem] Let (X, S, μ) be a measure space, and let $f, f_k : X \to [-\infty, \infty], g : X \to [0, \infty]$ be *S*-measurable. Suppose that

- $\mu(X) < \infty$,
- $\lim_{k\to\infty} f_k(x) = f(x)$ for almost every $x \in X$.
- $\int g d\mu < \infty$
- $\sup_{k \in \mathbb{N}} |f_k(x)| \le g(x)$ for almost every $x \in X$.

Show that $\lim_{k\to\infty} \int f_k d\mu = \int f d\mu$.

(**Problem 2440**) [The Dominated Convergence Theorem] Show that the previous problem is true even if $\mu(X) = \infty$.

* * *

[Definition: The Lebesgue space] Let (X, S, μ) be a measure space. Let $f : X \to [-\infty, \infty]$ be *S*-measurable. Then the L^1 -norm of f is defined by

$$\|f\|_1 = \int |f| \, d\mu.$$

The Lebesgue space $L^1(\mu)$ is defined by

 $L^{1}(\mu) = \{f : f \text{ is an } S \text{-measurable function } f : X \to \mathbb{R} \text{ and } \|f\|_{1} < \infty \}.$

(**Problem 2450**) Let $f, g \in L^1(\mu)$. Show that

- $||f||_1 \ge 0.$
- $||f||_1 = 0$ if and only if f = 0 almost everywhere.
- $||cf||_1 = |c| ||f||_1$ for all $c \in \mathbf{R}$.
- $||f + g||_1 \le ||f||_1 + ||g||_1.$

(Problem 2451) Is $\|\cdot\|_1$ a norm on the vector space $L^1(\mu)$?

(**Problem 2460**) Let μ denote the counting measure on **N**. What is $L^1(\mu)$? (This space is often called ℓ^1 .)

(**Problem 2470**) Let $f \in L^1(\mu)$ and let $\varepsilon > 0$. Show that there is a simple function $s \in L^1(\mu)$ that satisfies $||f - s||_1 < \varepsilon$.

[Definition: Lebesgue space on the real numbers] $L^1(\mathbf{R}) = L^1(\lambda)$ where λ denotes Lebesgue measure. (The underlying σ -algebra is the Lebesgue or Borel measurable sets.)

[Definition: Step function] We say that $g : \mathbf{R} \to \mathbf{R}$ is a step function if $g = \sum_{j=1}^{m} a_j \chi_{I_j}$, where each I_i is an interval and each $a_i \in \mathbf{R}$.

(**Problem 2480**) Let g be a step function. Show that we may require the intervals I_j to be pairwise disjoint.

(**Problem 2500**) Let $f \in L^1(\mathbb{R})$ and let $\varepsilon > 0$. Show that there is a step function $s \in L^1(\mathbb{R})$ that satisfies $||f - s||_1 < \varepsilon$.

(Problem 2510) Let $f \in L^1(\mathbb{R})$ and let $\varepsilon > 0$. Show that there is a continuous function $g \in L^1(\mathbb{R})$ that satisfies $||f - g||_1 < \varepsilon$.

(Bonus Problem 2511) Can we require that *g* have *compact support*, that is, that g(x) = 0 outside of some bounded set?

(Bonus Problem 2512) Can we require that g be continuously differentiable? Twice differentiable? Smooth (differentiable to order m for all $m \in \mathbf{N}$)?

4A. Hardy-Littlewood maximal function

(**Problem 2520**) (Markov's inequality) Let (X, S, μ) be a measure space, let $h \in L^1(\mu)$, and let $c \in (0, \infty)$. Show that

$$\mu\{x \in X : |h(x)| \ge c\} \le \frac{1}{c} \|h\|_1.$$

[Definition: 3I] Let *I* be a bounded nonempty open interval in **R**. Then 3I is the open interval with the same center as *I* and three times its length.

(Problem 2530) Show that if *I*, *J* are bounded nonempty non-disjoint open intervals, and $l(I) \ge l(J)$, then $J \subseteq 3I$.

(Bonus Problem 2540) Let $I_1 = (0, 10)$, $I_2 = (9, 15)$, $I_3 = (14, 22)$, $I_4 = (21, 31)$. What subsets of $\{I_1, I_2, I_3, I_4\}$ are pairwise disjoint?

(Bonus Problem 2550) Find $I_1 \cup I_2 \cup I_3 \cup I_4$.

(Bonus Problem 2560) Find $\bigcup_{I \in \mathcal{I}} \exists I$ for each of the sets \mathcal{J} you found in Problem 2540.

(Problem 2570) [The Vitali covering lemma] Let $\{I_k\}_{k=1}^n$ be a list of finitely many bounded nonempty open intervals in **R**. Show that there exists a sublist $\{I_{k_j}\}_{j=1}^m$ such that the I_{k_j} s are pairwise disjoint and $\bigcup_{k=1}^n I_k \subseteq \bigcup_{i=1}^m \Im I_{k_i}$.

[Definition: Hardy-Littlewood maximal function] Let $h : \mathbf{R} \rightarrow \mathbf{R}$ be measurable. Then

$$h^*(b) = \sup_{t>0} \frac{1}{2t} \int_{b-t}^{b+t} |h|$$

(Problem 2571) Show that if h is bounded and $b \in \mathbb{R}$ then $h^*(b) \leq \sup_{\mathbb{R}} |h|$.

(Bonus Problem 2580) Let $h = \chi_{[0,1]}$. Find h^* .

[Exercise 4A.9] Let $h : \mathbf{R} \to \mathbf{R}$ be measurable and let c > 0. Then $\{b \in \mathbf{R} : h^*(b) > c\}$ is open.

(**Problem 2590**) Suppose $h \in L^1(\mathbb{R})$ and $c \in (0, \infty)$. Show that

$$|\{b \in \mathbf{R} : h^*(b) > c\}| < \frac{3}{c} ||h||_1.$$

4B. Undergraduate analysis

[Definition: Derivative] Let $I \subseteq \mathbf{R}$ be an open interval, $b \in I$ and $g : I \to \mathbf{R}$. Then $g'(b) = \lim_{t \to 0} \frac{g(b+t)-g(b)}{t}$ if the limit exists, in which case g is differentiable at b.

(Problem 2600) Let $f : \mathbf{R} \to \mathbf{R}$ be continuous. Show that if $b \in \mathbf{R}$ then

$$\lim_{t \to 0^+} \frac{1}{2t} \int_{b-t}^{b+t} |f - f(b)| = 0.$$

(**Problem 2620**) Let $f \in L^1(\mathbb{R})$ be continuous. Define $g(x) = \int_{-\infty}^{x} f$. Let $b \in \mathbb{R}$. Show that g is differentiable at b and that g'(b) = f(b).

4B. Derivatives of integrals

(Problem 2610) Let $f \in L^1(\mathbb{R})$. Show that

$$\lim_{t \to 0^+} \frac{1}{2t} \int_{b-t}^{b+t} |f - f(b)| = 0$$

for almost every $b \in \mathbf{R}$.

(Problem 2660) Let $f \in L^1(\mathbb{R})$. Show that $f(b) = \lim_{t \to 0^+} \frac{1}{2t} \int_{b-t}^{b+t} f$ for almost every $b \in \mathbb{R}$.

(Problem 2630) Let $f \in L^1(\mathbb{R})$. Define $g(x) = \int_{-\infty}^{x} f$. Let $b \in \mathbb{R}$. Show that g is differentiable at b with g'(b) = f(b) for almost every $b \in \mathbb{R}$.

(Problem 2640) Let $E \subseteq [0, 1]$. Suppose that *E* has the property that $|E \cap [0, b]| = \frac{b}{2}$ for all $b \in [0, 1]$. Show that *E* is not Lebesgue measurable.

(Bonus Problem 2650) Can you show that such a set E exists?

[Definition: Density] Let $E \subseteq \mathbf{R}$ and $b \in \mathbf{R}$. The density of E at b is $\lim_{t\to 0^+} \frac{|E\cap(b-t,b+t)|}{2t}$ provided the limit exists.

(Problem 2670) Let $E \subseteq \mathbf{R}$ be a Lebesgue measurable set with $|E| < \infty$. Show that the density of *E* is 1 at almost every $b \in E$ and that the density of *E* is 0 at almost every $b \notin E$.

(**Problem 2680**) Show that the above result is still true even if $|E| = \infty$.

(Problem 2690) Let $G \subseteq \mathbf{R}$ be open and nonempty. Show that there exist two closed sets F, $\widehat{F} \subseteq G \setminus \mathbf{Q}$ with $F \cap \widehat{F} = \emptyset$ and |F| > 0, $|\widehat{F}| > 0$.

(**Problem 2700**) Let *S* be the set of all nonempty bounded open intervals in **R** with rational endpoints. Is *S* countable or uncountable?

(Problem 2710) If $G \subseteq \mathbf{R}$ is open, is there an $I \in S$ with $I \subseteq G$?

(**Problem 2720**) Show that there exists a Borel set *E* such that $0 < |E \cap I| < |I|$ for all nonempty bounded open intervals *I*.

(Problem 2730) Why don't Problems 2680 and 2720 contradict each other?

5A. Undergraduate analysis

[Definition: Cartesian product] Let A and B be sets. The Cartesian product $A \times B$ of A and B is the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$.

5A. Products of measure spaces

[Definition: Rectangle] If X and Y are sets, then $R \subseteq X \times Y$ is called a rectangle if there exist sets $A \subseteq X$, $B \subseteq Y$ with $R = A \times B$.

[Definition: Measurable rectangle] Let (X, S) and (Y, T) be measurable spaces. A set $R \subseteq X \times Y$ is called a measurable rectangle if there exist sets $A \in S$, $B \in T$ with $R = A \times B$.

[Definition: Product σ **-algebra]** Let (X, S) and (Y, T) be measurable spaces. Then $S \otimes T$ is the smallest σ -algebra on $X \times Y$ that contains all measurable rectangles in $X \times Y$.

(Problem 2740) How is $S \otimes T$ different from $S \times T$?

[Definition: Cross section of a set] Let X and Y be sets and let $E \subseteq X \times Y$. If $a \in X$ or $b \in Y$, then the cross sections $[E]_a$ and $[E]^b$ are defined by

$$[E]_a = \{y \in Y : (a, y) \in E\}, \quad [E]^b = \{x \in X : (x, b) \in E\}.$$

(Problem 2750) Let $X = Y = \mathbf{R}$ and let $E = \{(x, y) : x^2 + y^2 < 25\}$. Draw $[E]_3$ and $[E]^4$ in $\mathbf{R}^2 = \mathbf{R} \times \mathbf{R}$.

(**Problem 2760**) Suppose $a \in X$, $A \subseteq X$ and $b \in Y$, $B \subseteq Y$. What are $[A \times B]_a$ and $[A \times B]^b$? (**Problem 2770**) Let (X, S) and (Y, T) be measurable spaces. Let

$$= \{E \subseteq X \times Y : [E]_a \in \mathcal{T}, [E]^b \in \mathcal{S} \text{ for all } a \in X, b \in Y\}.$$

Show that \mathcal{E} contains all measurable rectangles in $X \times Y$.

(Problem 2780) Show that \mathcal{E} is a σ -algebra.

Е

(Problem 2790) What can you conclude about \mathcal{E} and $\mathcal{S} \otimes \mathcal{T}$?

(Problem 2791) Is $\mathcal{E} \subseteq \mathcal{S} \otimes \mathcal{T}$?

[Definition: Cross sections of functions] Let $f : X \times Y \rightarrow \mathbf{R}$ be a function. If $a \in X$ and $b \in Y$, we let

$$[f]_a(y) = f(a, y), \quad [f]^b(x) = f(x, b)$$

for all $y \in Y$, $x \in X$.

(Problem 2800) Let $A \subseteq X$, $B \subseteq Y$, and $f = \chi_{A \times B}$. If $a \in X$, what is $[f]_a$? If $b \in B$, what is $[f]^b$?

(Problem 2801) If $a \in X$ and $E \subseteq X \times Y$, what can you say about $[\chi_E]_a$ and $\chi_{[E]_a}$?

(Problem 2810) Let (X, S) and (Y, T) be measurable spaces. Let $a \in X$ and $b \in Y$. Let $f : X \times Y \to \mathbf{R}$ be a $S \otimes T$ -measurable function. Show that $[f]_a$ is T-measurable and $[f]^b$ is S-measurable.

* * *

[Definition: Algebra] Let W be a set and let A be a set of subsets of W. We say that A is an algebra on W if:

• $\emptyset \in \mathcal{A}$

- If $E \in \mathcal{A}$ then $W \setminus E \in \mathcal{A}$
- If $E, F \in A$, then $E \cup F \in A$.

(Problem 2840) Show that all algebras are closed under finite intersections.

(Problem 2850) Let (X, S) and (Y, T) be measurable spaces. Let A be the set of all finite unions of measurable rectangles in $S \otimes T$. Show that A is an algebra on $X \times Y$.

(Problem 2851) Let $A \times B$ and $C \times D$ be two measurable rectangles in $X \times Y$. Show that $(A \times B) \cup (C \times D) = (A \times B) \cup H \cup J$, where H and J are two measurable rectangles that satisfy $(A \times B) \cap H = (A \times B) \cap J = H \cap J = \emptyset$.

(**Problem 2860**) Let *E* be a finite union of measurable rectangles. Show that *E* is a finite union of disjoint measurable rectangles.

[Definition: Monotone class] Let W be a set and let \mathcal{M} be a set of subsets of W. We say that \mathcal{M} is a monotone class on W if:

- If $E_1 \subseteq E_2 \subseteq ...$ is an increasing sequence of sets in \mathcal{M} then $\bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$.
- If $E_1 \supseteq E_2 \supseteq \ldots$ is a decreasing sequence of sets in \mathcal{M} then $\bigcap_{k=1}^{\infty} E_k \in \mathcal{M}$.

(Problem 2870) Show that the set of all intervals in R is a monotone class.

(Problem 2880) Show that the set of all intervals in R is not an algebra.

(Problem 2890) Let C be a collection of monotone classes on a set W. Show that $\bigcap_{\mathcal{M} \in C} \mathcal{M}$ is a monotone class on W.

[Definition: Smallest monotone class] Let \mathcal{B} be a set of subsets of a set W. Let $\mathcal{C} = {\mathcal{M} : \mathcal{B} \subseteq \mathcal{M} \subseteq 2^W, \mathcal{M} \text{ is a monotone class}}$. We call $\bigcap_{\mathcal{M} \in \mathcal{C}} \mathcal{M}$ the smallest monotone class containing \mathcal{B} .

(**Problem 2900**) Let \mathcal{B} be a set of subsets of a set W. Show that the smallest σ -algebra containing \mathcal{B} contains the smallest monotone class containing \mathcal{B} .

(Problem 2910) Let A be an algebra on a set W. Let M be the smallest monotone class containing A. Show that M is a σ -algebra.

(Problem 2911) Show that M is the smallest σ -algebra containing A.

* * *

[Definition: Finite measure] A measure μ on a measurable space (X, S) is finite if $\mu(X) < \infty$.

[Definition: σ -finite] A measure μ on a measurable space (X, S) is σ -finite if there exists a sequence $\{X_k\}_{k=1}^{\infty} \subseteq S$ with $X = \bigcup_{k=1}^{\infty} X_k$ and $\mu(X_k) < \infty$ for each $k \in \mathbb{N}$.

(**Problem 2912**) Show that we may also require $X_k \subseteq X_{k+1}$ for all $k \in \mathbf{N}$.

(Problem 2920) Give an example of a finite measure.

(Problem 2930) Show that Lebesgue measure on **R** is σ -finite but not finite.

(**Problem 2940**) Show that the counting measure on **N** is σ -finite but not finite.

(Problem 2950) Show that the counting measure on **R** is not σ -finite.

(Problem 2960) Let (X, S, μ) and (Y, T, ν) be measure spaces. Suppose $\mu(X) < \infty$. If $E \in S \otimes T$, show that $y \mapsto \mu([E]^y)$ is a T-measurable function on Y.

(**Problem 2970**) Show that the result is still true if (X, S, μ) is a σ -finite measure space.

[Definition: Integral notation] If (X, S, μ) is a measure space and $g : X \to [-\infty, \infty]$ is a *S*-measurable function then

$$\int_X g(x)\,d\mu(x) = \int g\,d\mu$$

where $d\mu(x)$ indicates that variables other than x should be treated as constants.

[Definition: Product of measures] Let (X, S, μ) and (Y, T, ν) be σ -finite measure spaces. Let $E \in S \otimes T$. We define

$$(\mu \times \nu)(E) = \int_{Y} \mu([E]^{y}) d\nu(y).$$

(**Problem 2980**) Let $A \in S$ and $B \in T$. Show that $(\mu \times \nu)(A \times B) = \mu(A) \cdot \nu(B)$.

(**Problem 2981**) Show that if $E \in S \otimes T$ then $(\mu \times \nu)(E)$ is well defined and nonnegative.

(**Problem 2990**) Show that $\mu \times \nu$ is a measure on ($X \times Y, S \otimes T$).

(**Problem 2991**) Let $E_1 \subseteq E_2 \subseteq ...$ be an increasing sequence of sets in $S \otimes T$. Show that

$$\int_{Y} \mu([\bigcup_{k=1}^{\infty} E_k]^{y}) d\nu(y) = \lim_{k \to \infty} \int_{Y} \mu([E_k]^{y}) d\nu(y).$$

(**Problem 2992**) Let $E_1 \supseteq E_2 \supseteq ...$ be a decreasing sequence of sets in $S \otimes T$. If $\mu(X) < \infty$, show that

$$\int_{Y} \mu([\bigcap_{k=1}^{\infty} E_{k}]^{y}) d\nu(y) = \lim_{k \to \infty} \int_{Y} \mu([E_{k}]^{y}) d\nu(y).$$

(**Problem 3000**) Suppose $\mu(X) < \infty$ and $\mu(Y) < \infty$. Show that

$$\int_{Y} \mu([E]^{Y}) d\nu(y) = \int_{X} \nu([E]_{X}) d\mu(X)$$

for all $E \in S \otimes T$.

(Problem 3010) Show that

$$\int_{Y} \mu([E]^{y}) d\nu(y) = \int_{X} \nu([E]_{x}) d\mu(x)$$

for all $E \in S \otimes T$ if X and Y are σ -finite (and not necessarily finite).

5B. Iterated integrals

(Problem 3020) Let (X, S, μ) and (Y, T, ν) be σ -finite measure spaces. Let $f : X \times Y \to [0, \infty]$ be a $S \otimes T$ -measurable function. Let $g(x) = \int_Y f(x, y) d\nu(y) = \int_Y [f]_x(y) d\nu(y)$. Show that $g : X \to \mathbb{R}$ is S-measurable.

[Definition: Iterated integral] Let (X, S, μ) and (Y, T, ν) be measure spaces. Let $f : X \times Y \rightarrow [-\infty, \infty]$ be a $S \otimes T$ -measurable function. We define

$$\int_{X} \int_{Y} f(x, y) d\nu(y) d\mu(x) = \int_{X} \left(\int_{Y} f(x, y) d\nu(y) \right) d\mu(x)$$
$$= \int_{X} \left(\int_{Y} [f]_{X} d\nu(y) \right) d\mu.$$

(Problem 3030) [Tonelli's Theorem] Let (X, S, μ) and (Y, T, ν) be σ -finite measure spaces. Let $f : X \times Y \rightarrow [0, \infty]$ be a $S \otimes T$ -measurable function. Show that

$$\int_{X\times Y} f d(\mu \times \nu) = \int_X \int_Y f(x, y) d\nu(y) d\mu(x) = \int_Y \int_X f(x, y) d\mu(x) d\nu(y).$$

[Exercise 5B.1] Tonelli's theorem can fail for measurable functions $f : X \times Y \rightarrow \mathbf{R}$.

(**Problem 3040**) Let \mathcal{B} be the σ -algebra of Borel subsets of [0, 1]. Let μ denote the counting measure. Is ($[0, 1], \mathcal{B}, \mu$) σ -finite?

(**Problem 3050**) Let λ denote Lebesgue measure on β . Let $D = \{(x, x) : x \in [0, 1]\}$. Find

$$\int_{[0,1]}\int_{[0,1]}\chi_D(x,y)\,d\mu(y)\,d\lambda(x).$$

(Problem 3060) Find

$$\int_{[0,1]}\int_{[0,1]}\chi_D(x,y)\,d\lambda(x)\,d\mu(y).$$

(Problem 3070) Show that if $x_{j,k} \ge 0$ for all $j, k \in \mathbb{N}$, then $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} x_{j,k} = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} x_{j,k}$.

(Problem 3080) Let (X, S, μ) and (Y, T, ν) be σ -finite measure spaces. Let $f : X \times Y \rightarrow [-\infty, \infty]$ be a $S \otimes T$ -measurable function. Suppose that $\int_{X \times Y} |f| d(\mu \times \nu) < \infty$. Show that $\int_X |f(x, y)| d\mu(x) < \infty$ for ν -almost every $y \in Y$ and that $\int_Y |f(x, y)| d\nu(y) < \infty$ for μ -almost every $x \in X$.

(Problem 3090) What can you say about the set $\{x \in X : \int_Y f(x, y) d\nu(y) \text{ does not exist}\}$?

(Problem 3100) Show that $x \mapsto \int_Y f(x, y) d\nu(y)$ is a *S*-measurable function and that $y \mapsto \int_X f(x, y) d\mu(x)$ is a \mathcal{T} -measurable function (up to a set of measure zero).

(**Problem 3110**) [Fubini's theorem] Show that if $\int_{X \times Y} |f| d(\mu \times \nu) < \infty$ then

$$\int_{X \times Y} f d(\mu \times \nu) = \int_X \int_Y f(x, y) d\nu(y) d\mu(x) = \int_Y \int_X f(x, y) d\mu(x) d\nu(y).$$

[Definition: Region under a graph] Let X be a set and let $f : X \rightarrow [0, \infty]$. The region under the graph of f is

$$U_f = \{(x, t) : x \in X, 0 < t < f(x)\}$$

(Problem 3120) Let $E_{m,k} = f^{-1}([\frac{m}{k}, \frac{m+1}{k}]) \times (0, \frac{m}{k})$. Show that $U_f = \bigcup_{k=1}^{\infty} \bigcup_{m=0}^{\infty} E_{m,k}$.

(Problem 3130) Let (X, S, μ) be a σ -finite measure space. Let $f : X \to [0, \infty]$ be a *S*-measurable function. Let \mathcal{B} be the Borel sets and let λ denote Lebesgue measure on **R**. Show that $U_f \in S \otimes \mathcal{B}$.

(**Problem 3140**) Show that $(\mu \times \lambda)(U_f) = \int_X f d\mu$.

(**Problem 3150**) Show that $\int_X f \, d\mu = \int_{(0,\infty)} \mu(\{x \in X : t < f(x)\}) \, d\lambda(t)$.

(Problem 3160) Show that if $\int_X f d\mu < \infty$ then $\int_{(0,\infty)} \mu(\{x \in X : t < f(x)\}) d\lambda(t) = \int_0^\infty \mu(\{x \in X : t < f(x)\}) d\lambda(t) = \int_0^\infty \mu(\{x \in X : t < f(x)\}) dt$, where the right hand integral is an improper Riemann integral.

(**Problem 3170**) Use the above result to give another proof of Markov's inequality (that is, $\mu(\{x \in X : t < f(x)\}) \leq \frac{1}{t} \int_X f d\mu$).

(**Problem 3171**) Can you do the converse, that is, use Markov's inequality to get the above result?