TABLE OF LAPLACE TRANSFORMS

MATH 2584C, SECTION 5, SPRING 2020

Throughout a, b, c are constants, $n \geq 0$ is an integer, and $f(t), g(t)$ are functions.

March 18:

$$
\begin{array}{rlrl}
\mathcal{L}\{f(t)\} & =\int_{0}^{\infty} e^{-s t} f(t) d t & & \\
\mathcal{L}\{1\} & =\frac{1}{s} & & s>0 \\
\mathcal{L}\{t\} & =\frac{n!}{s^{2}} & & s>0 \\
\mathcal{L}\left\{t^{2}\right\} & =\frac{2}{s^{3}} & & \\
\mathcal{L}\left\{t^{n}\right\} & =\frac{n!}{s^{n+1}} & & s>0, \\
\mathcal{L}\left\{e^{a t}\right\} & =\frac{1}{s-a} & & \\
\mathcal{L}\{a f(t)+b g(t)\} & =a \geq 0 \\
\mathcal{L}\{f(t)\}+b \mathcal{L}\{g(t)\} & &
\end{array}
$$

March 30:

$$
\mathcal{L}\left\{\frac{d y}{d t}\right\}=s \mathcal{L}\{y(t)\}-y(0)
$$

April 1:

$$
\begin{array}{rlrl}
\mathcal{L}\{\sin a t\} & =\frac{a}{s^{2}+a^{2}} & s>0 \\
\mathcal{L}\{\cos a t\} & =\frac{s}{s^{2}+a^{2}} & s>0 \\
\text { If } \mathcal{L}\{f(t)\} & =F(s) \text { then } \mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a) & & \\
\mathcal{L}^{-1}\{F(s)\} & =e^{a t} \mathcal{L}^{-1}\{F(s+a)\} & &
\end{array}
$$

April 3:

$$
\begin{aligned}
\mathcal{L}\{\mathcal{U}(t-c)\} & =\frac{e^{-c s}}{s} & s>0, & \\
\mathcal{L}\{\mathcal{U}(t-c) f(t)\} & =e^{-c s} \mathcal{L}\{f(t+c)\} & & c \geq 0 \\
\mathcal{L}\{\mathcal{U}(t-c) g(t-c)\} & =e^{-c s} \mathcal{L}\{g(t)\} & & c \geq 0
\end{aligned}
$$

April 8:

$$
\begin{aligned}
\mathcal{L}\{t f(t)\} & =-\frac{d}{d s} \mathcal{L}\{f(t)\} \\
\mathcal{L}\left\{\int_{0}^{t} f(r) g(t-r) d r\right\} & =\mathcal{L}\left\{\int_{0}^{t} f(t-r) g(r) d r\right\}=\mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}
\end{aligned}
$$

April 10:

$$
\mathcal{L}\{\delta(t-c)\}=e^{-c s}
$$

$$
c \geq 0
$$

